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Abstract: The free energy principle, and its corollary active inference, constitute a bio-inspired theory
that assumes biological agents act to remain in a restricted set of preferred states of the world, i.e., they
minimize their free energy. Under this principle, biological agents learn a generative model of the
world and plan actions in the future that will maintain the agent in an homeostatic state that satisfies
its preferences. This framework lends itself to being realized in silico, as it comprehends important
aspects that make it computationally affordable, such as variational inference and amortized planning.
In this work, we investigate the tool of deep learning to design and realize artificial agents based
on active inference, presenting a deep-learning oriented presentation of the free energy principle,
surveying works that are relevant in both machine learning and active inference areas, and discussing
the design choices that are involved in the implementation process. This manuscript probes newer
perspectives for the active inference framework, grounding its theoretical aspects into more pragmatic
affairs, offering a practical guide to active inference newcomers and a starting point for deep learning
practitioners that would like to investigate implementations of the free energy principle.

Keywords: free energy principle; active inference; deep learning; machine learning

1. Introduction

Understanding the processes that sentient and reasoning beings play out mentally in
order to perceive the world they live and act in is as compelling as it is complex. The free
energy principle hypothesizes all brain processes can be understood as subserving one
unicum imperative: the minimization of free energy [1,2]. This principle, and its corollary
active inference, assumes that agents act to contrast forces from the environment that
obstruct them from remaining in a restricted set of preferred states of the world. Under
this assumption, biological agents develop a variety of skills, such as perception, action,
planning, and learning, that agents continuously adapt along their lives.

Active inference and the free energy principle have been employed to explain and
simulate several complex processes across different disciplines. In psychology, they have
been used to ground a computational account of neuropsychological syndromes [3] and to
develop emotional recognition devices, which allow resolving uncertainty about emotional
states by interaction and learning [4]. In economics, the free energy principle has been
exploited to reformulate the agents’ optimization process in terms of their beliefs [5].
Variational approaches have been employed to explain niche construction, based on the
free energy principle [6,7]. Active inference has been used to model smooth and saccadic
eye movements [8,9] and to conceptualize attention [10], salience, and memory [11]. In the
context of scene construction, active inference provides an explanation of how agents infer
a higher-order visual pattern of a scene through visual foraging [12,13].

Under some sets of assumptions [14,15], the free energy principle can also be used to
explain how all biological organisms and processes that subserve perception and action
naturally emerge and are continuously adjusted through a natural model selection process.
On shorter (somatic) timescales, minimizing free energy leads to the development of
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the single organisms’ brains, giving rise to learning and memory functions. On longer
(evolutionary) time scales, free energy minimization fosters the evolution process of the
species [16,17]. Establishing a statistical boundary for the Earth’s climate system, this can
also be interpreted as a self-producing system that is performing active inference [18].
Systems that are capable of self-production, i.e., continuously generating and maintaining
themselves by creating their own parts, are called autopoietic [19]. It can be shown that
the process of autopoiesis minimizes free energy, given that for an organism to maintain
a model of itself and its environment it must minimally self-produce the components
required to carry out the process of preserving its generative model [20].

In active inference, the agent minimizes a variational free energy objective with respect
to past experience that causes it to learn a generative model of the world, which allows
predicting what will happen in the future in order to avoid surprising states. Variational
inference [21], from which originates the variational free energy functional, makes possible
to cast the process of perception as an optimization process, which subsumes a set of
choices in terms of modeling and learning, such as the choice of the state distribution or
the way the model copes with uncertainty. The generative world model is then used in the
future to plan actions that will maintain the agent in a homeostatic state that satisfies the
agent preferences. The agent operates an (amortized) Bayesian selection of actions that will
have the least surprise with respect to its preferred state. This decision-making process
takes into consideration several aspects of learning, such as epistemics, habit learning, and
preference learning.

Recent developments in deep learning have opened new frontiers for studying and
experimenting with different perception and behavioral theories; enabling the practical
analyses of artificial implementations, either in simulations or in real environments. One
popular example in this regard is reinforcement learning (RL) [22], a theory that links
the dopamine signals in the brain to reward signals that can be used to reinforce correct
behaviors [23,24], and describes how intelligent behaviors can be learned through reward
maximization [25]. Combining RL with deep learning models for function estimation [26]
has led to several empirical successes, allowing the training of artificial agents to play
video games [27,28], master board games [29], or execute robotic tasks [30]. Similarly, deep
learning techniques are also starting to arise in the context of active inference [31–33].

This work aims to survey the current state-of-the-art of deep learning models for
active inference. At the same time, we want to provide a reference and a starting point
for machine learning practitioners to become acquainted with active inference, drawing
parallels between active inference and recent advances in RL. Other reviews of active
inference have previously been presented for expressing generative models in continuous
spaces [34] or discrete spaces [35]; however, the context, the practices presented, and the
scope of our work strongly differ from theirs, in that we focus specifically on deep-learning-
based techniques to scale active inference to large continuous state and action spaces or
high-dimensional settings, such as robotics and visual control. Concurrently to our work,
a review on active inference for robotics has been released [36], including references to
deep learning methods for active inference. Our work differs from theirs in that they
specifically focus on methods that enable applying active inference in robotics, while we
more broadly discuss active inference techniques that can be employed to develop active
inference artificial agents, explaining in details how each component could be implemented,
highlighting the challenges to overcome, and establishing connections between methods in
different machine learning areas.

A non-exhaustive summary of the aspects that are considered in the active inference
framework for learning perception and action is presented in Figure 1. We divide into
model learning on the one hand, and action selection on the other hand. The first comprises
minimizing variational free energy for learning generative models based on past experi-
ences, modeling belief states and priors, learning state representations and uncertainty,
whereas the latter deals with selecting actions in the future, which trade-off epistemic
foraging and realizing preferences, either by planning or learning habits. Two recurrent
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patterns in active inference are variational inference and the amortization of Bayesian
selection. Variational inference allows casting inference as an optimization problem, i.e.,
finding the distribution closest to the actual one. Amortization allows a faster computation
of the inference process, by reusing previous computations [37]. In active inference, amor-
tized inference is applied for the choice of variational parameters, in the model learning
process, and for the formation of habits, in the action selection process. Combining the
two techniques strongly reduces the computational requirements of active inference and
makes the framework promising for implementation in silico; however, without adequate
models, it is unfeasible to scale active inference in complex scenarios, with continuous
and/or high-dimensional state/action spaces.

