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Abstract: We study the Schrödinger equation in quantum field theory (QFT) in its functional for-
mulation. In this approach, quantum correlation functions can be expressed as classical expectation
values over (complex) stochastic processes. We obtain a stochastic representation of the Schrödinger
time evolution on Wentzel–Kramers–Brillouin (WKB) states by means of the Wiener integral. We
discuss QFT in a flat expanding metric and in de Sitter space-time. We calculate the evolution
kernel in an expanding flat metric in the real-time formulation. We discuss a field interaction in
pseudoRiemannian and Riemannian metrics showing that an inversion of the signature leads to some
substantial simplifications of the singularity problems in QFT.
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1. Introduction

We discuss the functional integral approach to quantum field theory (QFT) in a com-
plete analogy to the Schrödinger picture in quantum mechanics [1,2]. In contradistinction
to the Heisenberg picture, we insist on states and their time evolution. The functional
approach to QFT is a realization of the conventional Schrödinger picture of quantum me-
chanics in the space of functions of an infinite number of variables. Its efficiency has been
demonstrated in refs. [3,4], in applications to quantum fields in de Sitter space. In this
paper, we discuss the functional approach to QFT on general hyperbolic manifolds. In
the functional formulation, we can develop the path integral methods for a calculation
of expectation values earlier exploited at imaginary time as a rigorous tool in quantum
mechanics [5]. We can extend these methods to real time by means of complex-valued
stochastic processes. The extension to real time requires a complex extension of the configu-
ration (field) space. For fields on a manifold, such an extension means a generalization of
the path integral to complex manifolds (for some recent attempts on such generalizations,
see [6–14]). The standard approach to field quantization on a manifold [15,16] implicitly
assumes a non-unique ground state. The field can be expanded in creation–annihilation
operators. These operators are defined in the Fock space which, in functional represen-
tation, is a Gaussian normalized state. The functional representation of quantum fields
does not require the Fock space. We can define the Feynman path integral by means of
the Wiener integral, which provides a particular Gaussian functional measure for a field
configuration space (this could also be considered as a particular Fock space). Such a
formulation does not require that there is a Fock space as a ground state for quantum fields.
In this paper, the field is determined by a WKB Gaussian wave function as a solution of
the Schrödinger equation for the canonical Hamiltonian defined by canonical quantization.
We do not assume that the particular WKB wave function is normalizable. Nevertheless,
we can define correlation functions in some other normalizable states with WKB phase
factors. These correlation functions determine the quantum fields. The computation of
correlations can be reduced to a calculation of expectation values over stochastic processes.
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For this reason, the functional formulation can be useful for numerical calculations. In
earlier papers [17,18], we have derived a representation of the Feynman integral by means
of the Brownian motion in quantum mechanics, following an approach of mathematicians
Cameron and Doss [19,20]. For quantum field theory, the paths must be transformed into
the paths of a quantum oscillator as a quantum field is a collection of oscillators. For a
free field in Minkowski space-time, we have discussed this approach in [21], introducing a
random field satisfying a stochastic equation defined by the ground state. For a free field
on a general Riemannian manifold, a random field determined by a Gaussian state defined
on the Riemannian manifold is needed. It can be seen that, in order to obtain an interacting
field, a non-linear stochastic equation is required. The presence of noise in semiclasical
quantum gravity correlation functions has been discovered in refs. [22,23]. Our approach
relies on the construction of a Gaussian random field. Instead of looking for a non-linear
stochastic equation of the random field, we introduce an interaction via the Feynman–Kac
formula. There is no problem of such a construction on the perturbative level. Perturbation
theory reduced to a polynomial expansion in quantum fields will be equivalent to the
standard QFT (hence, the standard renormalization of polynomials applies). However,
there arises a difficult task to show that the corresponding Feynman–Kac factor has a finite
expectation value with respect to the Wiener measure. Then, the functional integral over
the solutions defining the correlation functions must be finite. We show that a change in
the signature of the spatial metric (the time remains real) can substantially facilitate the
proof of integrability. The problem has been studied in constructive quantum field theory
in the Euclidean framework. In the Feynman integral formulation (real time), we deal
with oscillatory integrals. In such a case, some stability problems can be avoided. We
assume that time is well-defined in an evolution of the quantum scalar field on a classical
gravitational background. The appearance of time and the Schrödinger evolution in a
semiclassical framework for quantum gravity have been discussed in [24–28]. We repeat
(in a somewhat modified way) a derivation of the Schrödinger equation from the Wheeler–
DeWitt equation [29] in Appendix H. We hope that the study of the Schrödinger equation
in an external metric can help to solve the Wheeler–DeWitt constraint in quantum gravity.

