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Abstract: Multimodal datasets are ubiquitous in modern applications, and multimodal Variational
Autoencoders are a popular family of models that aim to learn a joint representation of different
modalities. However, existing approaches suffer from a coherence–quality tradeoff in which models
with good generation quality lack generative coherence across modalities and vice versa. In this
paper, we discuss the limitations underlying the unsatisfactory performance of existing methods
in order to motivate the need for a different approach. We propose a novel method that uses a set
of independently trained and unimodal deterministic autoencoders. Individual latent variables are
concatenated into a common latent space, which is then fed to a masked diffusion model to enable
generative modeling. We introduce a new multi-time training method to learn the conditional score
network for multimodal diffusion. Our methodology substantially outperforms competitors in both
generation quality and coherence, as shown through an extensive experimental campaign.

Keywords: multimodality; generative models; score-based models; diffusion models

1. Introduction

Multi-modal generative modeling is a crucial area of research in machine learning
that aims to develop models capable of generating data according to multiple modalities,
such as images, text, audio, and more. This is important because real-world observations
are often captured in various forms; thus, combining multiple modalities describing the
same information can be an invaluable asset. For instance, images and text can provide
complementary information in describing an object, while audio and video can capture
different aspects of a scene. Multimodal generative models can help in tasks such as data
augmentation [1–3], missing modality imputation [4–7], and conditional generation [8,9].

Multimodal models have flourished over the past years and seen tremendous interest
from academia and industry, especially in the content creation sector. Whereas most
recent approaches focus on specialization, by considering text as a primary input to be
associated mainly with images [10–16] and videos [17–19], in this work we target an
established literature with more general scope and in which all modalities are considered
equally important.

Multi modal generative models aim at high-quality data generation, as well as at
generative coherence across all modalities. These objectives apply to both joint generation
of new data and to conditional generation of missing modalities given a disjoint set of
available modalities. The predominant literature in this field is based on extensions of
the Variational Autoencoder (VAE) [20] to the multimodal domain; initially interested in
learning joint latent representation of multimodal data, such works have mostly focused
on generative modeling.

In short, multimodal VAEs relies on combinations of unimodal VAEs, and the de-
sign space mainly consists of the way in which the unimodal latent variables are com-
bined to construct the joint posterior distribution. Early works such as [21] adopted
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a product-of-experts approach, whereas others [22] considered a mixture-of-experts ap-
proach. While product-based models achieve high generative quality, they suffer in terms
of both joint and conditional coherence. This has been found to be due to mis-calibration
issues on the part of the experts [22,23]. On the other hand, mixture-based models pro-
duce coherent but qualitatively poor samples. A first attempt to address the so-called
coherence–quality tradeoff [24] was represented by the mixture of products of experts
approach [23]. However, recent comparative studies [24] have shown that none of the
existing approaches fulfill the criteria of both generative quality and coherence. A va-
riety of techniques are aimed at finding a better operating point, such as contrastive
learning techniques [25], hierarchical schemes [26], total correlation-based calibration of
single-modality encoders [27], and different training objectives [28]. More recently, in [29],
explicitly separated shared and private latent spaces were considered as a way to overcome
the aforementioned limitations.

In Section 2, we investigate the limitations of multimodal VAEs and prepared the
ground to substantiate a new approach which overcomes the shortcomings in the state of
the art. We further investigate the tradeoff [24] between generative coherence and quality,
and argue that it is intrinsic to all variants of multimodal VAEs. We indicate two root
causes of the problem: latent variable collapse [30,31] and information loss due to mixture
subsampling. To tackle these issues, in Section 3 of this work we propose a new approach
that uses a set of independent and unimodal deterministic autoencoders with the latent
variables simply concatenated in a joint latent variable. Joint and conditional generative
capabilities are provided by an additional model that learns a probability density associated
with the joint latent variable. We propose an extension of score-based diffusion models [32]
to operate on the multimodal latent space. Thus, we derive both forward and backward
dynamics that are compatible with the multimodal nature of the latent data. In Section 4, we
propose a novel multi-time diffusion process that can both be used for joint and conditional
generation. We label our approach Multi-modal Latent Diffusion (MLD).

Our experimental evaluation of MLD in Section 5 provides compelling evidence of the
superiority of our approach for multimodal generative modeling. We compare MLD to a
large variety of VAE-based alternatives on several real-life multimodal datasets in terms
of generative quality and both joint and conditional coherence. Our model outperforms
alternatives in all possible scenarios, even those that are notoriously difficult because the
modalities might be only loosely correlated. We note that recent works have explored the
joint generation of multiple modalities [33,34]; however, such approaches are application-
specific, e.g., text-to-image, and essentially only target two modalities. When relevant,
we compare our method to additional recent alternatives to multimodal diffusion [35,36]
and show the superior performance of MLD.

2. Limitations of Multimodal VAEs

In this work, we consider multimodal VAEs [21–23,29] as the standard modeling
approach to tackle both joint and conditional generation of multiple modalities. Our goal
here is the need to go beyond such a standard approach in order to overcome limitations
that affect multimodal VAEs, which result in a tradeoff between generation quality and
generative coherence [24,29].

Consider the random variable X = {X1, . . . , XM} ∼ pD(x1, . . . , xM), consisting of the
set M of modalities sampled from the (unknown) multimodal data distribution pD. We
indicate the marginal distribution of a single modality by Xi ∼ pi

D(xi) and the collection of a
generic subset of modalities by XA ∼ pA

D(xA), with XA def
= {Xi}i∈A, where A ⊂ {1, . . . , M}

is a set of indexes; for example, given A = {1, 3, 5}, we would have XA = {X1, X3, X5}.
We begin by considering unimodal VAEs as particular instances of the Markov chain

X → Z → X̂, where Z is a latent variable and X̂ is the generated variable. Models are
specified by the two conditional distributions, called the encoder Z | X=x ∼ qψ(z | x) and
decoder X̂ | Z=z ∼ pθ(x̂ | z). For a given prior distribution pn(z), the objective is to define a
generative model with samples that are distributed as similarly as possible to the original data.
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In the case of multimodal VAEs, we consider the general family of Mixture of Prod-
uct of Experts (MOPOE) [23], which includes as particular cases many existing variants
such as Product of Experts (MVAE) [21] and Mixture of Expert (MMVAE) [22]. Formally,
a collection of K arbitrary subsets of modalities S = {A1, . . . AK} along with weighting
coefficients ωi ≥ 0, ∑K

i=1 ωi = 1 define the posterior qψ(z | x) = ∑i ωiqi
ψAi

(z | xAi ), with

ψ = {ψ1, . . . , ψK}. To lighten the notation, we use q
ψAi in place of qi

ψAi
, noting that the vari-

ous qi
ψAi

can have both different parameters ψAi and functional forms. For example, in the

MOPOE [23] parametrization, we have q
ψAi (z | xAi ) = ∏j∈Ai

qψj(z | xj). Our exposition is
more general, and is not limited to this assumption. The selection of the posterior can
be understood as the result induced by the two step procedure where (i) each subset of
modalities Ai is encoded into specific latent variables Yi ∼ q

ψAi (· | xAi ) and (ii) the latent
variable Z is obtained as Z = Yi with probability ωi. Optimization is performed with
respect to the following evidence lower bound (ELBO) [23,24]:

L = ∑
i

ωi

∫
pD(x)q

ψAi (z | x
Ai ) log pθ(x|z)− log

q
ψAi (z | xAi )

pn(z)
dzdx. (1)

A well known limitation called the latent collapse problem [30,31] affects the quality
of the latent variables Z. Consider the hypothetical case of arbitrary flexible encoders
and decoders. Posteriors with zero mutual information with respect to model inputs are
valid maximizers of Equation (1). To prove this, it is sufficient to substitute the posteriors
q

ψAi (z | xAi ) = pn(z) and pθ(x|z) = pD(x) into Equation (1) to observe that the optimal
value ofL =

∫
pD(x) log pD(x)dx is achieved [30,31]. The problem of information loss is ex-

acerbated in the case of multimodal VAEs [24]. Intuitively, even if the encoders q
ψAi (z | xAi )

carry relevant information about their inputs XAi , step (ii) of the multimodal encoding
procedure described above induces a further information bottleneck. Some fraction ωi
of the time, the latent variable Z will be a copy of Yi, which only provides information
about the subset XAi . No matter how good the encoding step is, the information about
X{1,...,M}\A that is not contained in XAi cannot be retrieved.

The variable collapse problem can be analyzed through the lenses of self-reconstruction,
whereby a multimodal VAE is evaluated by simply reconstructing the same modality it
receives as input. We have observed that these models tend to encode input samples into
a latent space with possible information loss, leading to inconsistent reconstruction. This
is particularly shown by the quantitative results in Table A7, with notable difficulty in
reconstructing the SVHN modality.

Furthermore, if the latent variable carries zero mutual information with respect to
the multimodal input, a coherent conditional generation of a set of modalities given oth-
ers is impossible, as X̂A1 ⊥ XA2 for any generic sets A1, A2. While the factorization
pθ(x | z) = ∏M

i=1 pθi (xi | z), θ = {θ1, . . . , θM} (we use pθi here instead of pi
θi to unclutter the

notation) could enforce preservation of information and guarantee better quality of the
jointly generated data, in practice the latent collapse phenomenon induces multimodal
VAEs to converge towards suboptimal a operating regime. When the posterior qψ(z | x)
collapses onto the uninformative prior pn(z), the ELBO in Equation (1) reduces to the sum
of modality-independent reconstruction terms:

∑
i

ωi ∑
j∈Ai

∫
pj

D(xj)pn(z)
(

log pθ j(xj|z)
)

dzdxj (2)

where, paradoxically, the quality of the approximation of the various marginal distributions
is extremely high, while there is a complete lack of joint coherence.

General principles to avoid latent collapse involve explicitly forcing the learning
of informative encoders qθ(z | x) via β−annealing of the Kullback-Leibler (KL) term in
the ELBO and the reduction of the representational power of encoders and decoders.
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While β−annealing [37] has been explored in the multimodal VAEs literature, [21] with
limited improvements reported, reducing the flexibility of the encoders/decoders clearly
impacts the generation quality. Hence, the presence of the tradeoff; in order to improve
coherence, the flexibility of encoders/decoders should be constrained, which in turn
impacts generative quality. This tradeoff has recently been addressed in the literature on
multimodal VAEs [24,29]; however, our experimental results in Section 5 indicate that there
is ample room for improvement and that a new approach is truly needed.

3. Our Approach: Multimodal Latent Diffusion

We propose a new method for multimodal generative modeling that by design does
not suffer from the limitations discussed in Section 2. Our objective is to enable both
high quality and coherent joint/conditional data generation using a simple design (see
Figure 1 for a schematic representation). As an overview, we use deterministic unimodal
autoencoders whereby each modality Xi is encoded through its encoder eψi (which is
a short form for ei

ψi ) into the modality-specific latent variable Zi and decoded into the

corresponding X̂i = dθi (Zi). Our approach can be interpreted as a latent variable model
in which the different latent variables Zi are concatenated as Z = [Z1, . . . , ZM]. This
corresponds to the parameterization of the two conditional distributions as qψ(z | x) =
M
∏
i=1

δ(zi − eψi (xi)) and pθ(x̂ | z) =
M
∏
i=1

δ(x̂i − dθi (zi)), respectively. Then, in place of an

ELBO, we optimize the parameters of our autoencoders by minimizing the following sum
of modality-specific losses:

L =
M

∑
i=1
Li, Li =

∫
pi

D(xi)li(xi − dθi (eψi (xi)))dxi, (3)

where li can be any valid distance function, e.g, the square norm ∥·∥2. The parameters
ψi, θi are modality-specific; thus, minimization of Equation (3) corresponds to individual
training of the different autoencoders. Because the mapping from input to latent is deter-
ministic, there is no loss of information between X and Z (note that as the measures are
not absolutely continuous with respect to the Lebesgue measure, the mutual information
is +∞). Moreover, this choice avoids any form of interference in the backpropagated
gradients corresponding to the unimodal reconstruction losses. Consequently, gradient
conflict issues [38], in which stronger modalities pollute weaker ones, are avoided.