Active 
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inference Variational 

free energy

Prior
model

States
distribution

Uncertainty

Expected free 
energy

Bayes action 
selection

EpistemicsPreferences
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Figure 1. The free energy functional minimized by active inference takes two forms: variational free
energy, with respect to past experience, and expected free energy, for selecting future behaviors. For
each of the two, an (amortized) Bayesian optimization scheme is followed that needs to consider
several aspects, as summarized in the diagram. The numbering indicates the section of the paper
discussing each aspect.

In deep learning, generative models have been widely studied, obtaining outstanding
results in several domains, such as image generation [38–40], text prediction [41–43],
and video modeling [44–47]. In particular, temporal deep generative models that allow
predicting the dynamics of a system, i.e., the environment or world, have been studied for
control [48–50], curiosity and exploration [51–53], and anomaly detection [54]. Several of
these models have been used in settings that are similar to the active inference one, and
some of them even share some similarities with the active inference objective of minimizing
variational free energy. As for action selection, several works that use deep learning have
improved upon more classical methods (e.g., α− β pruning, A*, beam search) allowing to
search much larger state and action spaces. Some examples are dynamic programming-
related techniques in RL [26], evolutionary strategies [55], and Monte Carlo Tree Search
(MCTS) [29,56]. These methods all combine more general and classical planning strategies
with deep learning for function estimation, enabling the scaling of behavior learning and
action selection for complex environments.

The remainder of this work is organized as follows: in Section 2, we present the free
energy principle and explain what minimizing free energy entails in terms of perception
and action; in Section 3, we establish the connection between model learning, according to
active inference, and deep generative models, analyzing the different ingredients involved.
In Section 4, we discuss the implementation and design choices that underlie the action
selection process, relating existing works on habit learning, exploration and model-based
control. Finally, we conclude our discussion, remarking the work conducted until this
moment, addressing the implications of learning with deep learning, and proposing some
future perspectives.

2. The Free Energy Principle and Active Inference

The free energy principle is at the core of the active inference framework, as it concep-
tualizes the development of embodied perception as the result of minimizing a free energy
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objective. As we show in this section, the free energy is a function of the agent’s beliefs
about the environment, representing a (variational) upper bound on surprisal from senso-
rial stimuli. This entails that reducing free energy additionally reduces the agent’s model
surprise, restricting its existence to a limited set of craved beliefs. The free energy principle
originated from the work of von Helmholtz on ‘unconscious inference’ [57], postulating
that humans inevitably perform inference in order to perform perception. This implies that
the human perceptual system continuously adjusts beliefs about the hidden states of the
world in an unconscious way. The variational formulation of the free energy [1,58], along
with the introduction of actions as part of the inference process, expanded the original free
energy principle leading to the development of active inference.

In Figure 2, we illustrate the interplay between the main factors that determine the
embodied perception process as described in active inference. At any time, the environment
is in a certain state η, which is external to the agent and not directly observable. The agent
interacts with the environment in two ways: either through (passive) sensorial perception,
which is characterized by the observation of sensorial states o, or by actions, which can
be cast as a set of active states a that the agent imposes on the environment. According
to the free energy principle, in order to minimize free energy, the agent learns an internal
model of potential states of the environment. Crucially, these internal states do not need
to be isomorphic to the external ones, as their purpose is explaining sensorial states in
accordance with active states, rather than replicating the exact dynamics of the environment
Isomorphism, in this context, refers to considering a structure-preserving mapping of
the state space. According to active inference, internal and environment states are not
necessarily equal and the way the internal states are organized may even differ from agent
to agent, despite having to deal with similar concepts/observations/sensory states. From
a biological perspective, this finds evidence in the fact that different living systems have
developed different organs/tissues along their evolutionary process [16]. The role of the
internal state representation is, in fact, to provide the sufficient statistics that allow a ‘best
guess’ about the causes of the agent’s observations and the selection of adaptive action
policies [59].

Environment States
(external)

Model States
(internal)

Sensorial 
states

Active 
states

Figure 2. The external environment states η are the hidden causes of sensorial states o (observations).
The environment attempts to represents such hidden causes through its internal model states s.
Crucially, internal states may or may not correspond to external states, which means that hidden
causes in the brain do not need to be represented in the same way as in the environment. Active
states a (actions), which are developed according to internal states, allow the agent to condition the
environment states.

As a consequence of minimizing free energy, the agent possesses beliefs about the
process generating outcomes, but also about action policies that lead to generating those
outcomes [60]. This corresponds to a probabilistic model of how sensations are caused and
how states should be actively sampled to drive the environment’s generation of sensory
data. Because of these assumptions, the concept of ‘reward’ in active inference is very
different from rewards in RL, as rewards are not signals used to attract trajectories, but
rather sensory states that the agents aims to frequently visit in order to minimize its free
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energy [61]. From an engineering perceptive, this difference is reflected in the fact that
rewards in RL are part of the environment and, thus, each environment should provide its
unique reward signal, while in active inference ‘rewards’ are intrinsic to the agent, which
would pursue its preferences in any environment, developing a set of most frequently
visited states.

In the remainder of this section, we discuss how the agent’s probabilistic model for
perception and action is learned by minimizing free energy, providing a mathematical
synthesis. We consider the environment as a partially observable Markov decision process
(POMDP), represented in Figure 3. Using subscripts to specify the discrete time steps, we
indicate the observation or outcome at time t with ot. To indicate sequences that span
over an undefined number of time steps, we use the superscript ∼, i.e., for outcomes
õ = {o1, o2, . . . , ot}. The succession of states s̃ = {s1, s2, . . . , st} is influenced by sequences
of actions, or policies, that we indicate with π = ã = {a1, a2, . . . , at}. Parameterization
of the state-outcome likelihood mapping is indicated with θ. A precision parameter ζ
influences action selection working as an inverse temperature over policies.