The plan of this paper is the following. First, we explain the mathematically rigorous
probabilistic method [30,31] of solving the imaginary time Schrödinger equation for a
quantum (Euclidean) scalar field as a perturbation of the ground state solution (Section 2).
Then, in Section 3, the method is extended by an analytic continuation to apply to solutions
for the real-time Schrödinger equation. We discuss the functional Schrödinger equation
for a scalar field on a globally hyperbolic manifold [32,33]. We consider general complex
metrics which may arise as saddle points in an average over metrics in quantum gravity.
In Section 4, we show that a free scalar quantum field has the Schrödinger wave function
solution, which is a pure WKB Gaussian phase if the initial state is a pure Gaussian
phase. Using this Gaussian solution, we construct a random wave field (as a solution
of a stochastic equation), which allows for the construction of a general solution of the
Schrödinger equation as an expectation value over the Brownian motion. The solution
can be calculated in a simple way if the initial state is of the form of the Gaussian factor
times a mild perturbation. It can have an explicit form if the manifold has a large group
of symmetry. In Section 5, we discuss the scalar field on de Sitter space-time and on its
Euclidean continuation (the sphere S4). Stochastic equations for the de Sitter field and fields
in an expanding (homogeneous) universe are discussed in Section 6. The large symmetry
group allows for an expansion in terms of eigenfunctions of the algebra of this group.
In this section, some field correlations are calculated. The explicit Gaussian solutions
of the Schrödinger equation are not available for general initial conditions. In Section 6,
we derive an asymptotic formula for the solution at a large angular momentum. An
analogous formula at large momenta for the homogeneous expanding metric is obtained in
Appendix B. The asymptotic formulas allow for an approximate calculation of correlation
functions of stochastic fields. In Section 7, the free field time evolution is expressed by
an evolution kernel. Then, a computation of multi-time correlation functions can be
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reduced to Gaussian integrals with the evolution kernels. The method can be extended
to interacting fields by means of the Feynman–Kac formula. The correlation functions
determine QFT (Wightman’s reconstruction). In Sections 8–10, the power-law evolution
of massless scalar fields is discussed. The most detailed results concern the free field
in a radiation background (Section 10) with the spatial metric gjk ≃ δjkt, which changes
signature at t = 0. In Sections 11 and 12, we discuss polynomial and trigonometric
interactions. We show, in Section 11, that for a finite mode approximation the expectation
value of the Feynman–Kac factor can be finite in the Wiener integral formulation of the
Feynman integral when we average the potentials over the random fields constructed
from the Gaussian WKB wave functions in the earlier sections. In Section 12, it is shown
that an inversion of the spatial signature allows to show that the expectation value of the
Feynman–Kac factor is finite for an infinite number of modes. The inversion of the signature
may be considered either as a technical tool or as a quantum effect of an average of the
functional integral over quantum metrics. Some supplementary materials are located in the
appendices. Appendices C–E describe for the convenience of the reader some simplified
models (discussed earlier) of the ones studied in the main part. Appendices A, B, F and G
contain some additions to the results in the main text, which illustrate the method of
stochastic equations (this is just a transformation of sample paths). We have studied
the Brownian motion formulation of quantum physics for some time. The motivation
was twofold: 1. to formulate the Feynman integral as a rigorous mathematical tool, and
2. to make quantum correlations susceptible to standard simulations by means of random
variables. We obtained the stochastic formulation of the Feynman integral first in quantum
mechanics [17,18,34]. The stochastic free field is introduced in [21,35,36]. The inversion
of the metric in a radiation background is discussed in [37]. In this paper, we present a
comprehensive approach to the stochastic representation of QFT (beyond the homogeneous
expanding metric), including the previously studied models as special cases. The choice of
the stochastic field is not unique. It depends on the selection of the Gaussian WKB state.
We discuss, in detail, the form of the field which enables a construction of a well-defined
(integrable) Feynman–Kac factor for the field theory with an interaction.

2. The Imaginary Time Schrödinger Equation

First, we discuss the standard canonical field theory in a mathematically rigorous
imaginary time formulation [30]. The Hamiltonian is defined as

H =
1
2

∫
dx

(
Π2 + (νΦ)2

)
+

∫
dxV(Φ) = H0 + V, (1)

where
ν =

√
−△+ M2. (2)

The canonical momentum Π satisfies the commutation relations with the field Φ

[Φ(x), Π(y)] = ih̄δ(x − y). (3)

Let ψ
g
t be a solution (usually the ground state) of the imaginary time Schrödinger equation

−h̄∂tψ = Hψ. (4)

Let us consider the general solution of the Schrödinger Equation (4) with the initial
condition ψ = ψ

g
0 χ

ψt = ψ
g
t χt. (5)

Then, χt satisfies the equation

−h̄∂tχ =
∫

dx
(1

2
Π2 − (Π ln ψ

g
t )Π

)
χ (6)
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with
Π(x) = −ih̄

δ

δΦ(x)
. (7)

ψ
g
t may be an arbitrary solution of the Schrödinger Equation (4) (with an arbitrary initial

condition). The efficiency of the representation ((5) and (6)) depends on the choice of ψ
g
t

and the assumption that initial states are under consideration (these will be the WKB states).
It can be seen that, in Equation (6), the kinetic term (νΦ)2, as well as the potential V, are
absent. Equation (6) is a diffusion equation in infinite dimensional spaces [31]. The solution
of Equation (6) can be expressed as [38]