X1

XM

X̂1

X̂M

eψ1

Z
eψM

dθ1

dθM
ZM

Z1

Forward SDE

Equation (7)

R0

RM
0

R1
0

RT ∼ ρ(r)
RM

T

R1
T

Reverse SDE

Equation (8)

R0 ∼ ρ(r)
RM

0

R1
0

RT

RM
T

R1
T

τ
tM

t1

Multi− time

Figure 1. Multimodal Latent Diffusion: two-stage model involving (Top): deterministic modality-
specific encoder/decoders and (Bottom): the score-based diffusion model on the latent spaces of the
modalities, which evolve differently through the diffusion process according to a multi-time vector.
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To enable such a simple design to become a generative model, it is sufficient to generate
samples from the induced latent distribution Z ∼ qψ(z) =

∫
pD(x)qψ(z | x)dx and decode

them as X̂ = dθ(Z) = [dθ1(Z1), . . . , dθM (ZM)].
To obtain such samples, we follow the two-stage procedure described in [39–41],

where samples from the lower-dimensional qψ(z) are obtained through a score-based
generative model. These models have shown tremendous performance in fitting complex
distributions [10,42], an ability which aligns with our objective of learning the distribution
within a multimodal latent space. Furthermore, the conditioning mechanism inherent in
score-based models facilitates highly coherent generation. MLD is further enhanced by
a multi-time diffusion process, a novel mechanism that allows for the generation of any
subset of modalities, and which we explain in Section 4.

It may be helpful at this point to clarify that the two-stage training of MLD is carried
out separately. Unimodal deterministic autoencoders are pretrained first, followed by the
training of the score-based diffusion model, which is explained in more detail later.

To conclude this overview of our method, for joint data generation it is possible to
sample from noise, perform backward diffusion, and then decode the generated multimodal
latent variable to obtain the corresponding data samples. For conditional data generation,
given one modality, the reverse diffusion is guided by this modality, while the other
modalities are generated by sampling from noise. The generated latent variable is then
decoded to obtain data samples of the missing modality.

Joint and Conditional Multimodal Latent Diffusion Processes

In the first stage of our method, the deterministic encoders project the input modalities
Xi into the corresponding latent spaces Zi. This transformation induces a distribution qψ(z)
for the latent variable Z = [Z1, . . . , ZM], resulting from the concatenation of unimodal
latent variables.

Joint generation: To generate a new sample for all modalities, we use a simple score-
based diffusion model in latent space [32,39,40,42,43]. This requires reversing a stochastic
noising process, starting from a simple Gaussian distribution. Formally, the noising process
is defined by a Stochastic Differential Equation (SDE) of the form

dRt = α(t)Rtdt + g(t)dWt, R0 ∼ q(r, 0), (4)

where α(t)Rt and g(t) are the drift and diffusion terms, respectively, and Wt is a Wiener pro-
cess. The time-varying probability density q(r, t) of the stochastic process at time t ∈ [0, T],
where T is finite, satisfies the Fokker–Planck equation [44] with initial conditions q(r, 0).
We assume the uniqueness and existence of a stationary distribution ρ(r) for the process in
Equation (4), though this is not necessary for the validity of the method [45]. The forward
diffusion dynamics depend on the initial conditions R0 ∼ q(r, 0). We consider R0 = Z
to be the initial condition for the diffusion process, which is equivalent to q(r, 0) = qψ(r).
Under loose conditions [46], a time-reversed stochastic process exists, with a new SDE of
the form

dRt =
(
−α(T − t)Rt + g2(T − t)∇ log(q(Rt, T − t))

)
dt + g(T − t)dWt R0 ∼ q(r, T), (5)

indicating that, in principle, simulation of Equation (5) allows samples to be generated
from the desired distribution q(r, 0). In practice, we use a parametric score network sχ(r, t)
to approximate the true score function, and we approximate q(r, T) with the stationary
distribution ρ(r). Indeed, the generated data distribution q(r, 0) is close (in the KL sense)
to the true density as described by [45,47]:

KL[qψ(r) | | q(r, 0)] ≤ 1
2

T∫
0

g2(t)E[∥sχ(Rt, t)−∇ log q(Rt, t)∥2]dt + KL[q(r, T)||ρ(r)] (6)
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where the first term on the right-hand side is referred to as the score-matching objective,
and is the loss over which the score network is optimized, while the second is a vanishing
term for T → ∞.

To conclude, joint generation of all modalities is achieved through simulation of the
reverse-time SDE in Equation (5), followed by a simple decoding procedure. Indeed,
optimally trained decoders (achieving zero in Equation (3)) can be used to transform
Z ∼ qψ(z) into samples from

∫
pθ(x | z)qψ(z)dz = pD(x).

Conditional generation. Given a generic partition of all modalities into non-overlapping
sets A1 ∪ A2, where A2 = ({1, . . . , M} \ A1), conditional generation requires samples from
the conditional distribution qψ(zA1 | zA2), which are based on masked forward and backward
diffusion processes.

Given conditioning latent modalities zA2 , we consider a modified forward diffusion process
with initial conditions R0 = C(RA1

0 , RA2
0 ) and with RA1

0 ∼ qψ(rA1 | zA2), RA2
0 = zA2 . The com-

position operation C(·) concatenates generated (RA1 ) and conditioning latents (zA2 ). As an
illustration, consider A1 = {1, 3, 5} such that XA1 = {X1, X3, X5} and A2 = {2, 4, 6} such
that XA2 = {X2, X4, X6}; then, R0 = C(RA1

0 , RA2) = C(RA1
0 , zA2) = [R1

0, z2, R3
0, z4, R5

0, z6].
More formally, we define the following masked forward-diffusion SDE:

dRt = m(A1)⊙ [α(t)Rtdt + g(t)dWt], q(r, 0) = qψ(rA1 | zA2)δ(rA2 − zA2) (7)

The mask m(A1) contains M vectors ui, one per modality, with the corresponding
cardinality. If modality j ∈ A1, then uj = 1; otherwise, uj = 0. Then, the effect of mask-
ing is to “freeze” the part of the random variable Rt corresponding to the conditioning
latent modalities zA2 throughout the diffusion process. We naturally associate the con-
ditional time-varying density q(r, t | zA2) = q(rA1 , t | zA2)δ(rA2 − zA2) with this modified
forward process.

To sample from qψ(zA1 | zA2), we derive the reverse-time dynamics of Equation (7)
as follows:

dRt = m(A1)⊙
[(
−α(T − t)Rt + g2(T − t)∇ log

(
q(Rt, T − t | zA2)

))
dt + g(T − t)dWt

]
(8)

with initial conditions R0 = C(RA1
0 , zA2) and RA1

0 ∼ q(rA1 , T | zA2). Then, we approximate
q(rA1 , T | zA2) by its corresponding steady-state distribution ρ(rA1) and the true (condi-
tional) score function ∇ log

(
q(r, t | zA2)

)
by a conditional score network sχ(rA1 , t | zA2).

4. Multi-Time Diffusion to Learn the Conditional Score Network

A correctly optimized score network sχ(r, t) allows samples from the joint distribution
qψ(z) to be obtained through simulation of Equation (5). Similarly, through the simula-
tion of Equation (8), a conditional score network sχ(rA1 , t | zA2) allows for sampling from
qψ(zA1 | zA2). In Section 4.1, we extend the guidance mechanisms used in classical diffusion
models to allow multimodal conditional generation. A naïve alternative is to rely on the
unconditional score network sχ(r, t) for the conditional generation task by casting it as an
in-painting objective. Intuitively, any missing modality could be recovered in the same way
that a unimodal diffusion model can recover masked information. In Section 4.3, we discuss
the implicit assumptions underlying in-painting from an information-theoretic perspective
and argue that such assumptions are difficult to satisfy in the context of multimodal data.
This intuition is corroborated by ample empirical evidence, where our method consistently
outperforms alternatives.

4.1. Multi-Time Diffusion

We propose a modification to the classifier-free guidance technique [48] to learn a
score network that can generate conditional and unconditional samples from any subset of
modalities. Instead of training a separate score network for each possible combination of
conditional modalities, which is computationally infeasible, we use a single architecture
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that accepts all modalities as inputs and a multi-time vector τ = [t1, . . . , tM]. The multi-time
vector serves two purposes: it is both a conditioning signal and the time at which we
observe the diffusion process.

Training: Learning the conditional score network relies on randomization. As dis-
cussed in Section 3, we consider an arbitrary partitioning of all modalities in two disjoint
sets, A1 and A2; set A2 contains randomly selected conditioning modalities, while the
remaining modalities belong to set A1. During training, the parametric score network
estimates ∇ log

(
q(r, t | zA2)

)
, whereby set A2 is randomly chosen at every step. This is

achieved by the masked diffusion process from Equation (7), which only diffuses modalities
in A1. More formally, the score network input is Rt = C(RA1

t , ZA2), along with a multi-
time vector τ(A1, t) = t

[
1(1 ∈ A1), . . . ,1(M ∈ A1)

]
. As a follow-up of the example in

Section 3, given A1 = {1, 3, 5} such that XA1 = {X1, X3, X5} and A2 = {2, 4, 6} such that
XA2 = {X2, X4, X6}, we have τ(A1, t) = [t, 0, t, 0, t, 0].

More precisely, the algorithm for multi-time diffusion training (see Appendix A for
the pseudo-code) proceeds as follows. At each step, a set of conditioning modalities A2

is sampled from a predefined distribution ν, where ν(∅)
def
= Pr(A2 = ∅) = d and ν(U)

def
=

Pr(A2 = U) = (1−d)/(2M−1) with U ∈ P({1, . . . , M}) \ ∅, where P({1, . . . , M}) is the
powerset of all modalities. The corresponding set A1 and mask m(A1) are constructed,
and a sample X is drawn from the training dataset. The corresponding latent variables
ZA1 = {ei

ψ(Xi)}i∈A1 and ZA2 = {ei
ψ(Xi)}i∈A2 are computed using the pretrained encoders

and a diffusion process starting from R0 = C(ZA1 , ZA2) is simulated for a randomly chosen
diffusion time t using the conditional forward SDE with the mask m(A1). The score
network is then fed the current state Rt and multi-time vector τ(A1, t) and the difference
between the score network’s prediction and the true score is computed while applying
mask m(A1). The score network parameters are updated using stochastic gradient descent,
and this process is repeated for a total of L training steps. Clearly, when A2 = ∅, training
proceeds the same as for an unmasked diffusion process, as mask m(A1) allows all of the
latent variables to be diffused.