3 3 3

5 5 5

4

21Generative model

Factors

1

2

3

4

5

Precision (policy)

Beliefs about policies

Transition probabilities

Parameters (likelihood)

Likelihood mapping

Figure 3. The diagram illustrates the interplay between the different factors that compose the
graphical model. (1) Policy precision; (2) beliefs about policies; (3) transition probabilities, also
known as dynamics; (4) parameters of the likelihood mapping; (5) likelihood model.

The section is divided in two parts: the first explains how the internal model is
learned with respect to past experience, minimizing a variational free energy functional
that explains the dynamics of the environment’s outcomes, given a sequence of actions.
In the second part, we discuss the minimization of expected free energy with respect
to the future, when actions are selected to reduce surprise with respect to the agent’s
preferred outcomes. Importantly, our treatment refers to a discrete-time instantiation of
active inference. For a discussion on continuous time, the reader may refer to [34].

2.1. Variational Free Energy

In order to minimize the negative log evidence (also known as “surprisal” or “sur-
prise”) of observations from the external world, the agent exploits its past sensory experi-
ences to learn a generative model of the environment using variational inference. Under
the free energy principle [62,63], an upper bound on surprise is established as:

− log p(õ)︸ ︷︷ ︸
surprise

= − logEq(s̃,π,θ,ζ)[
p(õ, s̃, π, θ, ζ)

q(s̃, π, θ, ζ)
] ≤ Eq(s̃,π,θ,ζ)[− log

p(õ, s̃, π, θ, ζ)

q(s̃, π, θ, ζ)
]︸ ︷︷ ︸

variational free energy F

(1)

where, left to right, the following operations are performed: (i) the surprise over the
sequence of observations is marginalized (i.e., summed over / integrated) with respect
to the other factors of the generative model, which are the sequence of states, the policy
of actions, the model parameters, and the policy precision parameter, (ii) a variational
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posterior over states and policies q(s̃, π, θ, ζ) is introduced for variational inference [21],
(iii) Jensen’s inequality is applied to push the logarithm inside the expectation operator.

The variational free energy F can be reformulated as:

F = Eq(π,θ)[Fπ,θ ] + DKL[q(π, ζ)‖p(π, ζ)] + DKL[q(θ)‖p(θ)],

Fπ,θ = Eq(s̃|π,θ)[log q(s̃|π, θ)− log p(õ, s̃|π, θ)].
(2)

When minimizing the variational free energy with respect to the past, the second
equation is generally adopted as the two Kullback–Leibler (KL) divergence terms in the
first equation can be neglected. The former KL divergence, referring to the policies and the
precision parameter, can be overlooked because policies in the past are observed. The latter
KL divergence, referring to the model parameters, can be later considered to work on top
of the model through regularization techniques, e.g., similarly to sleep, where redundant
synaptic parameters are eliminated to minimize model complexity [64].

Omitting conditioning on π and θ for brevity, allows the expression of the free energy
in its two typical forms:

Fπ,θ = DKL[q(s̃)‖p(s̃)]︸ ︷︷ ︸
complexity

−Eq(s̃)[log p(õ|s̃)]︸ ︷︷ ︸
accuracy

= DKL[q(s̃)‖p(s̃|õ)]︸ ︷︷ ︸
approx vs true posterior

− log p(õ)︸ ︷︷ ︸
log evidence

(3)

On the one hand, minimizing free energy implies maximizing the accuracy of a
likelihood model p(õ|s̃) while reducing the complexity of the posterior distribution. On
the other hand, it implies optimizing the variational evidence bound, reminding that the
KL divergence is always non-negative, namely DKL[·‖·] ≥ 0 for any distribution. The KL
divergence is zero when the agent’s model perfectly matches the environment dynamics,
corresponding to the optimal scenario.

Though there is no expectation operator over past experiences (both for brevity and
to comply with the typical way of expressing this functional), it should be clear that the
agent minimizes variational free with respect to known sequences of past observations
and policies from the environment. As we discuss in the following paragraphs, this is
fundamental and is the main aspect that differentiates the variational free energy, computed
with respect to past states of the environment, from the expected free energy, which
considers future states and unobserved data.

2.2. Expected Free Energy

In order to minimize free energy in the future, the agent should adapt its behavior, i.e.
the active states, to confine its existence within a limited set of states. These states corre-
spond to the so called preferences of the agent, or preferred observations/outcomes/states,
depending on the context. The objective of the agent is to exploit its knowledge about
the environment, available through the internal model, to perpetually fulfill preferred
perceptions in the upcoming future. While minimizing free energy about future sequences,
the agent imagines how the future would look like, given a certain sequence of actions or
policy. This is reflected by an expectation over future states and observations generated by
the model, which exploits both the internal states model and the likelihood mapping from
the environment as q̃ = q(õ, s̃, θ|π) = p(õ|s̃, θ)q(s̃|π)q(θ).

Starting from this assumption, the expected free energy G can be expressed as:

Gπ = Eq̃[log q(s̃, θ|π)− log p(õ, θ, s̃|π)]

= −Eq̃[log p(s̃|õ, π)− log q(s̃|π)]︸ ︷︷ ︸
information gain (hidden states)

−Eq̃[log p(θ|s̃, õ, π)− log q(θ)]︸ ︷︷ ︸
information gain (parameters)

−Eq̃[log p(õ)]︸ ︷︷ ︸
extrinsic value

(4)
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Hence, minimizing the expected free energy implies that the agent: (i) maximizes epis-
temic value, i.e., mutual information between hidden states and sensory data,
(ii) maximizes parameter information gain, i.e., mutual information between parame-
ters and states, and (iii) maximizes extrinsic value, i.e., the log likelihood of outcomes
under a preferred, prior distribution log p(õ), or rewards.

Again, omitting conditioning on the policy for brevity, it is possible to rewrite the
expected free energy as a minimization of risk and ambiguity:

Gπ = Eq̃[H[p(õ|s̃)]︸ ︷︷ ︸
ambiguity

+DKL[q(s̃)‖p(s̃)]︸ ︷︷ ︸
state control

−Eq̃[log p(θ|s̃, õ)− log q(θ)]︸ ︷︷ ︸
information gain (parameters)

(5)

≈ Eq̃[H[p(õ|s̃)]︸ ︷︷ ︸
ambiguity

+DKL[q(õ)‖p(õ)]︸ ︷︷ ︸
risk

−Eq̃[log p(θ|s̃, õ)− log q(θ)]︸ ︷︷ ︸
information gain (parameters) (6)

Here, we assume the bound is tight and the approximate posterior is a good approx-
imation of the true posterior to express risk in terms of outcomes; however, the agent
may also express its homeostatic preferences in terms of internal states rather than on its
sensorial perceptions, and formulate the expected free energy in terms of state control.