χt(Φ) = E
[
χ
(

Φt(Φ)
)]

, (8)

where Φt(Φ) is the solution of the stochastic equation (t ≥ s ≥ 0)

dΦs(x) = h̄
δ

δΦs(x)
ln ψ

g
t−sdt +

√
h̄dWs(x) (9)

with the initial condition Φ. E[. . .] denotes an expectation value with respect to the Wiener
process (Brownian motion) with the mean zero and the covariance (t ≥ 0, s ≥ 0)

E
[
Wt(x)Ws(y)

]
= min(t, s)δ(x − y). (10)

The correlation functions of the quantum Euclidean field in the state ψ
g
0 can be expressed by

the correlation functions of the stochastic process Φt. If we could find a particular solution
of the Schrödinger equation and solve the non-linear stochastic differential Equation (9),
then the problem of solving QFT and calculating the field correlation functions could be
reduced to a calculation of expectation values with respect to the Wiener process. We do
not know any solution of the Schrödinger equation for scalar field theory (for a potential
V(Φ) which is not quadratic). However, in field theories with large symmetry, this could
be possible (let us mention Chern–Simons states in gauge theories [6] and Kodama states in
gravity [39]). The imaginary time in this section has a rigorous mathematical formulation for
super-renormalizable field theories in two dimensions [30]. In general, for arbitrary states
ψ

g
t , higher dimensions and real time, we expect difficulties with a derivation of solutions

of Equation (9) and their renormalization. We can manage in this paper linear stochastic
equations (corresponding to Gaussian ψ

g
t ) for free field theory. Then, the interaction is

introduced as usual by means of the Feynman–Kac formula.
Let us consider the simplest example: the free field. Then, the ground state is

ψg = Z−1 exp(− 1
2h̄

ΦνΦ), (11)

where Z is the state normalization. The stochastic Equation (9) reads

dΦt = −νΦtdt +
√

h̄dWt. (12)

The solution is (with the initial condition Φ at t0)

Φt = exp(−ν(t − t0))Φ +
√

h̄
∫ t

t0

exp(−ν(t − s))dWs. (13)

We calculate ∫
dΦψ2

gE
[

exp(
∫

dtdx ft(x)Φt(x))
]

= exp
(

1
2

∫
dtdt′

(
ft, (2ν)−1 exp(−ν|t − t′|) ft′

)) (14)
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On the rhs of Equation (14), we have the generating functional for the correlation functions
of the quantum Euclidean free field.

As a time-dependent solution of Equation (4) (with V = 0), we may consider

ψ
g
t = A(t) exp(i

1
2h̄

ΦΓtΦ). (15)

In Equation (15), Γ is an operator with an integral kernel Γ(x, y). We can derive an equation
for this operator, demanding that (15) is the solution of the Schrödinger Equation (4). Then,
ψ

g
t is the solution of the free imaginary time Schrödinger Equation (4) (V = 0) if

i∂tΓ + Γ2 + ν2 = 0. (16)

Equation (16) is equivalent to
(∂2

t − ν2)u = 0 (17)

if
−iΓ = u−1 d

dt
u. (18)

The general solution of Equation (17) is

u = C1 sinh(νt) + C2 cosh(νt) (19)

If C1 = C2, then, from Equations (15), (18) and (19), we obtain the ground state solution (11).
We discuss the case C1 = 0 in Appendix A. It defines another field Φt whose correlation
functions are equal to the ones of the standard free Euclidean field, but in another time-
dependent state (15). We obtain another realization of the solution (5) of the Schrödinger
equation for the free field.

With the potential V in Equation (1), the solution of the Schrödinger Equation (4)
reads [5,38] (the Feynman–Kac formula requires V(Φ) to be bounded from below)

χt(Φ) = E
[

exp
(
− 1

h̄

∫ t

0
V(Φs)ds

)
χ(Φt(Φ))

]
. (20)

At the end of this section, we wish to point out some problems with the definition of the
Feynman–Kac integral (20) in Euclidean field theory (even if V(Φ) is bounded from below).
We consider in subsequent sections exponential potentials

V(Φ) = λ
∫

dx exp(αΦ(x)),

where B ⊂ Rd is a bounded region in Rd. It can be seen that higher orders of the
perturbation expansion in λ of the normal ordered exponentials in the Feynman–Kac
Formula (20) are divergent if the dimension of the space-time is d ≥ 3, e.g., in the second
order (where :-: denotes the normal ordering), we obtain

λ2
∫ t

0 ds
∫ t

0 dτ
∫

B dx
∫

B dyE
[

: exp(αΦs(x)) :: exp(αΦτ(y)) :
]

= λ2
∫ t

0 ds
∫ t

0 dτ
∫

B dx
∫

B dy exp
(

α2E
[
Φs(x)Φτ(y)

])
.