Conditional generation: Any valid numerical integration scheme for Equation (8)
can be used for conditional sampling (see Appendix A for an implementation using the
Euler–Maruyama integrator). First, conditioning modalities in set A2 are encoded into
the corresponding latent variables zA2 = {ej(xj)}j∈A2 . Then, numerical integration is

performed with a step size of ∆t = T/N, starting from initial conditions R0 = C(RA1
0 , zA2)

with RA1
0 ∼ ρ(rA1). At each integration step, the score network sχ is fed the current state of

the process and the multi-time vector τ(A1, ·). Before updating the state, the masking is
applied. Finally, the generated modalities are obtained thanks to the decoders as X̂A1 =

{dj
θ(Rj

T)}j∈A1 . Inference time conditional generation is not randomized; the conditioning
modalities are the ones that are available, whereas those remaining are the ones we wish
to generate.

Any-to-any multimodality has been recently studied through the composition of
modality-specific diffusion models [49] by designing cross-attention and training proce-
dures that allow for arbitrary conditional generation. This work by Tang et al. [49] relies
on latent interpolation of input modalities, which is akin to mixture models, and uses
it as conditioning signal for individual diffusion models. This is substantially different
from the joint nature of the multimodal latent diffusion we present in our work; instead of
forcing entanglement through cross-attention between score networks, our model relies
on a joint diffusion process whereby modalities naturally co-evolve according. Another
recent work [50], targeted multimodal conversational agents, wherein the strong under-
lying assumption is to consider one modality, i.e., text, as a guide for the alignment and
generation of other modalities. Even if conversational objectives are orthogonal to our work,
techniques akin to instruction-following for cross-generation are an interesting illustration
of the powerful capabilities of in-context learning on the part of LLMs [51,52].
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4.2. Multimodal Interaction

MLD treats the latent spaces of each modality as variables that evolve differently
through the diffusion process according to a multi-time vector. The masked multi-time
training enables the model to learn the score of all the combinations of conditionally
diffused modalities, using the frozen modalities as the conditioning signal through a
randomized scheme. By learning the score function of the diffused modalities at different
time steps, the score model captures the correlation between the modalities.

At test time, the diffusion time of each modality is chosen so as to modulate its influ-
ence on the generation. For joint generation, the model uses the unconditional score, which
corresponds to using the same diffusion time for all modalities. Thus, all the modalities
influence each other equally. This ensures that the modality interaction information is faith-
ful to the information characterizing the observed data distribution. The model can also
generate modalities conditionally using the conditional score by freezing the conditioning
modalities during the reverse process. The frozen state is similar to the final state of the
revere process, where information is not perturbed; thus, the influence of the condition-
ing modalities is maximal. Subsequently, the generated modalities reflect the necessary
information from the conditioning modalities and achieve the desired correlation.

4.3. In-Painting and Its Implicit Assumptions

Under certain assumptions, given an unconditional score network sχ(r, t) that ap-
proximates the true score ∇ log q(r, t), it is possible to obtain a conditional score network
sχ(rA1 , t | zA2) to approximate ∇ log q(rA1 , t | zA2). We start by observing the equality

q(rA1 , t | zA2 ) =
∫

q(C(rA1 , rA2 ), t | zA2 )drA2 =
∫ q(zA2 | C(rA1 , rA2 ), t)

qψ(zA2 )
q(C(rA1 , rA2 ), t)drA2 , (9)

where, with a slight abuse of notation, we indicate with q(zA2 | C(rA1 , rA2), t) the density as-
sociated with the event; the portion corresponding to A2 of the latent variable Z is equal to
zA2 , given that the whole diffused latent Rt at time t is equal to C(rA1 , rA2). In the literature,
the quantity q(zA2 | C(rA1 , rA2), t) is typically approximated by dropping its dependency
on rA1 . This approximation can be used to manipulate Equation (9) as q(rA1 , t | zA2) ≃∫

q(rA2 , t | zA2)q(rA1 , t|rA2 , t)dr. Further, Monte Carlo approximations [32,53] of the inte-
gral allows for implementation of a practical scheme in which an approximate conditional
score network is used to generate conditional samples. This approach, known in the
literature as in-painting, provides high quality results in several unimodal application do-
mains [32,53].

By fixing rA1 , rA2 , the KL divergence between q(zA2 | C(rA1 , rA2), t) and q(zA2 | rA2 , t)
quantifies the discrepancy between the true and approximated conditional probabilities.
Similarly, the expected KL divergence

∆ =
∫

q(r, t)KL[q(zA2 | C(rA1 , rA2), t) | | q(zA2 | rA2 , t)]dr (10)

provides information about the average discrepancy. Simple manipulations allow this
to be recast as a discrepancy in terms of the mutual information ∆ = I(ZA2 ; RA1

t , RA2
t )−

I(ZA2 ; RA2
t ). Information about ZA2 is contained in RA2

t , as the latter is the result of
a diffusion with the former as initial conditions, corresponding to the Markov chain
RA2

t → ZA2 , and in RA1
t through the Markov chain ZA2 → ZA1 → RA1

t . The positive
quantity ∆ is close to zero whenever the rate of loss of information with respect to the
initial conditions is similar for the two subsets A1 and A2. In other terms, ∆ ≃ 0 whenever
the portion RA2

t of the whole Rt is a sufficient statistic for ZA2 .
The assumptions underlying the approximation are in general not valid in the case of

multimodal learning, where the robustness to stochastic perturbations of latent variables
corresponding to the various modalities can vary greatly. In Appendix B, our claims
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are empirically supported by ample analysis performed on real data showing that our
multi-time diffusion approach consistently outperforms in-painting.

5. Experiments

We compared our MLD method to MVAE [21], MMVAE [22], MOPOE [23], Hierarchical
Genertive Model (NEXUS) [26], Multi-view Total Correlation Autoencoder (MVTCAE) [27],
and MMVAE+ [29], re-implementing all competitors in the same code base as our method
and selecting their best hyperparameters as indicated by the authors (see Appendix D for
more details). For a fair comparison, we used the same encoder/decoder architecture for all
models. For MLD, the score network was implemented using a simple stacked multilayer
perceptron (MLP) with skip connections (see Appendix A for more details). MLD was also
contrasted with multimodal diffusion-based approaches: [35] in Appendix B and [36] in
Section 5.5.

Evaluation metrics: Coherence was measured as in [22,23,29], using pretrained clas-
sifiers on the generated data and checking the consistency of their outputs. Generative
quality was computed using the Fréchet Inception Distance (FID) [54] and Fréchet Audio
Distance (FAD) [55] scores for images and audio, respectively. Full details on the metrics are
included in Appendix C. All results were averaged over five seeds. We report the standard
deviations in Appendix E.

Results: Overall, MLD largely outperformed the alternatives from the literature in
terms of both coherence and generative quality. The VAE-based models suffered from the
coherence–quality tradeoff as well as from modality collapse for highly heterogeneous
datasets. We proceed to show this on several standard benchmarks from the multimodal
VAE-based literature; see Appendix C for details on the datasets.

5.1. MNIST-SVHN

The first dataset we consider is MNIST-SVHN [22], where the two modalities differ in
complexity. High variability, noise, and ambiguity make attaining good coherence for the
SVHN modality a challenging task. Overall, MLD outperforms all VAE-based alternatives
in terms of coherency, especially in terms of joint generation and conditional generation
of MNIST given SVHN (see Table 1). The mixture models, MMVAE and MOPOE, suffer
from modality collapse (poor SVHN generation), whereas the product-of-experts models
MVAE and MVTCAE generate better-quality samples at the expense of SVHN to MNIST
conditional coherence. Joint generation is poor for all VAE models. Interestingly, these
models also fail at SVHN self-reconstruction, which we discuss in Appendix E. MLD also
achieves the best performance in terms of generation quality, as confirmed by qualitative
results (Figure 2) showing, for example, how MLD conditionally generates multiple SVHN
digits within one sample given the input MNIST image, whereas the other methods fail to
do so.

Table 1. Generation coherence and quality for MNIST-SVHN (M: MNIST, S: SVHN). The generation
quality is measured in terms of the Fréchet Modality Distance (FMD) for MNIST and FID for SVHN.
We report both joint and conditional generation performance results. Bold and underlined numbers
indicate the best and second best scores respectively.

Models
Coherence (%↑) Quality (↓)

Joint M → S S → M Joint (M) Joint( S) M → S S → M

MVAE 38.19 48.21 28.57 13.34 68.9 68.0 13.66
MMVAE 37.82 11.72 67.55 25.89 146.82 393.33 53.37
MOPOE 39.93 12.27 68.82 20.11 129.2 373.73 43.34
NEXUS 40.0 16.68 70.67 13.84 98.13 281.28 53.41

MVTCAE 48.78 81.97 49.78 12.98 52.92 69.48 13.55
MMVAE+ 17.64 13.23 29.69 26.60 121.77 240.90 35.11

MMVAE+ (K = 10) 41.59 55.3 56.41 19.05 67.13 75.9 18.16

MLD (ours) 85.22 83.79 79.13 3.93 56.36 57.2 3.67
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MVAE MMVAE MOPOE

MMVAE+(10) MVTCAE MLD (ours)

Figure 2. Qualitative results for MNIST-SVHN. For each model, we report MNIST to SVHN condi-
tional generation on the left and SVHN to MNIST conditional generation on the right. The conditioning
modality is illustrated by the first row, with the generated samples below.

5.2. MHD

The Multimodal Handwritten Digits dataset (MHD) [26] contains gray-scale images
of digits, the motion trajectory of the handwriting, and the sounds of the spoken digits.
In our experiments, we did not use the label as a fourth modality. While the images and
trajectories share a good amount of information, the sound modality contains a great deal
more modality-specific variation. Consequently, both conditional generation involving
the sound modality and joint generation represent challenging tasks. Coherency-wise,
(Table 2) MLD outperforms all the competitors, with the biggest difference seen in joint
generation and generation from sound to other modalities. On the latter task, MVTCAE
performs better than other competitors, but is still worse than MLD. MLD dominates
the alternatives in terms of generation quality (Table 3). This is true both for image and
sound modalities, for which some VAE-based models struggle to produce high-quality
results, demonstrating the limitation of these methods in handling highly heterogeneous
modalities. MLD, on the other hand, achieves high generation quality for all modalities,
possibly due to the independent training of the autoencoders avoiding interference.

Table 2. Generation coherence (%) for MHD (higher is better). Line above refers to the generated
modality, while the subset of observed modalities is presented below. Bold and underlined numbers
indicate the best and second best scores respectively.

Models Joint
I (Image) T (Trajectory) S (Sound)

T S T,S I S I,S I T I,T

MVAE 37.77 11.68 26.46 28.4 95.55 26.66 96.58 58.87 10.76 58.16
MMVAE 34.78 99.7 69.69 84.74 99.3 85.46 92.39 49.95 50.14 50.17
MOPOE 48.84 99.64 68.67 99.69 99.28 87.42 99.35 50.73 51.5 56.97
NEXUS 26.56 94.58 83.1 95.27 88.51 76.82 93.27 70.06 75.84 89.48

MVTCAE 42.28 99.54 72.05 99.63 99.22 72.03 99.39 92.58 93.07 94.78
MMVAE+ 41.67 98.05 84.16 91.88 97.47 81.16 89.31 64.34 65.42 64.88

MMVAE+ (K = 10) 42.60 99.44 89.75 94.7 99.44 89.58 95.01 87.15 87.99 87.57

MLD (ours) 98.34 99.45 88.91 99.88 99.58 88.92 99.91 97.63 97.7 98.01
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Table 3. Generation quality for MHD in terms of FMD for image and trajectory modalities and FAD

for the sound modality (lower is better). Bold and underlined numbers indicate the best and second
best scores respectively.