Despite the variety of objectives that can be considered for the expected free energy, by
either changing some assumptions or reordering its factors, the imperative of the functional
stays the same. The goal of the agent is to restrict itself to its preferred set of states/sensorial
perceptions, while minimizing the ambiguity of its internal model. Maximizing epistemic
value and/or parameter information gain, as for Equation (4), also implicitly adheres to this
hypothesis, as finding informative states in the environment will minimize the uncertainty
of the model in the future [63,65].

3. Variational World Models

In active inference, the objective of minimizing surprise of the internal model with
respect to sensory inputs induces a continuous model learning process that happens inside
the brain. This assumes a predictive coding interpretation of the brain, where the internal
model is used to generate predictions of sensory inputs that are compared to the actual
sensory inputs. The internal model attempts to explain the dynamics of the world and
thus, as performed in related work [50,66], we also refer to it as the ‘world model’. The
reaction of the internal model, tending to minimize free energy with respect to the sensory
inputs, accounts for perception of the agent, which learns to predict the sensory inputs and
the causal structure of their generation.

In machine learning, such a learning process, which requires no human supervision or
labelling, is generally referred to as self-supervised or unsupervised learning. In contrast
to biological agents, deep learning systems typically use a batch learning scheme, where
a dataset of past trajectories is collected, and models are parameterized as deep neural
networks that are optimized by training on batches of data sampled from this dataset.
Such a dataset, indicated by Denv, can be seen as an ordered set of triplets containing an
environment observation, the agent’s action, and the following observation (caused by the
action), namely the triplet (ot, at, ot+1). Training the model is then typically alternated with
collecting new data by interacting with the environment, using the model for planning [49],
or using an amortized (habitual) policy [33,67]. In practice, one can also train a model
upfront using a dataset of collected trajectories from a random agent [68] or an expert [32].
The latter is especially relevant in contexts where collecting experience online with the
agent can be expensive or unsafe [69].

The free energy loss to minimize for one time step, i.e., π = at, can then be written
under the expectations of the data (observations and actions) from the replay buffer:
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Fat = EDenv

[
DKL[q(st+1|st, at)‖p(st+1|st, at)]−Eq(st+1|st ,at)[log p(ot+1|st+1)]

]
(7)

Given the above loss, three distributions or models need to be instantiated: (i) a
likelihood model p(ot+1|st+1) that allows generating (also known as reconstructing) sen-
sory data from the model’s internal states, (ii) a prior model p(st+1|st, at), which encodes
information about the transition probabilities of the dynamics of the internal states, (iii) a
posterior model q(st+1|st, at), which is chosen to minimize the upper bound on surprise,
according to variational inference [21]. In machine learning, this formulation is better
known as the (negative) evidence lower bound (ELBO), it is the same as the loss used to
train variational autoencoders (VAE) [70,71]) and it is shown to optimize a variational in-
formation bottleneck, trading off between the accuracy and the complexity of summarizing
the sensory information in the internal state representation [72,73]. As it is assumed that
external states are not observed by the agent and that the dynamics of the environment is
unknown, there is no way to ensure that the representation learned is the same as external
one; however, the relationship with information compression techniques ensures that
minimizing free energy entails optimizing the information contained in the internal states
about the sensory states [62,74].

Theoretically, deep learning models can be employed to approximate any function
with an arbitrary degree of accuracy [75], which in our case means predicting both the
internal states and sensory data distributions with an arbitrary degree of accuracy. In
practice, though, obtaining an highly accurate model is difficult and, while neural models
can find useful approximations of these models, if one of them is well-known in advance,
directly using it and adapting the other models accordingly could lead to more satisfactory
results. For instance, if the actual likelihood model is known for a certain state space,
the state space of the prior and posterior models can be adapted accordingly. This is the
case for differentiable simulators, where the environment’s observations are the result
of a differentiable generation process that can be integrated in the world model [76,77].
Or again, if the dynamics of the environment is known, it is possible to use that as a
prior, forcing the internal states of the model and the external states of the environment
to have the same structure. When the environment is represented as a POMDP, having
complete knowledge of the dynamics is the only case that ensures an optimal behavior can
be found [22,78]; however, even knowing the dynamics in advance, solving the POMDP
problem remains computationally intractable. Function approximations techniques and
procedures to construct an improved state representation, as the model learning approaches
we describe here, are often used to find nearly optimal policies in more computationally
efficient ways [79–81].

In a general scenario, all distributions are unknown and must be either learned by
the agent or assumed having a certain form, according to some design choices. There are
indeed numerous options to consider when instantiating the different models, and some of
them are important to carry out a stable optimization and/or a well-thought amortization
of the Bayesian inference process. Other design choices consider different aspects of the
generative model (Figure 3), such as the parameters of the likelihood mapping θ and the
sensitivity of the model, which are certainly relevant but that can often be assumed fixed
and neglected.

3.1. Models

To instantiate the deep neural networks for the agent’s generative model, first, it is
important to consider the nature of the variables involved. For the hidden states, active in-
ference assumes a probabilistic model. Unless the environment state space nature is known,
the internal state distribution may have no predefined structure, and neural networks can
be trained to output distributions of different kinds; however, in order to compute the
expectations, as in Equation (7), it is important that the sampling process of the distribu-
tion is differentiable, as the objective needs to be backpropagated through the model for
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computing the gradients that update the model [82]. As the sampling process is generally
non-differentiable, the gradients of the samples should be estimated with ad hoc techniques.
Some widely known examples are the reparametrization trick for Gaussian distributions
[70,71], the straight-through gradient method [83], the likelihood-ratios method [84], also
known as REINFORCE gradients [85], for Bernoulli and categorical variables.