The two-point function is positive and at short distances

E
[
Φs(x)Φτ(y)

]
≃

(
(s − τ)2 + (x − y)2

)1− d
2
.

The λ2 term of the perturbation series of Equation (20) is infinite if α is real and d ≥ 3 (this
follows from exp(x) ≥ 1 + x4

4! for x ≥ 0).
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If α = iβ is purely imaginary, then

λ2t2|B|2 ≥ λ2
∫ t

0 ds
∫ t

0 dτ
∫

B dx
∫

B dyE
[

: exp(iβΦs(x)) :: exp(iβΦτ(y)) :
]

= λ2
∫ t

0 ds
∫ t

0 dτ
∫

B dx
∫

B dy exp
(
− β2E

[
Φs(x)Φτ(y)

])
≥ λ2t2|B|2 exp

(
− β2t−2|B|−2

∫ t
0 ds

∫ t
0 dτ

∫
B dx

∫
B dyE

[
Φs(x)Φτ(y)

])
from Jensen inequality. We obtain an upper bound and a non-zero lower bound if d < 6.
However, if we form real potentials as, e.g., λ cos βΦ, then at the order λ2, there will be
terms without an upper bound because of the multiplication of the terms exp(iβΦ(x)) with
exp(−iβΦ(y)).

3. Real Time: The Free Field on a Manifold

We consider a globally hyperbolic manifold [33] with a choice of coordinates such that
the metric is of the form

ds2 = g00dx0dx0 − gjkdxjdxk. (21)

The Lagrangian of the free field is [40]

L =
1
2
√
−ggµν∂µϕ∂νϕ − M2

2
√
−gϕ2, (22)

where g = det(gµν). The canonical momentum is

Π = g00√−g∂0ϕ. (23)

From the Lagrangian (22), we drive the canonical Hamiltonian

H(t) ≡
∫

dxH(g, x) =
∫

dx
(

Π∂0ϕ − L
)

=
∫

dx
(

1
2 g00

1√−g Π2 + 1
2
√−ggjk∂jϕ∂kϕ + M2

2
√−gϕ2

)
.

(24)

In subsequent sections, we shall discuss the Lagrangian (22) and the Hamiltonian (24)
for the metric tensors gµν, which can arise as saddle points in the Feynman path integral.
Such metrics satisfy Einstein equations, but they do not fulfill the requirement −g > 0. We
must choose the square root

√−g in such a way (see [6,7,9–12]) that the path integral and
the Schrödinger equation

ih̄∂tψt = H(t)ψt (25)

are well-defined. The solution of Equation (25) must define an operator which is a con-
traction in a Hilbert space (otherwise ψt may have an infinite norm). We assume (as in [7])
that, for t ≥ 0, the metric is real and Lorentzian. In the past, the stationary points of the
Lagrangian with matter satisfying some positive energy conditions [32] will necessarily
exhibit a Big Bang singularity (then, e.g., 1√−g is not defined). We assume that the solutions
of Einstein equations have a continuation to t < 0, but do not satisfy the requirements
of the classical general relativity (they may be Euclidean or even complex). So, for pos-
itive time, we shall have the Schrödinger equation, whereas for negative time with the
Hamiltonian (24), a diffusion-type Equation (a contraction [41]). The necessary condition
for a contraction at t < 0 is that the infinite dimensional diffusion generator has the imagi-
nary part of the second order differential operator, which is a positive operator. From the
Hamiltonian (24), we can see that this will be the case if

g00
1√−g

= R + iI where I ≥ 0,

where R and I are the real and imaginary parts of a complex function. In such a case, we
write H = iHE and write the Schrödinger Equation (25) as a diffusion equation
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h̄∂tψt = HE(t)ψt (26)

In our models, we choose
√−g = −i

√
|g|. Then, HE will be (on a formal level) a Hermitian

positive operator. Hence, Equation (26) defines a contraction (diffusion) for t < 0. For the
inverted metric, the mass term has an opposite sign to the kinetic term. So, we invert its
sign as M2 → −µ2.

In Section 10, we discuss a solution for a homogeneous radiation metric a2 ≃ t which
leads to an infinite energy density when t → 0, but it is also a solution of Einstein equations
at t < 0 with a2 < 0. Examples which have a continuation from the real time in de Sitter
space to the four-sphere at the imaginary time have been discussed in [7,8,14].

Let us still mention another interpretation of the Hamiltonian (24) for an inverted metric

H(t) =
∫

dx
(

Π∂0ϕ − L
)

=
∫

dx
(

1
2 g00

1√
|g|

Π2 + 1
2

√
|g|gjk∂jϕ∂kϕ + M2

2

√
|g|ϕ2

)
.