Models
I (Image) T (Trajectory) S (Sound)

Joint T S T,S Joint I S I,S Joint I T I,T

MVAE 94.9 93.73 92.55 91.08 39.51 20.42 38.77 19.25 14.14 14.13 14.08 14.17
MMVAE 224.01 22.6 789.12 170.41 16.52 0.5 30.39 6.07 22.8 22.61 23.72 23.01
MOPOE 147.81 16.29 838.38 15.89 13.92 0.52 33.38 0.53 18.53 24.11 24.1 23.93
NEXUS 281.76 116.65 282.34 117.24 18.59 6.67 33.01 7.54 13.99 19.52 18.71 16.3

MVTCAE 121.85 5.34 54.57 3.16 19.49 0.62 13.65 0.75 15.88 14.22 14.02 13.96
MMVAE+ 97.19 2.80 128.56 114.3 22.37 1.21 21.74 15.2 16.12 17.31 17.92 17.56
MMVAE+
(K = 10) 85.98 1.83 70.72 62.43 21.10 1.38 8.52 7.22 14.58 14.33 14.34 14.32

MLD 7.98 1.7 4.54 1.84 3.18 0.83 2.07 0.6 2.39 2.31 2.33 2.29

5.3. POLYMNIST

The POLYMNIST dataset [23] consists of five modalities synthetically generated using
MNIST digits and varying the background images. The homogeneous nature of the modali-
ties is expected to mitigate gradient conflict issues in VAE-based models and consequently
reduce modality collapse. However, MLD still outperforms all alternatives, as shown in
Figures 3 and 4. Concerning generation coherence, MLD achieves the best performance
in all cases, with the one exception of a single observed modality. On the qualitative
performance side, not only is MLD superior to all alternatives, its results are stable when
more modalities are considered, a capability that not all competitors share.

Figure 3. Performance results for POLYMNIST as a function of the number of inputs. (Right):
Generative coherence (% ↑). (Left): Generative quality in terms of FID (↓). We report the average
performance following the leave-one-out strategy (see Appendix C).

MVAE MMVAE MOPOE

NEXUS MVTCAE MLD (ours)
Figure 4. Joint generation qualitative results for POLYMNIST across the five modalities.
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5.4. CUB

Next, we explored the Caltech Birds CUB [22] dataset, following the experimental
protocol in [24] using real bird images instead of ResNet-features as in [22]. Figure 5
presents qualitative results for caption-to-image conditional generation. MLD is the only
model capable of generating bird images with convincing coherence. Clearly, none of the
VAE-based methods is able to achieve sufficient caption-to-image conditional generation
quality using the same simple autoencoder architecture. Note that an image autoencoder
with larger capacity considerably improves the generative performance of MLD, suggesting
that careful engineering applied to modality-specific autoencoders is a promising avenue for
future work. We report quantitative results in Appendix E, where we show the generation
quality FID metric. Due to the unavailability of the labels in this dataset, the coherence
evaluation performed with the previous datasets was not possible. Thus, we resorted
to CLIP-Score (CLIP-S) [56], an image-captioning metric. Despite its limitations for the
considered dataset [57], CLIP-S shows that MLD outperforms all competitors.

MVAE MOPOE MVTCAE MLD (ours) MLD* (ours)

Figure 5. Qualitative results on the CUB dataset, with the caption used as the condition to generate
the bird images. MLD* denotes the version of our method using a powerful image autoencoder.

5.5. CelebAMask-HQ

Finally, we considered the CelebAMask-HQ dataset [58], which consists of three
modalities: face images, each having a segmentation mask and text attributes. We followed
the same experimental protocol as in [36], including the autoencoder base architecture.
The image generation quality was evaluated in terms of FID score. The attributes and the
mask, both having binary values, were evaluated against the ground truth in terms of the
F1 score. The competitors’ performance results are reported from [36]. The quantitative
results in Table 4 show that MLD outperforms the competitors in terms of generation
quality. Our method achieves the best F1 score in generation of the attribute modalities
given the image and mask modalities. In mask generation, MOPOE and MVTCAE achieve
the best performance, with MLD achieving the second-best performance in mask generation
conditioning on both the image and attribute modalities. Overall, MLD stands out with
the best image quality generation, while being on par with the competition in terms of
mask and attribute generation coherence. Figure 6 shows the qualitative results for MLD
on the joint generation task. It can be observed that our method succeeds at generating all
three modalities with high coherence and quality. The same observation is valid for the
conditional generation tasks (see Figures 7–9).
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Table 4. Quantitative results on the CelebAMask-HQ dataset. Performance is measured in terms of
the FID (↓) and F1 score (↑). The first row shows the generated modality, while the second row shows
the modalities used as conditions. Supervised classifier designates a classifier performance to predict
the attributes or the mask from an image. Bold numbers indicate the best scores.

Models
Attributes Image Mask

Img + Mask Img Att + Mask Mask Att Joint Img + Att Img
F1 F1 FID FID FID FID F1 F1

SBM-RAE [36] 0.62 0.6 84.9 86.4 85.6 84.2 0.83 0.82
SBM-RAE-C [36] 0.66 0.64 83.6 82.8 83.1 84.2 0.83 0.82

SBM-VAE [36] 0.62 0.58 81.6 81.9 78.7 79.1 0.83 0.83
SBM-VAE-C [36] 0.69 0.66 82.4 81.7 76.3 79.1 0.84 0.84

MOPOE 0.68 0.71 114.9 101.1 186.8 164.8 0.85 0.92
MVTCAE 0.71 0.69 94 84.2 87.2 162.2 0.89 0.89
MMVAE+ 0.64 0.61 133 97.3 153 103.7 0.82 0.89

Supervised classifier 0.79 0.94

MLD (ours) 0.72 0.69 52.75 51.73 53.09 54.27 0.87 0.87

(a) Image (b) Mask (c) Attributes

Figure 6. Joint (unconditional) generation: qualitative results of MLD on CelebAMask-HQ.

Figure 7. (Attributes → Image). Conditional generation of MLD on CelebAMask-HQ. The first
column on the left presents the conditioning modalities, while several conditionally generated
samples are displayed on the right.
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Figure 8. (Image → Attribute, Mask). Conditional generation of MLD on CelebAMask-HQ. The
first column on the left presents the conditioning modalities, while several conditionally generated
samples are displayed on the right.

Figure 9. (Attributes, Mask→ Image). Conditional generation of MLD on CelebAMask-HQ. The
two columns on the left present the conditioning modalities, while several conditionally generated
samples are displayed on the right.

6. Conclusions and Limitations

We have presented a new multimodal generative model, Multimodal Latent Diffusion
(MLD), to address the well known coherence–quality tradeoff that is inherent in existing
multimodal VAE-based models. MLD uses a set of independently trained unimodal de-
terministic autoencoders. The generative properties of our model stem from a masked
diffusion process that operates on latent variables. In addition, we have developed a new
multi-time training method to learn the conditional score network for multimodal diffusion.
An extensive experimental campaign on various real-life datasets provides compelling
evidence of the effectiveness of MLD for multimodal generative modeling. In all scenar-
ios, including cases with loosely correlated modalities and high-resolution datasets, MLD
consistently outperforms state-of-the-art alternatives. A limitation of our approach stems
from the simple nature of encoder/decoder architectures. Focusing on more specialized,
complex, and tailor-made encoder/decoder architectures might be necessary when moving
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to higher-resolution data. As for all generative models, ours could be misused to produce
misinformation. We believe, however, that the benefits of multimodal generative models
outweigh their potential misuses.
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Appendix A. Diffusion in the Multimodal Latent Space

In this appendix, we provide additional technical details of MLD. We first discuss
a naive approach based on in-painting which uses only the unconditional score network
for both joint and conditional generation. We also discuss an alternative training scheme
based on a work from the caption-text translation literature [35]. Finally, we provide extra
technical details for the score network architecture and sampling technique.

Appendix A.1. Modality Auto-Encoders

Each of the deterministic autoencoders used in the first stage of MLD uses a vector
latent space with no size constraints. Instead, VAE-based models generally require the
latent space of each individual VAE to be exactly the same size to allow for the definition of
a joint latent space.

In our approach, the modality-specific latent spaces are normalized prior to concatena-
tion using the element-wise mean and standard deviation. In practice, we use the statistics
retrieved from the first training batch, which we found to provide sufficient statistical
confidence. This operation allows for the harmonization of different modality-specific
latent spaces and, thereby facilitates the learning of a joint score network.

Appendix A.2. Multimodal Diffusion SDE

In Section 3, we presented our multimodal latent diffusion process allowing multi-
modal joint and conditional generation. The role of the SDE is to gradually add noise
to the data, perturbing its structure until attaining a noise distribution. In this work, we
consider Variance preserving SDE (VPSDE) [32]. In this framework, we have ρ(r) ∼ N (0; I),
α(t) = − 1

2 β(t) and g(t) =
√

β(t), where β(t) = βmin + t(βmax − βmin). Following [32,59],
we set βmin = 0.1 and βmax = 20. With this configuration, and by substitution of
Equation (4), we obtain the following forward SDE:

dRt = −
1
2

β(t)Rtdt +
√

β(t)dWt, t ∈ [0, T]. (A1)

The corresponding perturbation kernel is provided by

q(r|z, t) = N (r; e−
1
4 t2(βmax−βmin)− 1

2 tβmin z, (1− e−
1
2 t2(βmax−βmin)−tβmin)I). (A2)

The marginal score ∇ log q(Rt, t) is approximated by a score network sχ(Rt, t), the
parameters χ of which can be optimized by minimizing the ELBO in Equation (6), where
we found that using the same re-scaling as in [32] is more stable.

https://github.com/MustaphaBounoua/MLD
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The reverse process is described by a different SDE (Equation (5)). When using a
variance-preserving SDE, Equation (5) specializes in

dRt =

[
1
2

β(T − t)Rt + β(T − t)∇ log q(Rt, T − t)
]

dt +
√

β(T − t)dWt, (A3)

with R0 ∼ ρ(r) as the initial condition and time t flowing from t = 0 to t = T.
When the parametric score network has been optimized through the simulation of

Equation (A3), sampling RT ∼ qψ(r) becomes possible, allowing joint generation. A numer-
ical SDE solver can be used to sample RT, which can then be fed to the modality-specific
decoders to jointly sample a set of X̂ = {di

θ(R
i
T)}M

i=0. As explained in Section 4.3, the use
of the unconditional score network sχ(Rt, t) allows for conditional generation through the
approximation described in [32].

As described in Algorithm A1, we can generate a set of modalities A1 conditioned on
the available set of modalities A2. The available modalities are encoded into their respec-
tive latent space zA2 , the initial missing part is sampled from the stationary distribution
RA1

0 ∼ ρ(rA1) using an SDE solver (e.g., Euler–Maruyama), and the reverse diffusion SDE
in Equation (A3) is discretized using a finite time step ∆t = T/N, starting from t = 0 and
iterating until t ≈ T. At each iteration, the available portion of the latent space is diffused
and brought to the same noise level as RA1

t , allowing for the use of the unconditional score
network. Lastly, the reverse diffusion update is performed. This process is repeated until
arriving at t ≈ T and obtaining RA1

T = ẐA1 , which can be decoded to recover x̂A1 . Note
that this joint generation can be seen as a special case of Algorithm A1 with A2 = ∅. We
name this first approach Multi-modal Latent Diffusion with In-painting (MLD IN-PAINT),
and provide extensive comparison with our MLD method in Appendix B.