In the active inference literature, multivariate Gaussian (also known as normal) dis-
tributions with a diagonal covariance matrix have been largely adopted since the initial
works on VAEs [32,33,68,86]. Similarly, numerous latent state space models have adopted
a Gaussian structure of their latent space [48,49,87,88], but also more complex mixture
models have been proposed [50]. For Bernoulli and categorical distributions, there has
been both work on general-purpose generative models, such as discrete VAE [38,89], on
latent dynamics models for planning [66,90], and recently they have also been used in an
active inference setting [91]. Some other alternatives to the above methods, which have yet
to be explored for training world models, are: piecewise distributions [92], Markov chains
[93], and normalizing flows [94].

Posterior Model. The choice of the distribution is particularly important for the
posterior model, which is the variational distribution. In theory, one could search for an
optimal distribution of parameters for each of the environment’s transitions/observations,
though that is a slow and difficult process. To speed up training, but also guaranteeing a
legitimate choice of the posterior, it is possible to amortize the selection of the posterior
parameters, as presented in the original VAE work [70,71]. The autoencoding amortization
scheme employs the observation corresponding to a certain state to infer the parameters of
the variational distribution, q(st+1|st, at, ot+1). This allows optimizing the parameters of the
posterior to compress information optimally, as the posterior has access to the observation
that the likelihood model wants to generate. In VAE terms the posterior model is typically
called the “encoder”, whereas the likelihood model is dubbed the “decoder”.

The choice of the encoder architecture, which allows the flow of information from ob-
servations to the posterior, depends on the environment. For instance, for two-dimensional
matrices of data, such as images, convolutional neural networks (CNN) [95], or other
architectures for computer vision such as vision transformers [96] are common choices.
Other potentially useful models can be multilayer perceptrons (MLP) for vector-structured
data [97] or graph neural networks, for graph-structured data [98]. Similarly, the choice
of the likelihood model depends on the format of the observation data, e.g., a transposed
CNN can be useful in the case of visual data.

Prior Model. The prior model can either be known or learned. To learn the prior
model, one can adopt a recurrent neural network architecture, i.e., using memory cells such
as long short term memories (LSTM) [99] or gated recurrent units (GRU) [100]. In other
cases, the environment dynamics is known upfront, or assumptions about the prior can be
made, such as assuming that the prior is a uniform probability distribution. For instance,
an isotropic multivariate Gaussian N (0, I), with zero mean and an identity covariance
matrix I, can be employed as a fixed prior, as performed in standard VAE architectures
[70,71]. Alternatively, assuming the laws that govern the dynamics are known (e.g., physics
laws), the environment’s physics could be exploited as a strong prior [101]. In a similar
fashion, in [102], the authors used the internal state of the robot to force a known prior
structure on the posterior. Finally, the prior could also be ignored/considered constant,
treating the model as an entropy-regularized autoencoder [103].

3.2. Uncertainty

In the active inference perception model, precision, or sensitivity [104,105], is generally
associated to the uncertainty of the transitions between hidden states of the prior (beliefs
precision) or the mapping from hidden states to outcomes of the likelihood (sensory
precision), and can be expressed as the inverse variance of the distribution [106]. In active
inference implementations, precision has been employed as a form of attention, to decide
on which transitions the model should focus on learning from [33], though this aspect has
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been generally less studied in the literature. Similar mechanisms of precision have been
employed for VAE models to control disentanglement of the latent state space [107] or
posterior collapse [108].

Another source of uncertainty in the model arises from uncertainty in the parameters.
In the deep learning community, uncertainty about model parameters has been studied
employing Bayesian neural networks [109], dropout [110], or ensembles [111], and used
in RL to study the exploration problem [53,112,113]. In active inference, considering the
generative model in Figure 3, uncertainty is treated with respect to the distribution over
the parameters of the likelihood model. Similarly to RL, dropout [33] and ensembles [114]
have been studied in the active inference literature, although several implementations until
now have neglected this aspect, assuming confidence over a single set of parameters.

3.3. Representation

Following the variational free energy formulation from Equation (7), the agent’s
generative model is assumed capable of generating imaginary outcomes that match closely
with the sensory perceptions through the likelihood model. This is presented on the left in
Figure 4, for an environment with visual sensory data, i.e., images. The model depicted uses
a sequential VAE-like setup, with the posterior encoding information from the observation
(red) in the state, and the likelihood model generating observations from the state with a
decoder (blue).

(a) (b)

(c) (d)

Figure 4. Representation learning approaches for world models with a latent dynamics. On the left,
the base approach with the likelihood-model that reconstructs sensory information. On the right:
(a) Task-oriented representation; (b) State-consistent representation; (c) Memory-equipped model
(memory cell indicated withM); (d) Hierarchical states structure.

However, learning a likelihood model from high-dimensional sensory observations,
such as in pixel-based environments, is not a trivial problem. In this case, the likelihood
model needs to generate images that match with the original observations pixel by pixel,
requiring both a high-capacity model and a considerable accuracy, especially for high-
resolution images. Most often, the probability distribution of an image is represented as a
product of independent Gaussians over each pixel with fixed standard deviation, in which
the log-likelihood loss in Equation (7) becomes the pixel-wise mean squared error between
two images; however, this can be problematic, as it might lead to the model ignoring small
but important features in the environment (as the pixel-wise loss is low) and wasting a lot
of capacity in encoding potentially irrelevant information (i.e., the exact textures of a wall).

One potential solution (a) is to train the model in sight of the future task to accomplish,
considering only the states related to accomplishing the agent’s goal, i.e., rewards. Finding
a hidden state representation that allows predicting such information, without necessarily
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generating observations greatly lightens the representational burden of the model, though
it would make the internal dynamics less informed. An example is illustrated in Figure 4a.
Similar representations have been employed for RL [29], and could perhaps be also adapted
for active inference.

Another proposed solution (b) is to replace the likelihood component of the loss with
a state-consistency loss. These kinds of representations, which enforce some form of con-
sistency between states and their corresponding sensory observations, have increasingly
gained popularity in deep learning as self-supervised learning methods, such as con-
trastive learning [115], clustering/prototypical methods [116], distillation/self-consistency
methods [117,118], and redundancy reduction/concept whitening [119,120]. These repre-
sentation techniques, depicted in Figure 4b, have also been shown successful in training
dynamics models for RL [121,122] and, recently, for active inference as well [123].