(27)

Such a modification of the Hamiltonian (24) transforms the Schrödinger evolution with the
Lorentzian metric into the one with an Euclidean metric. It is still unitary. The inversion of
the spatial metric in Equation (27) (so that gjk is negatively definite) at t = 0 is an analog of a
transformation of the oscillator for t ≥ 0 into an upside-down oscillator for t < 0 [36,42,43].
The Hamiltonian (27) results from the replacement

√−g →
√
|g| in the Lagrangian (22) as

a possible candidate for quantum gravity.
Inserting the WKB wave function (15) in Equation (25), we obtain an equation for the

operator Γ and the normalization coefficient A

∂tΓt + ΓtJ Γt +M = 0, (28)

∂t ln A = −1
2

∫
dx

g00√−g
Γt(x, x), (29)

where
J (y, y′) =

g00√−g
δ(y, y′) (30)

and M is the differential operator

M = J −1K2 = M2√−g − ∂j
√
−ggjk∂k. (31)

where the operator [40]

K2 = −g00
1√−g

∂jgjk√−g∂k + g00M2

is self-adjoint in L2(dµ) with respect to the measure

dµ = g00√−gdx.

Let us define the operator

Gt = exp(
∫ t

JsΓsds). (32)

Γt can be expressed by Gt

Γt = J −1
t ∂tGG−1 = J −1

t ∂t lnG. (33)

Gt satisfies a linear operator equation

∂2
t G = ∂tJ J −1∂tG − JMG. (34)
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Let us note that
√−g cancels in JM in Equation (34). Hence, this equation does not depend

on the interpretation of
√−g for an inverted metric. It can be shown that the operator

Equation (34) coincides with the wave equation corresponding to the Lagrangian (22).
Then, as discussed in Section 2, ΓΦ is the drift in the stochastic Equation (9). For the
general metric (21), it is not simple to find a solution Γ. In subsequent sections, we find
explicit solutions assuming the invariance either with respect to the de Sitter group or
under translations (homogeneous spatially flat manifold). Some information about Γ is
needed in order to determine whether ψ

g
t is square integrable. We need to know Γ for

a construction of an interaction in such a way that the Feynman–Kac factor has a finite
expectation value.

We express the Feynman path integral solution of the Schrödinger Equation (25)
(V = 0) with the initial condition

ψ
g
0 = exp(

i
h̄

S0) (35)

in the form
ψ

g
t (Φ) =

∫
dΦ(.) exp

(
i

2h̄
∫

dτdx
(√−ggµν∂µΦ∂νΦ − M2√−gΦ2

)
exp( i

h̄ S0(Φt(Φ)). (36)

Formula (36) is well-established with real values of
√−g as a solution of Equation (25) [38].

However, a formal derivation of Equation (36) does not use any assumption on the signature
of the metric, as long as the exponential (36) is bounded as a function of Φ. As in the
Hamiltonian Equation (25), we assume that, for t ≥ 0, the metric is real and Lorentzian.
For t < 0, we admit complex gµν and complex

√−g. If we require that the quadratic factor
(∂0Φ)2 in the Feynman integral (36) does not grow for t < 0, then the conditions upon the
metric will be √

−gg00 = R̃ + i Ĩ, where Ĩ ≤ 0.

If the spatial part in the action in the exponential (36) is to be positive definite for t < 0, then√
−ggjl = Rjl + iI jl ,

where I jl is a positive definite matrix. If
√−g = −i

√
|g|, then the real part of the integral

of the quadratic term (∂0Φ)2 in Equation (36) is negative, and if gjl is negatively definite
(inverted metric), then the real part of the spatial quadratic term in (36) is also negative. The
mass term has an opposite sign; hence, if it is to be negative, we must change M2 → −µ2

for t < 0. The conditions for the path integral coincide with the ones derived from the
Hamiltonian (below Equation (25)). We shall still discuss the Schrödinger equations and
path integrals in detail in specific models in subsequent sections. The requirements for the
complex metric have been discussed in [6,12,13]. They look different then the ones required
for the Hamiltonian at the beginning of this section. We shall discuss these conditions in
Sections 9 and 10, when we discuss a change in signature.

We assume that S0 is a quadratic form in Φ

S0(Φ) = (Φ, Γ0Φ), (37)

where (, ) denotes the scalar product in L2(dx). We solve the Schrödinger Equation (25)
by means of the stationary phase method. We expand the Feynman integral (36) around
the stationary point ϕc

s(Φ). The stationary point is obtained as a solution ϕc
s(Φ) of the

Cauchy problem with the initial field value Φ, and the final boundary condition on the
time derivative [44]

dϕc
t

dt
= − δS0(ϕ)

δϕ
(ϕc

t ). (38)

The solution ϕc
t (Φ) is linear in Φ. We write

Φs = ϕc
s(Φ) +

√
h̄ϕ

q
s . (39)
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Then,

ψ
g
t (Φ) = At exp(

i
h̄

St(ϕc(Φ)) ≡ At exp(
i

2h̄
Φ, ΓtΦ)). (40)

The classical action St is a bilinear form in Φ defined by a real kernel Γt(x, y) (if S0 is a real
function), At is expressed by the determinant of an operator defined by the quadratic form
in ϕq. The determinant depends only on time and the metric. It follows that if S0 is real,
then St is a real bilinear form (if S0 is complex, then St is also complex). Hence, ψ

g
t , as a

function of Φ, is a pure phase factor.