Algorithm A1: MLD IN-PAINT conditional generation

Data: xA2 = {xi}i∈A2
zA2 ← {eϕi (xi)}i∈A2 // Encode the available modalities X into their
latent space

A1 ← {1, . . . , M} \ A2 // The set of modalities to generate

R0 ← C(RA1
0 , zA2), RA1

0 ∼ ρ(rA1) // Compose the initial state
R← R0
∆t← T/N

for n = 0 to N − 1 do
t′ ← T − n ∆t
R̄ ∼ q(r|R0, t′) // Diffuse the available portion of the latent
space(Equation (A2))

R← m(A1)⊙ R + (1−m(A1))⊙ R̄
ϵ ∼ N (0; I) if n < (N − 1) else ϵ = 0
∆R← ∆t

[
1
2 β(t′)R + β(t′)sχ(R, t′)

]
+

√
β(t′)∆tϵ

R← R + ∆R // The Euler-Maruyama update step
end
ẑA1 ← RA1

Return X̂A1 = {di
θ(ẑ

i)}i∈A1

As discussed in Section 4.3, the approximation enabling the in-painting approach can
be efficient in several domains; however, its generalization to the multimodal latent space
scenario is not trivial. We argue that this is due to the heterogeneity of modalities. which
induce different characteristics on the part of the latent spaces. For different modality-
specific latent spaces, the loss of information ratio can vary through the diffusion process.
We verify this hypothesis by the following experiment.
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Latent space robustness against diffusion perturbation.

We analyse the effect of the forward diffusion perturbation on the latent space through
time. We encode the modalities using their respective encoders to obtain their latent space
Z = [eψ1(X1) . . . eψM (XM)]. Given a time t ∈ [0, T], we diffuse the different latent spaces
by applying Equation (A2) to obtain Rt ∼ q(r|z, t), with Rt being the perturbed version
of the latent space at time t. We feed the modality-specific decoders with the perturbed
latent space X̂t = {di

θ(Ri
t)}M

i=1, with X̂t being the output modalities generated using the
perturbed latent space. To evaluate the information loss induced by the diffusion process
on the different modalities, we assess the coherence preservation in the reconstructed
modalities X̂t by computing the coherence (in %) as done in Section 5.

We expect to obtain high coherence results for t ≈ 0 when compared to t ≈ T,
asthe information in the latent space is more preserved at the beginning of the diffusion
process than at the last phase of the forward SDE, where all dependencies on initial
conditions vanish. Figure A1 shows the coherence as a function of the diffusion time
t ∈ [0, 1] for different modalities across multiple datasets. It can be observed that, within
the same dataset, certain modalities stand out with a specific level of robustness (using
the coherence level as a proxy) against the diffusion perturbation in comparison with
the remaining modalities from the same dataset. For instance, we remark that SVHN is
less robust than MNIST, which should manifest in underperformance of SVHN-to-MNIST
conditional generation. We verify this intuition in Appendix B.

(a) MNIST-SVHN (b) MHD (c) POLYMNIST

Figure A1. Coherence as a function of the diffusion process time for three datasets. Diffusion
perturbation is applied on the modalities’ latent space after element-wise normalization.

Appendix A.3. Multi-Time Masked Multimodal SDE

in Section 4, we proposed a multi-time masked diffusion process to learn a score
network capable of both conditional and joint generation.

Algorithm A2 presents the pseudo-code for the multi-time masked training. The
masked diffusion process is applied following randomization with probability d. First,
a subset of modalities A2 is selected randomly to be the conditioning modalities, with A1
the remaining set of modalities to make up the diffused modalities. The time t is sampled
uniformly from [0, T], and the portion of the latent space corresponding to the subset
A1 is diffused accordingly. Using the masking as shown in Algorithm A2, the portion
of the latent space corresponding to the subset A2 is not diffused and is forced to be
equal to RA2

0 = zA2 . The multi-time vector τ is constructed. Lastly, the score network is
optimized by minimizing a masked loss corresponding to the diffused part of the latent
space. With probability (1 − d), all the modalities are diffused at the same time and
A2 = ∅. In order to calibrate the loss, given that the randomization of A1 and A2 can
result in diffusing different sizes of the latent space, we re-weight the loss according to the
cardinality of the diffused and frozen portions of the latent space:

Ω(A1, A2) = 1 +
dim(A2)

dim(A1)
, (A4)

where dim(.) is the sum of each latent space cardinality of a given subset of modalities
with dim(∅) = 0 .
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Algorithm A2: MLD masked multi-time diffusion training step

Data: X = {xi}M
i=1

Param: d
Z ← {eϕi (xi)}M

i=0 // Encode the modalities X into their latent space
A2 ∼ ν // ν depends on the parameter d
A1 ← {1, . . . , M} \ A2
t ∼ U [0, T]
R ∼ q(r|Z, t) // Diffuse the available portion of the latent
space(Equation (A2))

R← m(A1)⊙ R + (1−m(A1))⊙ Z // Masked diffusion
τ(A1, t)← [1(1 ∈ A1)t, . . . ,1(M ∈ A1)t] // Construct the multi time
vector

Return ∇χ

{
Ω(A1, A2)

∥∥m(A1)⊙
[
sχ(R, τ(A1, t))−∇ log q(R, t|zA2)

]∥∥2
2

}
The optimized score network can approximate both the conditional and unconditional

true score:
sχ(Rt, τ(A1, t)) ∼ ∇ log q(Rt, t | zA2)). (A5)

Joint generation is a special case of the latter with A2 = ∅:

sχ(Rt, τ(A1, t)) ∼ ∇ log q(Rt, t) , A1 = {1, . . . , M}. (A6)

Algorithm A3 describes the reverse conditional generation pseudo-code. It is pertinent
to compare this algorithm with Algorithm A1. The main difference resides in the use
of the multi-time score network to enable conditional generation, with the multi-time
vector playing the role of the time information and conditioning signal. On the other hand,
in Algorithm A1, we do not have a conditional score network; therefore, we resort to the
approximation from Section 4.3 and use the unconditional score.

Algorithm A3: MLD conditional generation.

Data: xA2 ← {xi}i∈A2
zA2 ← {eϕi (xi)}i∈A2 // Encode the available modalities X into their
latent space

A1 ← {1, . . . , M} \ A2 // The set of modalities to be generated

R0 ← C(RA1
0 , zA2), RA1

0 ∼ ρ(rA1) // Compose the initial latent space
R← R0
∆t← T/N

for n = 0 to N − 1 do
t′ ← T − n ∆t
τ(A1, t′)← [1(1 ∈ A1)t′, . . . ,1(M ∈ A1)t′] // Construct the multi-time
vector

ϵ ∼ N (0; I) if n < N else ϵ = 0
∆R← ∆t

[
1
2 β(t′)R + β(t′)sχ(R, τ(A1, t′))

]
+

√
β(t′)∆tϵ

R← R + ∆R // The Euler-Maruyama update step
R← m(A1)⊙ R + (1−m(A1))⊙ R0 // Update the portion
corresponding to the unavailable modalities

end
ẑA1 = RA1

Return X̂A1 = {di
θ(ẑ

i)}i∈A1
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Appendix A.4. Uni-Diffuser Training

The work presented in [35] is specialized for an image–caption application. The ap-
proach is based on a multimodal diffusion model applied to a unified latent embedding
obtained via pretrained autoencoders and incorporates pretrained models (CLIP [60] and
GPT-2 [61]). The unified latent space is composed of an image embedding, a CLIP image
embedding, and a CLIP text embedding. Note that the CLIP model is pretrained on (image–
text) pairs of multimodal data, which is expected to enhance the generative performance.
Because it is non-trivial to have a jointly trained encoder similar to CLIP for any type of
modality, the evaluation of this model on different modalities across different datasets (e.g.,
including audio) is not an easy task.

To compare to this work, we adapted the training scheme presented in [35] to our MLD
method. Instead of applying a masked multimodal SDE to train the score network, every
portion of the latent space was diffused according to a different time ti ∼ U (0, 1); therefore,
the multi-time vector fed to the score network was τ(t) = [t0 ∼ U (0, 1), . . . , tM ∼ U (0, 1)].
For fairness, we used the same score network and reverse process sampler as was used
for our MLD version with multi-time training; we call this variant Multi-modal Latent
Diffusion UniDiffuser (MLD UNI).

Appendix A.5. Technical Details

Appendix A.5.1. Sampling Schedule

We used the sampling schedule proposed in [53], which has been shown to improve
the coherence of conditional and joint generation. We used the best parameters suggested
by the authors: N = 250 time steps applied r = 10 resampling times with jump size j = 10.
For readability, in Algorithms A1 and A3 we present pseudo-code with a linear sampling
schedule which can be easily adapted to any other schedule.

Appendix A.5.2. Training the Score Network

Inspired by the architecture from [62], we use simple Residual MLP blocks with skip
connections as our score network (see Figure A2). We fix the width and number of blocks
proportionally to the number of the modalities and the latent space size. As in [63], we
use the Exponential moving average (EMA) of the model parameters with a momentum
parameter m = 0.999.
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Figure A2. Score network sχ architecture used in our MLD implementation. The residual MLP block
architecture is shown in Figure A3.



Entropy 2024, 26, 320 20 of 38

L
i
n
e
a
r

L
i
n
e
a
rTime

Embedding

S
i
L
U

S
i
L
U

S
i
L
U

L
i
n
e
a
r

+

G
r
o
u
p
N
o
r
m

G
r
o
u
p
N
o
r
m

+

Figure A3. Architecture of the ResMLP block.

Appendix B. MLD Ablation Study

In this section, we compare MLD with two variants presented in Appendix A: MLD
IN-PAINT, a naive approach without our proposed multi-time masked SDE, and MLD
UNI, a variant of our method using the same training scheme from [35]. In addition, we
analyze the effect of the randomization parameter d on the performance of MLD through
an ablation study.

Appendix B.1. MLD and Its Variants

Table A1 summarizes the different approaches adopted in each variant. All the
considered models share the same deterministic autoencoders trained during the first stage.

For fairness, our evaluation was carried out using the same configuration and code
basis as MLD. This included the autoencoder architectures and latent space size (similar to
Section 5). The same score network (Figure A2) was used across experiments, with MLD
IN-PAINT using the same architecture with one time dimension instead of the multi-time
vector. In all the variants, joint and conditional generation were conducted using the same
reverse sampling schedule described in Appendix A.

Table A1. Ablation study of MLD and its variants.

Model Multi-Time Diffusion Training Conditional and Joint Generation

MLD IN-PAINT ✕ Equation (6) Algorithm A1
MLD UNI ✓ [35] Algorithm A3

MLD ✓ Algorithm A2 Algorithm A3

Appendix B.1.1. Results

In certain cases, the MLD variants were able to match the joint generation performance
of MLD; however, overall they were less efficient and had noticeable weaknesses. MLD
IN-PAINT underperforms on conditional generation when considering relatively complex
modalities, while MLD UNI is not able to leverage the presence of multiple modalities to
improve cross-generation, especially for datasets with a large number of modalities. On the
other hand, MLD is able to overcome these limitations.

Appendix B.1.2. MNIST-SVHN

In Table A2, MLD achieves the best results and dominates cross=generation perfor-
mance. It can be observed that MLD IN-PAINT lacks coherence for SVHN-to-MNIST
conditional generation, a result we expected based on our analysis of the experiment in
Figure A1. MLD UNI, despite the use of a multi-time diffusion process, underperforms
our method, which indicates the effectiveness of our masked diffusion process in learning
the conditional score network. Because all of the models used the same deterministic
autoencoders, their observed generative quality performances are relatively similar (see
Figure A4 for qualitative results).
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Table A2. Generation coherence and quality for MNIST-SVHN (M stands for MNIST and S for
SVHN). The generation quality is measured in terms of FMD for MNIST and FID for SVHN. Bold
and underlined numbers indicate the best and second best scores respectively.