Rather than replacing the likelihood model, some other approaches (c–d) have instead
focused on improving the capacity of the model. This is the case of the memory-equipped
models (Figure 4c) and hierarchical models (Figure 4d). Using memory allows to preserve
more information about other (past) observations, and has shown encouraging results
in training latent dynamics models with deep learning memory models, such as LSTMs
and GRUs [47–49,124]. The memory increases the capacity of the model and allows more
accurate predictions of states that are far in the future, especially when the prior model is
unknown and must be learned.

Hierarchical models, which in the active inference community are also referred to
as deep active inference models [13,125] (with an unfortunate confusion caused by using
“deep active inference” as a term for active inference methods using deep neural networks
in the generative model [31,32,102,126]), use a multi-layer structure of the hidden states of
the model that facilitates the modeling of part-whole or temporal hierarchies. Similarly
to using a memory, a hierarchy of states can increase the representational capacity of the
model and allow more accurate predictions. Some deep learning examples have already
implemented this [127,128] as well as some active inference implementations for long-term
navigation [69].

3.4. Summary

There are several choices to consider when designing a variational world model. In
this section, we explain some of them along with providing references to a variety of
studies that actually implement these mechanism, considering contributions both in the
larger deep learning literature as well as in an active inference context. A summary of the
design choices is presented in Table 1.

Table 1. Implementation and design choices for learning the variational world model of the agent.
The table displays one or two examples for each aspect–modality pair, both in the active inference
and in the more general active inference literature, when applicable.

Modality Active Inference Deep Learning

States distribution
Gaussian [32,33,114,123,129] [49,87]

Categorical [91] [66,90]
Others - [92–94]

Prior model
No prior - [103]

Known prior [86,102,114] [70,71,101]
Learned prior [31,33,68,91,123] [48,49,66]

Uncertainty
Precision [33] [107,108]
Ensemble [91,114] [112,113]
Dropout [33] [130]

Representation

Task-oriented - [29]
State consistency [123] [116,119,121,122,131]

Memory-equipped [32,124] [47–50,66]
Hierarchical [132] [127,128]
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In the future, it will be important to continue investigating these design choices and
analyzing their interplay. We believe that synergies between advances in the deep learning
community and active inference adopters will be crucial to further develop generative
models for a wide range of use cases. We also look forward towards novel aspects of model
learning, such as the representation of time [133] or the model reduction happening during
sleep [134].

It is also important to note that some of the design choices discussed, such as the
internal state representation, have an impact on the model learning part but also on the
agent’s action selection. For instance, if there is no likelihood model, how should the agent
recognize whether the preferred outcomes are being satisfied? Or, again, if the agent’s
model is hierarchical, how should granular actions relate to the hierarchical state structure?
In the next section, we provide an overview of the techniques proposed to adopt the
generative model for action selection, and elaborate on these issues.

4. Bayesian Action Selection

In order to select future actions in active inference, the agent exploits the learned
model in order to match its preferred outcomes by minimizing the expected free energy.
More formally, the agent’s belief over which policy or sequence of actions to follow is
given by:

p(π|ζ) = σ(−ζGπ), (8)

where σ is the softmax function and ζ a precision parameter. Hence, when precision is high,
the agent is most likely to engage in the policy with the lowest expected free energy, whereas
for (very) low precision the agent will rather randomly explore. As discussed in Section 2,
the expected free energy Gπ is calculated by taking expectations with respect to outcomes
in the future, inside the model’s predictions. Hence, the agent minimizes the expected
free energy by evaluating the predicted outcomes against the preferred distribution before
deploying actions in reality.

Whereas the generative model is trained to match the real outcomes of the world
with past experience, future outcomes are not yet available to the agent. As an active
inference agent adopts prior expectations of reaching preferred outcomes, one can interpret
this as having a biased generative model of the future towards one’s preferences. The
self-evidencing behavior that emerges is that of a ‘crooked scientist’ [7], searching active
states that will provide evidence for its biased hypothesis.

From a biological perspective, we could assume that every agent possesses a unique
set of preferences, i.e., to maintain homeostasis [135]. These preferences could, for instance,
associate internal signals, such as body temperature, hunger, happiness, and satisfaction, to
the preferred states of the world. For artificial agents, defining the correct set of preferences
can instead be problematic. Different ways of addressing this problem are presented in the
first subsection. We also analyze the problem of dealing with the agent’s uncertainty and
how to learn and/or amortize the action selection process.

4.1. Preferences Modeling

As summarized in Section 2, the expected free energy objective can be factored in
several ways, each highlighting different emergent properties of the agent’s behavior
(Equations (4)–(6)). While this aspect of active inference has been the target of critics [136],
this allows for greater flexibility in designing the agent selection process.

Observation Preferences. If the agent’s objective is to match a set of preferred out-
comes, the preferred distribution is over the environment’s observations p(o). Matching
outcomes can be seen as a form of goal-directed behavior, where the agent plans its actions
to achieve certain outcomes from the environment. Goal-directed behavior has been widely
studied in the context of RL, both in low-dimensional [137] and visual domains [138,139].
Preferences defined in the observation space can be handy, as they just require observations
from “snapshots” of the environment in the correct state. Nevertheless, artificial active
inference implementations have rarely used them, as they are generally hard to match in
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the high-dimensional settings. Strategies that overcome such limitations [123] could be the
subject of future studies.

Internal State Preferences. Instead of defining preferences in observation space, these
could be directly instantiated in the internal state space of the agent. This form of state
matching [140] assumes that the agent knows both the preferred states distribution p(s)
and the model in advance, or as typical in RL, that sensory states are used as internal states.
Alternatively, if a set of preferred outcomes is available, preferred states can be inferred
from those using an inference model p(s|o). This approach has been applied in robotics
simulated and realistic setups [32,68].