4. Gaussian Solution of the Schrödinger Equation and Linear Stochastic Equations

We approach the quantum field theory (QFT) in Minkowski space-time by means
of stochastic equations [21,34,35]. The stochastic equations determine the solution of
the Schrödinger equation as in Equation (8). We continue the imaginary time in
Equations (8) and (9) to the real time [21]

dΦs(x) = ih̄
δ

δΦs(x)
ln ψ

g
t−sdt +

√
ih̄dWs(x), (41)

where
√

i = exp(i π
4 ) =

1√
2
(1 + i). Let Φ̂ be the relativistic quantum free field. Then, the

generating functional of the time-ordered correlation functions of Φ̂ in the vacuum ψg (11)
can be expressed [21] by the solution Φt(Φ) of the stochastic Equation (41)

(ψg, T
(

exp
∫

dtdxΦ̂t(x) ft(x)
)

ψg) =
∫

dΦψ2
g(Φ)E

[
exp(

∫
dtdx ft(x)Φt(Φ, x))

]
= exp

(
1
2

∫
dtdt′

(
ft, (2ω)−1 exp(−iω|t − t′|) ft′

))
,

(42)

where T(. . .) is the time-ordered product and ( f , g) denotes the scalar product in L2(dx).
When the initial condition is ψ = ψ

g
0 χ, and ψ

g
t is the solution of the Schrödinger

Equation (25), then χ solves the equation

ih̄∂tχt =
∫

dx
(1

2
Π2 + (Π ln ψ

g
t )Π

)
χt. (43)

If the solution ψ
g
t of the Schrödinger equation for quantum fields defined on the Minkowski

space-time is of the form (40) then Equation (41) reads [38]

dΦs = −Γt−sΦsds +
√

ih̄dWs. (44)

Let Φs(Φ) be the solution of Equation (44) with the initial condition Φ. If χ is a holomorphic
function, then the solution of the Schrödinger Equation (25) is

ψt = ψ
g
t E

[
χ
(

Φt(Φ)
)]

. (45)

With the interaction Vt, the Feynman formula reads

ψt = ψ
g
t E

[
exp

(
− i

h̄

∫ t

0
Vt−s(Φs)ds

)
χ
(

Φt(Φ)
)]

. (46)

The solution of the stochastic equation determines the free field correlation functions
(V = 0)

(ψ
g
0 , F1(Φt)F2(Φ)ψ

g
0 ) =

∫
dΦ|ψg

t (Φ)|2F1(Φ)E
[

F2

(
Φt(Φ)

)]
. (47)

For more general states ψgχ and V ̸= 0, we have
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(ψ
g
0 χ, F1(Φt)F2(Φ)ψ

g
0 χ) =

∫
dΦ|ψg

t (Φ)|2F1(Φ)

E
[
χ
(

Φt(Φ)
)

exp(− i
h̄

∫ t
0 Vt−s(Φs)ds)

]∗
×E

[
F2

(
Φt(Φ)

)
χ
(

Φt(Φ)
)

exp(− i
h̄

∫ t
0 Vt−s(Φs)ds)

]
.

(48)

We generalize these correlation functions in Section 7 to multitime correlation functions
after a derivation of a formula for the evolution propagator. In principle, QFT (with
the Hilbert space and quantum fields) can be determined by the correlation functions
(Wightman construction).

5. De Sitter Space

In this and subsequent sections, we obtain quantum field evolution on the Lorentzian
and Euclidean backgrounds. First, we discuss particular solutions (de Sitter and the sphere
S4) of Einstein equations with a cosmological constant (obtained in [7,8]). De Sitter space-
time can describe an early inflationary stage of the universe, as well as the final stage
of an acceleration driven by dark energy. The authors [7,8] glue together the Lorentzian
solution for positive time with the Euclidean solution (S4) for an imaginary time. We
consider several coordinate systems on de Sitter space [7,45] which can be considered as a
submanifold of the complex quadric

z2
1 + z2

2 + z3
3 + z2

4 + z2
5 =

1
H2 , (49)

where H has the meaning of the Hubble constant. We first consider a real form of the
quadric (49), defining the de Sitter space

x2
1 + x2

2 + x3
3 + x2

4 − x2
5 =

1
H2 . (50)

In the coordinates (t, ω), where ω ∈ S3, the metric on the hyper-sphere (50) is

ds2 = dt2 − 1
H2 cosh2(Ht)dω2, (51)

where dω2 is the metric on S3.
In conformal coordinates

cos(τ) =
1

cosh(Ht)
, (52)

where 0 < τ < π
2 , we obtain the metric

ds2 =
1

H2 cos2(τ)
(dτ2 − dω2). (53)

The Euclidean version of the manifold (53) describes the four-dimensional sphere of ra-
dius 1

H

x2
1 + x2

2 + x3
3 + x2

4 + x2
5 =

1
H2

Then, the metric is

ds2 = dt2 +
1

H2 cos2(Ht)dω2. (54)

The introduction of conformal coordinates

cosh(τ) =
1

cos(Ht)
, (55)
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where − π
2H < t ≤ 0 (we choose negative time in the Euclidean domain) gives the metric

ds2 =
1

H2 cosh2(τ)
(dτ2 + dω2). (56)

We can also introduce spatially flat coordinates describing the expanding universe (which
will be discussed in detail in subsequent sections)

ds2 = dt2 − a2dx2.