Models
Coherence (%↑) Quality (↓)

Joint M → S S → M Joint (M) Joint (S) M → S S → M

MLD-Inpaint 85.53 ±0.22 81.76±0.23 63.28±1.16 3.85±0.02 60.86±1.27 59.86±1.18 3.55±0.11
MLD-Uni 82.19±0.97 79.31±1.21 72.78±1.81 4.1±0.17 57.41±1.43 57.84±1.57 4.84±0.28

MLD 85.22±0.5 83.79±0.62 79.13±0.38 3.93±0.12 56.36±1.63 57.2±1.47 3.67±0.14

MLD IN-PAINT MLD UNI MLD

Figure A4. Qualitative results for MNIST-SVHN. For each model, we report MNIST-to-SVHN

conditional generation on the left and SVHN-to-MNIST conditional generation on the right.

Appendix B.1.3. MHD

Table A3 shows the performance results for the MHD dataset in terms of generative
coherence. MLD achieves the best joint generation coherence, and, dominates the cross-
generation coherence results along with MLD UNI. MLD IN-PAINT shows a lack of
coherence when conditioning on the sound modality alone, which is a predictable result,
as this is a more difficult configuration because the sound modality is loosely correlated
to other modalities. It can be observed that MLD IN-PAINT performs worse than the
two other alternatives when conditioned on the trajectory modality, which is the smallest
modality in terms of latent size. This indicates another limitation of the naive approach
regarding coherent generation when handling different latent spaces sizes, a weakness that
our MLD method overcomes. Table A4 presents the qualitative generative performance
results, which are homogeneous across the variants, with MLD achieving either the best or
second-best performance.

Table A3. Generation coherence (%↑) for MHD (higher is better). The line above refers to the generated
modality, while the subset of observed modalities is presented below. Bold and underlined numbers
indicate the best and second best scores respectively.

Models Joint
I (Image) T (Trajectory) S (Sound)

T S T,S I S I,S I T I,T

MLD-
Inpaint 96.88±0.35 63.9±1.7 56.52±1.89 95.83±0.48 99.58±0.1 56.51±1.89 99.89±0.04 95.81±0.25 56.51±1.89 96.38±0.35

MLD-Uni 97.69±0.26 99.91±0.04 89.87±0.38 99.92±0.04 99.68±0.1 89.78±0.45 99.38±0.31 97.54±0.2 97.65±0.41 97.79±0.41
MLD 98.34±0.22 99.45±0.09 88.91±0.54 99.88±0.04 99.58±0.03 88.92±0.53 99.91±0.02 97.63±0.14 97.7±0.34 98.01±0.21

Table A4. Generation quality for MHD. The metrics reported are FMD for the image and trajectory
modalities and FAD for the sound modality (lower is better). Bold and underlined numbers indicate
the best and second best scores respectively.

Models
I (Image) T (Trajectory) S (Sound)

Joint T S T,S Joint I S I,S Joint I T I,T

MLD-Inpaint 5.35±1.35 6.23±1.13 4.76±0.68 3.53±0.36 1.59±0.12 0.6±0.05 1.81±0.13 0.54±0.06 2.41±0.07 2.5±0.04 2.52±0.02
2.49±0.05

MLD-Uni 7.91±2.2 1.65±0.33 6.29±1.38 3.06±0.54 2.53±0.5 1.18±0.26 3.18±0.77
2.84±1.14 2.11±0.08 2.25±0.05 2.1±0.0

2.15±0.01

MLD 7.98±1.41 1.7±0.14 4.54±0.45
1.84±0.27 3.18±0.18 0.83±0.03 2.07±0.26

0.6±0.05 2.39±0.1 2.31±0.07 2.33±0.11
2.29±0.06
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Appendix B.1.4. POLYMNIST

In Figure A5, we note the superiority of MLD in both generative coherence and
quality. MLD-Uni is not able to leverage the presence of a large number of modalities
in conditional generation coherence. Interestingly, an increase in the number of input
modalities negatively impacts the performance of MLD UNI.

MLD IN-PAINT MLD UNI

MLD

Figure A5. Results for the POLYMNIST dataset. (Left): a comparison of the generative coherence
(% ↑) and quality in terms of FID (↓)) as a function of the number of modality inputs. We report the
average performance following the leave-one-out strategy (see Appendix C). (Right): qualitative
results for joint generation of the five modalities.

Appendix B.1.5. CUB

Figure A6 shows the qualitative results for caption-to-image conditional generation.
All of the variants are based on the same first-stage autoencoders, and the generative
performance is comparable in terms of quality.

MLD IN-PAINT MLD UNI MLD

Figure A6. Qualitative results on the CUB dataset. Captions were used as the condition to generate
the bird images.

Appendix B.2. Randomization d-Ablation Study

The d parameter controls the randomization of the multi-time masked diffusion process
during training in Algorithm A2. With probability d, the concatenated latent space cor-
responding to all the modalities is diffused at the same time. With probability (1− d),
a portion of the latent space corresponding to a random subset of the modalities is not
diffused and is frozen during the training step. To study the d parameter and its effect
on the performance of our MLD model, we used d ∈ {0.1, . . ., 0.9}. Figure A7 shows the
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results of the d-ablation study on the MNIST-SVHN dataset. We report the performance
results averaged over five independent seeds as a function of the probability (1− d): Left
shows the conditional and joint coherence for the MNIST-SVHN dataset; Middle shows
the quality performance in terms of FID for SVHN generation; and Right shows the quality
performance in terms of FMD for MNIST generation.

It can be observed that higher values for 1− d, indicating a greater probability of
applying multi-time masked diffusion, improve the coherence of SVHN-to-MNIST conditional
generation. This confirms that masked multi-time training enables better conditional
generation. Overall, on the MNIST-SVHN dataset, MLD shows weak sensibility to the d
parameter whenever the value of d ∈ [0.2, 0.7].

(a) MNIST-SVHN:
Coherence (%↑)

(b) SVHN: FID (↓) (c) MNIST: FMD(↓)

Figure A7. Results of the ablation study for the randomization parameter d on the MNIST-SVHN

dataset.

Appendix C. Datasets and Evaluation Protocol

Appendix C.1. Dataset Description

MNIST-SVHN [22] is constructed using pairs of MNIST and SVHN sharing the same
digit class (see Figure A8a). Each instance of a digit class (in either dataset) is randomly
paired with 20 instances of the same digit class from the other dataset. SVHN modality sam-
ples are obtained from house numbers in Google Street View images, and are characterized
by a variety of colors, shapes, and angles. A high number of SVHN samples are noisy, and
can contain different digits within the same sample due to the imperfect cropping of the
original full house number image. One challenge of this dataset for multimodal generative
models is to learn to extract digit number and reconstruct a coherent MNIST modality.

MHD [26] is composed of three modalities: synthetically generated images and mo-
tion trajectories of handwritten digits associated with their speech sounds. The images
are gray-scale 1 × 28 × 28, and the handwriting trajectories are represented by a 1 × 200
vector. The spoken digits sounds are 1s audio clips processed as Mel-Spectrograms,
and are constructed with a hopping window of 512 ms with 128 Mel Bins, resulting in
a 1 × 128 × 32 representation. This benchmark is the closest to a real-world scenario
involving multimodal sensors because of the presence of three completely different
modalities, with the audio modality representing a complex data type. Therefore, sim-
ilar to SVHN, the conditional generation of sound to coherent images or trajectories
represents a challenging use case.

POLYMNIST [23] is a version of the MNIST dataset extended to five modalities. Each
modality is constructed using a random set of MNIST digits with an overlay over a random
crop from a modality-specific three-channel image background. This synthetic generated
dataset allows for the evaluating the scalability of multimodal generative models to large
number of modalities. Although this dataset is composed only of images, the different
textures of different modality-specific backgrounds results in differing levels of difficulty.
In Figure A8c, the digits are more difficult to distinguish in modalities 1 and 5 than in the
other modalities.

CUB [22] is comprised of bird images and associated text captions. In [22], a simplified
version based on precomputed ResNet-features was used. Following [24], we conducted
all of our experiments on the real image data instead. Each image from the 11,788 photos
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of birds from Caltech-Birds [64] was resized to a 3 × 64 × 64 image and coupled with ten
textual descriptions of the respective bird (see Figure A8d).

CelebAHQ-mask consists of three modalities: face images, each with a segmentation
mask and attributes. We took into account 18 out of 40 attributes from the original dataset
and resized the images to 128 × 128 resolution, as was done in [21,36].

MNIST

SVHN

(a) MNIST-SVHN

Image

Trajectory

Sound Mel-Spectogram

(b) MHD (c) POLYMNIST

(d) CUB

Image Mask Attributes
(e) CelebAHQ-mask

Figure A8. Illustrative example of the datasets used for evaluation.

Appendix C.2. Evaluation Metrics

The multimodal generative models were evaluated in terms of their generative coher-
ence and quality.

Appendix C.2.1. Generation Coherence

We measured coherence by verifying that generated data for both joint and conditional
generation shared the same information across modalities. Following [22–24,26,27], we
considered the class label of the modalities as the shared information and used pretrained
classifiers to extract the label information from the generated samples and compare it
across modalities.

For MNIST-SVHN, MHD, and POLYMNIST, the shared semantic information is the
digit class number. Single-modality classifiers are trained to classify the digit number of
a given modality sample. To compute the conditional generation of a modality m with a
subset of modalities A, the conditional generated sample X̂m is fed to the modality-specific
pretrained classifier Cm. The predicted label class is compared to the ground truth label
yXA , which is the label of the modalities in subset XA. For N samples, the matching rate
average establishes the coherence. For all the experiments, N was equal to the length of the
test set.

Coherence(X̂m|XA) =
1
N

N

∑
1
1{Cm(X̂m)=yXA} (A7)

The joint generation coherence was measured by feeding the generated samples of
each modality to their specific trained classifier. The rate at which all classifiers output the
same predicted digit label for N generations was considered the joint generation coherence.

The leave-one-out coherence is the conditional generation coherence using all possible
subsets excluding the generated modality (Coherence(X̂m|XA) with A = {1, .., M} \m). Due
to the large number of modalities in POLYMNIST, similar to [23,24,27], we computed the
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average leave-one-out coherence conditional coherence as a function of the subset size of
the input modalities.

Due to the unavailability of labels in the CUB dataset, we used CLIP-S [56], a state-of-
the art metric for image captioning evaluation.

Appendix C.2.2. Generation Quality

For each modality, we considered the following metrics:

• RGB Images: FID [54] is the state-of-the-art standard metric for evaluating the image
generation quality of generative models.

• Audio: FAD [55] is a state-of-the-art standard metric for the evaluation of audio
generation. FAD performs well in terms of robustness against noise, and is consistent
with human judgments [65]. Similar to FID, the Fréchet distance is computed, except
that VGGish (audio classifer model) embeddings are used instead.

• Other modalities: For other modality types, we derived the FMD (Fréchet Modality
Distance), a similar metric to FID and FAD. We computed the Fréchet distance
between the statistics retrieved from the activations of the modality-specific pretrained
classifiers used for coherence evaluation. FMD was used to evaluate the generative
quality of the MNIST modality on the MNIST-SVHN dataset and the image and
trajectory modalities on the MHD dataset.