Rewards as Preferences. Another way to circumvent the problem of defining pref-
erences is to use a reward function that represents the agent’s probability of observ-
ing the preferred outcomes. The RL problem can be cast as probabilistic inference, by
introducing an optimality variable Ot, which denotes whether the time step t is opti-
mal [141]. The distribution over the optimality variable is defined in terms of rewards as
p(Ot = 1|st, at) = exp(r(st, at)). As discussed in [142], RL works alike active inference but
it encodes utility value in the optimality likelihood rather than in a prior over observations.
Assuming log p(ot) = log p(Ot|st, at), the environment rewards can be used for active
inference as well. This possibility has allowed some active inference work [33,114] to
reuse reward functions from RL environments [22]. Concretely, it is possible to consider
rewards as a part of the observable aspects of the environment, and define their maximum
values as the preferred observations [143]. Nonetheless, defining reward functions is also
problematic [144] as they are not naturally available, and this setup works well only for
well-engineered environments.

Learned Preferences. Finally, state preferences can also be learned from previous
experience using conjugate priors [91], or from expert demonstrations [68]. In a RL con-
text, demonstrations can be used in an inverse reinforcement learning fashion [145,146],
where a reward signal is inferred from correct behaviors, which is then optimized using
RL techniques.

4.2. Epistemics, Exploration, and Ambiguity

While active inference agents seek to realize their preferences, they also aim to reduce
the uncertainty of their model. For instance, if an agent has to manipulate some objects in a
dark room, it would first search for the light switch to increase the confidence of its model
and reduce the resulting ambiguity of its actions. As also shown in Section 2, the causes of
the agent’s ambiguity can be twofold: on the one hand, it can be due to the incapability of
inferring its state with certainty, referring to uncertainty in the state-observation mapping,
e.g., likelihood entropy or mutual information; on the other hand, the uncertainty can
be caused by the agent’s lack of confidence with respect to the model’s parameters. As
depicted in Equation (4), an agent’s drive for epistemic foraging is caused by maximizing
two information gain terms: information gain on model parameters and information gain
on hidden states.

Parameter-driven Exploration. Maximizing mutual information in parameter space
has been studied in RL as a way to encourage exploration, computing the information gain
given by the distribution over parameters with ensembles [112,113,147] or Bayesian neural
networks [53]. In particular, in [113], they use the model to both evaluate the states/actions
to explore and to plan the exploratory behavior, which is close to what envisioned in active
inference. Ensemble methods have also been employed in some active inference works
[114,129] along with dropout [33].

State-driven Exploration. Maximizing mutual information between states and obser-
vations has also been studied in RL for exploration, using the Bayesian surprise signal given
by the DKL divergence between the (autoencoding) posterior and the prior of the model as
a reward [51]. Alternatively, the surprisal with respect to future observations has also been
used in RL to generate an intrinsic motivation signal that rewards exploration [52,148,149].
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In active inference, the majority of works have instead focused on using multiple samples
from the likelihood model [32,33].

Uncertainty Tradeoffs. It is worth mentioning that, during different stages of train-
ing, uncertainty related to parameters and uncertainty related to sensory/internal states
may overlap. Particularly, given that the distributions that represent the agents’ states
are inferred by employing the model parameters, uncertainty in the model strongly influ-
ences uncertainty with respect to the state. This highlights the importance of considering
both kinds of uncertainty, especially when the model is imperfect or its learning process
is incomplete.

From an engineering perspective, having to deal with multiple signals, as in the
active inference objective, poses additional optimization problems. Different parts of the
objectives may provide values on different scales, depending on the different models,
distributions and on the sensory data processed by the agent. In the RL landscape, how
to combine the environments’ rewards with exploration bonuses to obtain the best per-
formance is an ongoing research problem. While one might consider using the ‘vanilla’
objective, with no weighting of the different components, weighting could lead to differ-
ent behaviors that might come in use for practical purposes, e.g., reducing the weight
on the exploration/ambiguity terms might lead to faster convergence when there is no
ambiguity/need to explore in the environment.

4.3. Plans, Habits, and Search Optimization

From a computational point of view, the most complex aspect of minimizing the
expected free energy consists of how selecting the actions that will accomplish the agent’s
belief. In practice, optimizing Gπ becomes a tree search, optionally pruning away from
the search all policies that fall outside of an Occam’s window, which are the policies that
have a very low posterior probability. Nonetheless, depending on the way policies are
defined, the search can still be significantly expensive, especially in high-dimensional and
continuous actions domains.

We distinguish three ways of establishing action selection, summarized in Figure 5.
The first is the typical active inference’s definition, with the policy being a sequence of
actions π = {a1, a2, a3, . . .}, and we will refer to these policies as plans for distinction
(Figure 5a). Each plan is evaluated by its expected free energy, and the next action is
selected from the best plan according to Equation (8). The second way of defining a policy
is by learning a state-action mapping π(st), which is amortizing policy selection by finding
an optimal habit policy that outputs the expected best action for each state (Figure 5b). This
is also the notion of a policy that is accustomed in a typical RL setting. Finally, it is possible
to combine both worlds by first estimating the expected free energy for a given state and
action, and then performing a search over the reduced search space (Figure 5c).

Plan-based policies. Assuming a complete search over all potential sequences of
actions, the plan-based method should yield the optimal policy. Unfortunately, in most do-
mains, considering all sequences of actions is an intractable problem and more engineered
random shooting methods are used to search only over the most promising sequences of
actions, such as [55]. Similar methods have been employed both for RL [49] and active
inference [32,68]. In particular, when the search over policies takes into account recursive
beliefs about the future, this scheme is referred to as sophisticated inference [74]. Sophis-
tication describes the degree to which an agent has beliefs about beliefs. A sophisticated
agent, when evaluating a sequence of actions, instead of directly considering the sequence
of outcomes, recursively evaluates outcomes in terms of the beliefs it would have when
applying each action of the sequence.

Habit Policies. For habit policies, we consider a one-action version of the expected
free energy G that can be obtained by considering one-action plans π = at for all time steps:

Gat = Eq(st+1,ot+1|st ,at)[log q(st+1|st, at)− log p(ot+1, st+1|st, at)] (9)
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(a) (b)

…

(c)

Figure 5. Different approaches for selecting actions. Blue circles represent the path selected by the
agent. (a) Deep search via action plans: the path selected has the lowest free energy. (b) Habit
learning via state-action policies: the agent always samples from the same conditional distribution.
(c) Tree search guided by value and policy: the agent selects the actions according to the prior and
the expected free energy.