The expanding flat metric in coordinates which cover the half of de Sitter space-time (visible
by an observer at the origin) is

ds2 = dt2 − exp(2Ht)dx2. (57)

The “Euclidean” version of the metric (57) (x → ix)

ds2 = dt2 + exp(2Ht)dx2 (58)

does not represent a metric on the sphere S4. This is the metric on the hyperbolic space
which is the Euclidean version of the anti-de Sitter space-time. In fact, the metric (58) can be
expressed in a form familiar from the realization of the anti-de Sitter space as a generalized
Poincare upper half-plane

ds2 = y−2(H−2dy2 + dx2)

with y = exp(−Ht). The sphere S4, Euclidean anti-de Sitter space and Euclidean continua-
tions of de Sitter space are closely related [46]. We are allowed to treat the coordinates t
and τ in Equations (51)–(58) in Lorentzian and Euclidean metrics as time in the Lagrangian
formalism (in the Euclidean version, the time evolution will be a rotation of the sphere).

There remains to study the Schrödinger Equations (25)–(27) resulting from the def-
inition of H in Equations (24) and (27). First, we look for a Gaussian solution (40) of
these equations. In the coordinates (51)–(56), we can use the O(4) symmetry in order to
diagonalize the equation for Γ. First, we expand the fields in the spherical harmonics [47]

Φ(τ, ω) = ∑
lm

Ylm(ω)Φlm(τ),

where
△SYlm = −l(l + 2)Ylm.

△S is the Laplace–Beltrami operator on S3, l is a natural number, and m = (j, σ) where
j = 0, 1, . . . , l and −j ≤ σ ≤ j, is the indexing solution of the Laplace–Beltrami operator
with the eigenvalue −l(l + 2) [48].

Then, we expand Γ as

Γτ(ω, ω′) = ∑
lm

Ylm(ω
′)Y∗

lm(ω)Γlm(τ). (59)

Using Formula (24), we can define the Hamiltonian in each of the metrics (51)–(58). Subse-
quently, solving Equation (25), we find a Gaussian solution (40) of the Schrödinger equation
in each of these coordinates. We obtain for the metric (53) the Hamiltonian (24)

H = ∑lm

(
(H cos(τ))2Π2

lm + (H cos(τ))−2l(l + 2)Φ2
lm + M2(H cos(τ))−4Φ2

lm

)
(60)

defining for t ≥ 0 the Schrödinger Equation (25).
The Hamiltonian for the Euclidean metric (56) in the interpretation (27) is analogous

to the upside-down oscillator [36,42,43] (we change M2 → −µ2; the Schrödinger equation
is still ih̄∂τψ = Hψ)
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H = ∑lm

(
(H cosh(τ))2Π2

lm − (H cosh(τ))−2l(l + 2)Φ2
lm − µ2(H cosh(τ))−4Φ2

lm

)
(61)

We still consider the Schrödinger Equation (26). In the Euclidean metric (56) with the
Hamiltonian (24) and the choice

√−g = −i
√
|g|, we obtain the diffusion Equation (26) for

τ < 0 with

HE = ∑lm

(
(H cosh(τ))2Π2

lm + (H cosh(τ))−2l(l + 2)Φ2
lm + µ2(H cosh(τ))−4Φ2

lm

)
(62)

so that the Schrödinger equation takes the form

h̄∂tψ = HEψ.

The operators Γ (28) and G (32) are diagonalized by an expansion is spherical functions.
We denote a function satisfying the wave Equation (34) for G by uτ(ω). Expanding uτ(ω)

u(τ, ω) = ∑
lm

Ylm(ω)ulm(τ)

we obtain that in the metric (53) the coefficients ulm satisfy the equation

∂2
τulm + 2 tan(τ)∂τulm + (l(l + 2) + M2(H cos(τ))−2)ulm = 0. (63)

Γ is related to u, as follows from Equation (32)

u = exp
( ∫ τ

ds(H cos(s))2Γ(s)ds
)

. (64)

For the Euclidean metric with
√−g →

√
|g|, the corresponding formulas read (this equa-

tion also follows from the Hamiltonian (61))

∂2
τuE

lm − 2 tanh(τ)∂τuE
lm − l(l + 2)uE

lm − µ2(H cosh(τ)−2uE
lm = 0 (65)

Note that the definition
√−g → −i

√
|g| does not change the “wave equation” (65) for the

inverted signature. With the inverted signature, the “wave equation” becomes an elliptic
equation, hence it does not describe a wave propagation anymore.