For conditional generation, we computed the quality metric (FID, FAD, or FMD) using
the conditionally generated modality and the real data. For joint generation, we used the
randomly generated modality and randomly selected the same number of samples from
the real data.

For CUB, we used 10,000 samples to evaluate the generation quality in terms of FID.
In the remaining experiments, we used 5000 samples to evaluate the performance in terms
of FID, FAD, or FMD.

Appendix D. Implementation Details

In this section, we report the implementation details for each benchmark. We used the
same unified code base for all the baselines, relying on the PyTorch framework. The VAE
implementation was adapted from the official code whenever available (MVAE, MMVAE
and MOPOE, as in (https://github.com/thomassutter/MoPoE (accessed on 11 February
2024)), MVTCAE (https://github.com/gr8joo/MVTCAE (accessed on 11 February 2024)),
and NEXUS (https://github.com/miguelsvasco/nexus_pytorch (accessed on 11 February
2024)). To ensure fairness, MLD and all VAE-based models used the same autoencoder
architecture. We used the best hyperparameters suggested by the authors. Across all the
datasets, we used the Adam optimizer [66] for training.

Appendix D.1. MLD

MLD used the same autoencoder architecture as for VAE-based models, except that
the latter are deterministic autoencoders. The autoencoders were trained using the same
reconstruction loss term as for the VAE-based models. Tables A5 and A6 summarize the
hyperparameters used during the two phases of MLD training. Note that data augmentation
was necessary for the image modality in the CUB dataset in order to overcome overfitting
when training the deterministic autoencoder. For this, we used TrivialAugmentWide from
the Torchvision library.

https://github.com/thomassutter/MoPoE
https://github.com/gr8joo/MVTCAE
https://github.com/miguelsvasco/nexus_pytorch
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Table A5. MLD: hyperparameters used for the deterministic autoencoders.

Dataset Modality Latent Space Batch Size Lr Epochs Weight
Decay

MNIST-SVHN
MNIST 16 128 1× 10−3 150
SVHN 64

MHD
Image 64

64 1× 10−3 500Trajectory 16
Sound 128

POLYMNIST All modalities 160 128 1× 10−3 300

CUB
Caption 32 128 1× 10−3 500
Image 64 1× 10−4 300 1× 10−6

CelebAMask-HQ
Image 256

64 1× 10−3 200Mask 128
Attributes 32

Table A6. MLD: score network hyperparameters.

Dataset d Blocks Width Time
Embed Batch Size Lr Epochs

MNIST-SVHN 0.5 2 512 256 128

1× 10−4

150
MHD 0.3 2 1024 512 128 3000
POLYMNIST 0.5 2 1536 512 256 3000
CUB 0.7 2 1024 512 64 3000
CelebAMask-HQ 0.5 2 1536 512 64 3000

Appendix D.2. VAE-Based Models

For MNIST-SVHN, we followed [22,23] and used the same autoencoder architecture
and pretrained classifier. The latent space size was set to 20, β = 5.0. For MVTCAE α = 5

6 .
For both modalities, the likelihood was estimated using the Laplace distribution. For
NEXUS, we used the same modality latent space size as in MLD, the joint NEXUS latent
space was set to 20, βi = 1.0, and βc = 5.0. We trained all the VAE-models for 150 epochs
with a batch size of 256 and learning rate of 1× 10−3.

For MHD, we reused the autoencoder architecture and pretrained classifier from [26].
We adopted the hyperparameters from [26] to train the NEXUS model with the same settings
while discarding the label modality. For the remaining VAE-based models, the latent space
size was set to 128, β = 1.0, and α = 5

6 for MVTCAE. For all the modalities, Mean square
error (MSE) was used to compute the reconstruction loss, similar to [26]. The models were
trained for 600 epochs with a batch size of 128 and learning rate of 1× 10−3.

For POLYMNIST, we used the same autoencoder architecture and pretrained classifier
used by [23,27]. We set the latent space size to 512, β = 2.5, and α = 5

6 for MVTCAE. For all
the modalities, the likelihood was estimated using the Laplace distribution. For NEXUS,
we used the same modality latent space size as in MLD, the joint NEXUS latent space was
64, βi = 1.0, and βc = 2.5. We trained all the models for 300 epochs with a batch size of 256
and learning rate of 1× 10−3.

For CUB, we used the same autoencoder architecture and implementation settings
as in [24]. The Laplace and one-hot categorical distributions were used to estimate the
likelihoods of the image and caption modalities, respectively. The latent space size was set
to 64, β = 9.0 for MVAE, MVTCAE, and MOPOE, and β = 1 for MMVAE. We set α = 5

6 for
MVTCAE. For NEXUS, we used the same modality latent space sizes as in MLD, the joint
NEXUS latent space was set to 64, βi = 1.0, and βc = 1. We trained all the models for
150 epochs with a batch size of 64. We used a learning rate of 5e− 4 for MVAE, MVTCAE,
and MOPOE and 1× 10−3 for the remaining models.

Finally, we note that in the official implementation of [23,27] on the POLYMNIST
and MNIST-SVHN datasets, the classifiers were used for evaluation with dropout. In our
implementation, we made sure to deactivate dropout during the evaluation step.

For CelebAMask-HQ, in our MLD experiments we used deterministic autoencoders
instead of variational autoencoders [58].
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Appendix D.3. MLD with Powerful Autoencoder

Here, we provide more detail about the CUB experiment using a more powerful
autoencoder, denoted MLD* in Figure 5. We used an architecture similar to [10] adapted to
(64 × 64) resolution images. We modified the autoencoder architecture to be deterministic
and trained the model with a simple mean square error loss. We kept the same configu-
ration as the CUB experiment described in the previous experiment on the same dataset,
including the text autoencoder, score network, and hyperparameters. We performed fur-
ther experiments with the same settings on 128 × 128 resolution images. We include the
qualitative results in Figure A21.

Appendix D.4. Computation Resources

In our experiments, we used four A100 GPUs for a total of roughly four months
of experiments.

Appendix E. Additional Results

In this section, we report detailed results for all of our experiments, including the
standard deviation and additional qualitative samples for all the datasets and all the
methods we compared in our work.

Appendix E.1. MNIST-SVHN

Appendix E.1.1. Self-Reconstruction

In Table A7, we report the results on self-coherence, which we use to support the
arguments from Section 2. This metric is used to measure the loss of information due to
latent collapse by showing the ability of all competing models to reconstruct an arbitrary
modality given the same modality or a set thereof as an input. For our MLD model, self-
reconstruction is done without using the diffusion model component; the modality is
encoded using its deterministic encoder, and the decoder is fed the latent space to obtain
the reconstruction.

We observe that the VAE-based models fail to reconstruct SVHN given SVHN. This
is especially visible for the models based on the product-of-experts approach (MVAE and
MVTCAE). In MLD, the deterministic autoencoders do not suffer from such weakness, and
achieve the best overall performance.

Figure A9 shows the qualitative self-generation results. We remark that the digits in
certain samples generated using VAE-based models differ from those in the input sample
(for example, generation of the MNIST digit 3 in the case of MVAE and the SVHN digit 2
in the case of MVTCAE), indicating information loss due to latent collapse.

Table A7. Self-generation coherence and quality for MNIST-SVHN (M: MNIST, S: SVHN). The gen-
eration quality is measured in terms of FMD for MNIST and FID for SVHN. Bold and underlined
numbers indicate the best and second best scores respectively.

Models
Coherence (%↑) Quality (↓)

M → M M,S → M S → S M,S → S M → M M,S → M S → S M,S → S

MVAE 86.92±0.8 88.03±0.78 40.62±0.99 68.01±1.29 10.75±1.04 10.79±1.02 60.22±1.01 59.0±0.6

MMVAE 87.22±1.87 77.35±4.19 67.31±6.93 39.44±3.43 12.15±1.25 20.24±1.04 58.1±3.14
171.42±4.55

MOPOE 89.95±0.84 91.71±0.77 67.26±0.8 83.58±0.44 9.39±0.76 10.1±0.73 53.19±1.06 57.34±1.35

NEXUS 92.63±0.45 93.59±0.4 68.31±0.46 83.13±0.58 4.92±0.61 5.16±0.59 85.67±2.74
97.86±2.86

MVTCAE 94.33±0.18 95.18±0.19 47.47±0.76 86.6±0.23 4.67±0.35 4.94±0.37 52.29±1.17 53.55±1.19

MLD 96.73±0.0 96.73±0.0 82.19±0.0 82.19±0.0 2.25±0.03 2.25±0.03 48.47±0.63 48.47±0.63
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MVAE MMVAE MOPOE

NEXUS MVTCAE MLD (ours)

Figure A9. Self-generation qualitative results for MNIST-SVHN. For each model, we report MNIST-
to-MNIST conditional generation on the left and SVHN-to-SVHN conditional generation on the right.

Appendix E.1.2. Detailed Results

MVAE MMVAE MOPOE

NEXUS MVTCAE MMVAE+ (K = 10)

MLD (ours)

Figure A10. Additional qualitative results for MNIST-SVHN. For each model, we report MNIST-to-
SVHN conditional generation on the left and SVHN-to-MNIST conditional generation on the right.
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Table A8. Generative coherence for MNIST-SVHN. We report the detailed version of Table 1 with the
standard deviation for five independent runs with different seeds. Bold and underlined numbers
indicate the best and second best scores respectively.

Models
Coherence (%↑) Quality (↓)

Joint M → S S → M Joint(M) Joint(S) M→ S S→M

MVAE 38.19±2.27 48.21±2.56 28.57±1.46 13.34±0.93 68.0±0.99 68.9±1.84
13.66±0.95

MMVAE 37.82±1.19 11.72±0.33 67.55±9.22 25.89±0.46 146.82±4.76 393.33±4.86
53.37±1.87

MOPOE 39.93±1.54 12.27±0.68 68.82±0.39 20.11±0.96 129.2±6.33 373.73±26.42 43.34±1.72
NEXUS 40.0±2.74 16.68±5.93 70.67±0.77 13.84±1.41 98.13±5.9 281.28±16.07 53.41±1.54

MVTCAE 48.78±1 81.97±0.32 49.78±0.88 12.98±0.68 52.92±1.39 69.48±1.64
13.55±0.8

MMVAE+ 17.64±4.12 13.23±4.96 29.69±5.08 26.60±2.58 121.77±37.77 240.90±85.74 35.11±4.25
MMVAE+
(K = 10) 41.59±4.89 55.3±9.89 56.41±5.37 19.05±1.10 67.13±4.58 75.9±12.91 18.16±2.20

MLD 85.22±0.5 83.79±0.62 79.13±0.38 3.93±0.12 56.36±1.63 57.2±1.47 3.67±0.14

MVAE MMVAE MOPOE

NEXUS MVTCAE MMVAE+ (K = 10)

MLD (ours)

Figure A11. Qualitative results for MNIST-SVHN joint generation.
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Appendix E.2. MHD

Table A9. Generative coherence for MHD. We report the detailed version of Table 2 with the standard
deviation for five independent runs with different seeds. Bold and underlined numbers indicate the
best and second best scores respectively.