A state-action policy π(st) can then be trained to maximize the above signal over
multiple time steps, as typically performed in policy gradient methods [150,151]. In order
to plan for longer horizons, deep RL methods adopt value functions that allow estimating
the expected sum of rewards over time, over a potentially infinite horizon. For these
long-term estimates, the value functions utilize a dynamic programming approach, where
values are continuously updated bootstrapping current estimates with actual data. From
an active inference perspective, it is also possible to estimate the expected free energy for a
longer horizon by applying dynamic programming, similarly to what was studied in [126].
The expected free energy can then be rewritten and optimized recursively as follows:

Gπ(st, at) = G(st, at) + γEat+1∼π(st+1)
[Gπ(st+1, at+1)], (10)

where Gπ represents an estimate of the expected free energy following the policy π and the
expectation over π means the actions are sampled from the state-action policy distribution.
The above equation resembles the Bellman equation known from RL with gamma being
an (optional) discount factor that is used to avoid infinite sum. This optimization scheme
leads to an habit policy that can achieve optimal behavior, when the sources of uncertainty
of the environment are stationary; however, habitual learning can be insufficient in realistic
scenarios, where rare and unexpected events are common. In this action selection scheme,
the precision parameter ζ controls the entropy of the state-action policy distribution,
similarly to maximum-entropy control approaches [151,152].

Hybrid Search Policies. Finally, hybrid search schemes (c) combine the use of a
learned prior with computing the expected free energy for sequences of actions. The search
space is greatly limited by using the prior, which influences the choice of the nodes to
select and expand. One of the most popular applications in RL of these methods is by
employing variants of Monte Carlo Tree Search (MCTS) [29,153], which use both a prior
over actions and estimates of the expected utility over long horizons, as in Equation (10).
Similar approaches have recently been applied for active inference [33,154]. While these
methods are generally applicable only for discrete action spaces, extensions of MCTS for
continuous domains have been developed as well [56]. The precision parameter ζ in these
methods can be used to control the influence of the prior relative to the expected free energy
(computed a posteriori, with respect to a certain action/plan).

4.4. Summary

Similar as when designing the agent’s model, there are several aspects to consider for
implementing action selection in an active inference fashion. In this section, we covered a
number of important aspects and provided references to existing implementations, both in
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the active inference and in the deep reinforcement learning landscape. A summary of these
methods is presented in Table 2.

Table 2. Implementation and design choices for the action selection process, minimizing the expected
free energy. The table displays one or two examples for each aspect–modality pair, both in the active
inference and in the deep learning (mainly, reinforcement learning) literature, when applicable. * All
active inference methods generally consider hidden states exploration.

Modality Active Inference Deep Learning

Preferences

Observations [123] [137–139]
States [68] [140]

Rewards [33,114,126,129] [66,67,87,155]
Learned [91] [145,146]

Exploration Hidden states * [51,52,148,149]
Likelihood parameters [33,91,114] [112,113]

Action selection
Action plans [32,68] [55]

State-action policy [123,126] [150,151]
Amortized search [33,154] [29]

There are still several challenges to overcome in addition to the discussion so far.
For instance, defining the preferences for an artificial agent is still unresolved for many
practical applications. Future work should also address hierarchical implementations for
action selection, to accompany hierarchical models [133], allowing to amortize and abstract
the action selection further. Another interesting interesting avenue consists of investigating
episodic control (currently less studied in the active inference literature), since this has
played an important role for improving performance in RL [156].

5. Discussion and Perspectives

Developing artificial intelligence is a complex and intriguing problem. Among the
capabilities that artificial intelligent agents should possess, the ability to sense and to
act consistently is crucial. Intelligent agents should be able to exhibit their intelligence,
manipulating the environment according to their will or purpose, and to understand the
consequences of their actions, in order to provide a closed-loop feedback to their acting
system and to acknowledge the accomplishment of their desires.

Active inference is a neuro-inspired framework that encompasses both a perception
process, through learning a variational world model, and a Bayesian action selection pro-
cess, which considers both preference satisfaction and uncertainty in the environment and
in the agent’s model. The variational inference optimization scheme and the amortiza-
tion of inference, when learning the model parameters and selecting actions, make the
framework promising for practical implementations, however, without scalable models,
it is unfeasible to apply active inference in complex scenarios, with continuous and/or
high-dimensional state/action spaces. We showed how active inference can be combined
with deep learning models for function approximation to provide implementations that
scale to more complex environments, with the potential of applying it in realistic scenarios.

As mentioned in Section 3, neural networks can learn to approximate any function
with an arbitrary degree of accuracy. Considering multi-layer perceptron models, this
should theoretically achievable by using shallow networks with two hidden layers and
sufficient capacity; however, empirical evidence has shown that deep neural networks
tend to converge to more accurate models more easily than shallow networks [157] and
that overparameterized neural networks generally lead to more accurate predictions [158].
One of the major issues of deep learning might be attributed to its gradient-based learning
rule. While there are, indeed, proofs that an arbitrarily accurate neural network might
exists, there is no certainty about a way to find the accurate model given a set of data, and
thus the learning problem might be undecidable [159,160]. Nonetheless, we believe that
the strong empirical results obtained by using deep neural networks justify their practical
utility for implementing active inference. Furthermore, several of the modeling choices
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here discussed, such as the definition of the internal state distribution or the modality
to amortize the action selection process, might be useful in other learning/modeling
frameworks as well.

One of the intentions of this work is to provide an introduction to active inference
and guidelines for deep learning researchers to hit the ground running in a given field
by exploiting concepts that are in common between the two areas. At the same time, this
article can be used as a reference for scientists intending to address some of the issues that
hinder artificial implementations of the active inference framework.

We presented several design choices that need to be addressed to instantiate artificial
active inference agents with deep learning models, attempting to relate them to well-
established studies in both fields. In particular, we found that some aspects of active
inference are well reflected in some areas of deep learning, such as unsupervised learning,
representation learning, and reinforcement learning, whose findings can be used to push
the boundaries of active inference further. In turn, active inference provides a framework
for perception and action, from which individual approaches could obtain insights to both
expand their scope or understand the implications of their work from a larger perspective.
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