Models Joint
I (Image) T (Trajectory) S (Sound)

T S T,S I S I,S I T I,T

MVAE 37.77±3.32 11.68±0.35 26.46±1.84 28.4±1.47 95.55±1.39 26.66±1.72 96.58±1.06 58.87±4.89 10.39±0.42 58.16±5.24
MMVAE 34.78±0.83 99.7±0.03 69.69±1.66 84.74±0.95 99.3±0.07 85.46±1.57 92.39±0.95 49.95±0.79 50.14±0.89 50.17±0.99
MOPOE 48.84±0.36 99.64±0.08 68.67±2.07 99.69±0.04 99.28±0.08 87.42±0.41 99.35±0.04 50.73±3.72 51.5±3.52 56.97±6.34
NEXUS 26.56±1.71 94.58±0.34 83.1±0.74 95.27±0.52 88.51±0.64 76.82±3.63 93.27±0.91 70.06±2.83 75.84±2.53 89.48±3.24

MVTCAE 42.28±1.12 99.54±0.07 72.05±0.95 99.63±0.05 99.22±0.08 72.03±0.48 99.39±0.02 92.58±0.47 93.07±0.36 94.78±0.25
MMVAE+ 41.67±2.3 98.05±0.19 84.16±0.57 91.88± 97.47±0.89 81.16±2.24 89.31±1.54 64.34±4.46 65.42±5.42 64.88±4.93
MMVAE+
(K = 10) 42.60±2.5 99.44±0.07 89.75±0.75 94.7±0.72 99.44±0.18 89.58±0.4 95.01±0.30 87.15±2.81 87.99±2.55 87.57±2.09

MLD 98.34±0.22 99.45±0.09 88.91±0.54 99.88±0.04 99.58±0.03 88.92±0.53 99.91±0.02 97.63±0.14 97.7±0.34 98.01±0.21

Table A10. Generative quality for MHD. We report the detailed version of Table 3 with the standard
deviation for five independent runs with different seeds. Bold and underlined numbers indicate the
best and second best scores respectively.

Models
I (Image) T (Trajectory) S (Sound)

Joint T S T,S Joint I S I,S Joint I T I,T

MVAE 94.9±7.37 93.73±5.44 92.55±7.37 91.08±10.24 39.51±6.04 20.42±4.42 38.77±6.29 19.25±4.26 14.14±0.25 14.13±0.19 14.08±0.24
14.17±4.26

MMVAE 224.01±12.58 22.6±4.3 789.12±12.58 170.41±8.06 16.52±1.17 0.5±0.05 30.39±1.38 6.07±0.37 22.8±0.39 22.61±0.75 23.72±0.86
23.01±0.67

MOPOE 147.81±10.37 16.29±0.85 838.38±10.84 15.89±1.96 13.92±0.96 0.52±0.12 33.38±1.14 0.53±0.1 18.53±0.27 24.11±0.4 24.1±0.41
23.93±0.87

NEXUS 281.76±12.69 116.65±9.99 282.34±12.69 117.24±8.53 18.59±2.16 6.67±0.23 33.01±3.41 7.54±0.29 13.99±0.9 19.52±0.14 18.71±0.24
16.3±0.59

MVTCAE 121.85±3.44 5.34±0.33 54.57±7.79 3.16±0.26 19.49±0.67 0.62±0.1 13.65±1.24 0.75±0.13 15.88±0.19 14.22±0.27 14.02±0.14 13.96±0.28

MMVAE+ 97.19±12.37 2.80±0.42 128.56±4.47 114.3±11.4 22.37±1.87 1.21±0.22 21.74±3.49 15.2±1.15 16.12±0.40 17.31±0.62 17.92±0.19
17.56±0.48

MMVAE+
(K = 10) 85.98±1.25 1.83±0.26 70.72±1.76 62.43±3.4 21.10±1.25 1.38±0.34 8.52±0.79 7.22±1.6 14.58±0.47 14.33±0.51 14.34±0.42

14.32±0.6

MLD
(ours) 7.98±1.41 1.7±0.14 4.54±0.45 1.84±0.27 3.18±0.18 0.83±0.03 2.07±0.26

0.6±0.05 2.39±0.1 2.31±0.07 2.33±0.11
2.29±0.06

MVAE MMVAE MOPOE

NEXUS MVTCAE MLD (ours)

Figure A12. Joint generation qualitative results for MHD. The three modalities were randomly
generated simultaneously. Top row: image; Middle row: trajectory vector converted into image;
Bottom row: sound mel-spectrogram).
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MVAE MMVAE MOPOE NEXUS MVTCAE MLD (ours)

Figure A13. Sound-to-image and trajectory conditional generation qualitative results for MHD.
For each model, the Top row reports the sound mel-spectrograms of the digits {0,1,2,3,4} from left to
right and the Lower rows report the generated image and trajectory samples.

Appendix E.3. POLYMNIST

Table A11. Generation coherence (%) for POLYMNIST (higher is better) used for the plots in Figure 4
and Figure A5. We report the average leave-one-out coherence as a function of the number of observed
modalities. Joint refers to random generation of the five modalities simultaneously. Bold and
underlined numbers indicate the best and second best scores respectively.

Models
Coherence (%↑)

Joint 1 2 3 4

MVAE 4.0±1.49 37.51±3.16 48.06±3.55 53.19±3.37 56.09±3.31
MMVAE 25.8±1.43 75.15±2.54 75.14±2.47 75.09±2.6 75.09±2.58
MOPOE 17.32±2.47 69.37±1.85 81.29±2.34 85.26±2.36 86.7±2.39
NEXUS 18.24±0.89 60.61±2.51 72.14±2.79 76.81±2.75 78.92±2.64

MVTCAE 0.21±0.05 57.66±1.06 78.44±1.31 85.97±1.43 88.81±1.49
MMVAE+ 26.28±2.19 54.74±0.5 54.06±0.33 55.2±1.32 53.17±0.75
MMVAE+
(K = 10) 14.53±4.94 58.93±6.3 59.42±8.8 60.77±8.03 58.24±7.42

MLD IN-PAINT 51.65±1.16 52.85±0.23 77.65±0.24 85.66±0.43 87.29±0.29
MLD UNI 48.79±0.43 65.12±0.7 79.52±0.8 82.03±1.19 81.86±2.09

MLD 56.23±0.52 68.58±0.72 84.87±0.19 88.56±0.12 89.43±0.27

Table A12. Generation quality (FID ↓) for POLYMNIST (lower is better) used for the plots in
Figures 4 and A5. Similar to Table A11, we report the average leave-one-out FID as a function of the
number of observed modalities. Joint refers to random generation of the five modalities simultane-
ously. Bold and underlined numbers indicate the best and second best scores respectively.

Models
Quality (↓)

Joint 1 2 3 4

MVAE 108.74±2.73 108.06±2.79 108.05±2.73 108.14±2.71 108.18±2.85
MMVAE 165.74±5.4 208.16±10.41 207.5±10.57 207.35±10.59 207.38±10.58
MOPOE 113.77±1.62 173.87±7.34 185.06±10.21 191.72±11.26 196.17±11.66
NEXUS 91.66±2.93 207.14±7.71 205.54±8.6 204.46±9.08 202.43±9.49

MVTCAE 106.55±3.83 78.3±2.35 85.55±2.51 92.73±2.65 99.13±2.72
MMVAE+ 168.88±0.12 165.67±0.14 166.5±0.18 165.53±0.55 165.3±0.33
MMVAE+
(K = 10) 156.55±3.58 154.42±2.73 153.1±3.01 153.06±2.88 154.9±2.9

MLD IN-PAINT 64.78±0.33 65.41±0.43 65.42±0.41 65.52±0.46 65.55±0.46
MLD UNI 62.42±0.62 63.16±0.81 64.09±1.15 65.17±1.46 66.46±2.18

MLD 63.05±0.26 62.89±0.2 62.53±0.21 62.22±0.39 61.94±0.65
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(a) X0 (b) X1 (c) X2 (d) X3 (e) X4

Figure A14. Top: Generation coherence (%) for POLYMNIST (higher is better). Bottom: Generation
quality (FID) (lower is better). We report the average leave-one-out performance as a function of
the number of observed modalities for each modality Xi. Joint refers to random generation of the
five modalities simultaneously.

(a) X0 (b) X1 (c) X2 (d) X3 (e) X4

Figure A15. Top: Generation coherence (%) for POLYMNIST (higher is better).Bottom: Generation
quality (FID) (lower is better). We report the average leave-one-out performance as a function of
the number of observed modalities for each modality Xi. Joint refers to random generation of the
five modalities simultaneously.

MVAE MMVAE MOPOE NEXUS MVTCAE MLD (ours)

Figure A16. Conditional generation qualitative results for POLYMNIST. Modality X2 (first row) is
used as the condition to generate the four remaining modalities (the rows below).



Entropy 2024, 26, 320 33 of 38

MVAE MMVAE MOPOE

NEXUS MVTCAE MLD (ours)
Figure A17. Conditional generation qualitative results for POLYMNIST. The subset of modalities
X1, X2, X3, X4 (first four rows) are used as the condition to generate modality X0 (the rows below).

Additional Experiments with the Architecture from [29]

In our experiments on POLYMNIST, we used the same architecture as in [23,27] in order
to ensure a fair settings for all the baselines. In [29], the experiments on POLYMNIST were
conducted using a different autoencoder architecture based on Resnet instead of a sequence
of autoencoder-based convolutional layers. In this section, we investigate the performance
of MMVAE+ and our MLD using this architecture. For MMVAE+, we kept the same
settings as in [29], including the autoencoder architecture, latent size, and importance
sampling K = 10 with doubly reparameterized gradient estimator (DReG). For MLD, we
used the same autoencoder architecture with a latent size equal to 160. In Figure A18, can
be observed that while the new autoencoder architecture enhances the performance of
MMVAE+, the performance our MLD is improved as well. Similar to the previous results,
MLD simultaneously achieves the best generative coherence and the best quality.

Figure A18. Results for the POLYMNIST dataset. Left: Comparison of the generative coherence ( ↑ )
and quality in terms of FID (↓) as a function of the number of inputs.
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Appendix E.4. CUB

Table A13. Generation coherence (CLIP-S: higher is better) and quality (FID: ↓ lower is better) for the
CUB dataset. MLD* denotes the version of our method using a more powerful image autoencoder.
Bold numbers indicate the best scores.

Models
Coherence ( ↑ ) Quality ( ↓ )

Joint Image → Caption Caption → Image Joint → Image Caption → Image

MVAE 0.66 0.70 0.64 158.91 158.88
MMVAE 0.66 0.69 0.62 277.8 212.57
MOPOE 0.64 0.68 0.55 279.78 179.04
NEXUS 0.65 0.69 0.59 147.96 262.9

MVTCAE 0.65 0.70 0.65 155.75 168.17
MMVAE+ 0.61 0.68 0.65 188.63 247.44

MMVAE+ (K=10) 0.63 0.68 0.62 172.21 178.88

MLD IN-PAINT 0.69 0.69 0.68 69.16 68.33
MLD UNI 0.69 0.69 0.69 64.09 61.92

MLD 0.69 0.69 0.69 63.47 62.62

MLD* 0.70 0.69 0.69 22.19 22.50

MVAE MMVAE

MOPOE NEXUS

MVTCAE MLD (ours)

Figure A19. Qualitative results for joint generation on the CUB dataset (Better viewed zoomed).
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(a) Conditional generation. (b) Joint generation.

Figure A20. Qualitative results of MLD* on the CUB dataset with powerful image autoencoder
(Better viewed zoomed).

(a) Conditional Generation (b) Joint generation

Figure A21. Qualitative results of MLD* on the CUB dataset with 128 × 128 resolution images and
powerful image autoencoder (Better viewed zoomed).

Appendix E.5. CelebAMask-HQ

In this section, we present additional experiments on the CelebAMask-HQ dataset [58].
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Figure A22. (Mask→ Image) Conditional generation of MLD on the CelebAMask-HQ dataset.
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