ΓE is related to uE by

uE = exp
(

i
∫ τ

ds(H cosh(s))2ΓE(s)ds
)

. (66)

Concerning the flat expanding metric of the general form

ds2 = gµνdxµdxν ≡ dt2 − a2(t)dx2 (67)

introduced first for de Sitter in Equation (57) (and further discussed in models of subsequent
sections) we note that Friedmann equations governing the evolution of a(t)

(a−1 d
dt

a)2 − 1
3

Λ =
8πG

3
ρ,

2a−1 d2a
dt2 + (a−1 d

dt
a)2 − Λ = −8πGp

are invariant under a2 → −a2. Here, Λ is the cosmological constant (H =
√

Λ
3 ), ρ is the

energy density and p is the pressure. This transformation can equivalently be treated as
a → ia. The physical interpretation forces us to choose as a solution the metric with a2 > 0
(such a requirement may be not applicable in quantum gravity).
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For the homogeneous metric (67), owing to the translation invariance, we can decom-
pose Γ in Fourier components

Γ(x − y) = (2π)−3
∫

dkΓ(k) exp(ik(x − y)).

We consider solutions satisfying the condition Γ(k) = Γ(−k) = Γ(k), where k = |k|. Then,
in Fourier transform Equation (28) in an expanding metric is

∂tΓ + a−3Γ2 + ak2 + M2a3 = 0.

We Fourier transform the wave function

u(x) = (2π)−
3
2

∫
dk exp(−ikx)uk.

Then, the wave Equation (34) is

∂2
t uk + 3a−1∂ta∂tuk + a−2k2uk + M2uk = 0. (68)

The relation between u and Γ is determined by Equation (32)

uk = exp(
∫ t

dsa−3Γs(k)) (69)

When a−2 < 0 for t < 0, we chose
√−g = −i

√
|g| = −i|a2| 3

2 . The Schrödinger equation
for t > 0 is

ih̄∂tψt =
1
2

∫
dx

(
− h̄2a−3 δ2

δΦ(x)2 + a(∇Φ)2 + M2a3Φ2
)

ψt (70)

whereas for negative time, when a2 < 0 and
√−g is imaginary, we have the diffusion

Equation (26) (as discussed in Section 10)

h̄∂tψt =
1
2

∫
dx

(
− h̄2|a2|− 3

2 δ2

δΦ(x)2 +
√
|a2|(∇Φ)2 + µ2|a2| 3

2 Φ2
)

ψt (71)

where, for negative time, we changed the notation M2 = −µ2, suggesting that M2 should
be chosen to be negative.

If in the Lagrangian (22)
√−g →

√
|g|, then the Schrödinger equation reads

ih̄∂tψt =
1
2

∫
dx

(
− h̄2(|a2|)− 3

2 δ2

δΦ(x)2 + a−2(|a2|) 3
2 (∇Φ)2 − µ2(|a2|) 3

2 Φ2
)

ψt (72)

Equation (72) is an analog of the one for an inverted oscillator (see [36], so that the evolution
is still unitary).

We note that from Equation (68) that it follows that the Wronskian is a constant as

∂t(a3(u∂tu∗ − u∗∂tu)) = 0

For complex solutions, we choose the normalization

u∂tu∗ − u∗∂tu = −ia−3. (73)

which is fixing the constant in canonical commutation relations. If a = exp(Ht), as in
Equation (57) then the (complex) solution of Equation (68) is the cylinder function Zν [49–52]

u = a−
3
2 Zν(

k
H

exp(−Ht)), (74)

where

ν =
3
2

√
1 − 4M2

9H2 .
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In general, as solutions of the wave equation we can take superpositions of solutions with
different k. The canonical quantization is realized with the requirement [50] that, in the
remote past t0 → −∞, the solution tends to the plane wave (in conformal coordinates).
Then, Zν = H(2)

ν , where H(2)
ν is the Hankel function of the second kind [49]. If M = 0,

then we can obtain real solutions of Equation (68) J 3
2
( k

H exp(−Ht)) and Y3
2
( k

H exp(−Ht)),
important for the construction of interactions in Sections 11 and 12. These real solutions
will give oscillatory evolution kernels with caustic singularities.

The solution of Equation (68) with an inverted metric (k → ik and M → iµ in
Equation (68)) is

u = a−
3
2 Jν(i

k
H

exp(−Ht)) = Ca−
3
2 Kν(

k
H

exp(−Ht))

with a certain constant C, and

ν =
3
2

√
1 +

4µ2

9H2

It can be seen that this is a solution of the Euclidean “wave equation”, corresponding to the
field theory on the Euclidean version of the anti-de Sitter space [46,53].

Summarizing, the aim of this section was to reduce the general Equations (28)–(34) to
a manageable form using the symmetry of the manifold. In the homogeneous expanding
coordinates, we can use the Fourier transform to represent the operator Γ as a multiplication
operator in the Fourier space. In angular coordinates (covering the whole of de Sitter space),
we can expand the solution in terms of spherical harmonics. A change in the spatial
signature in angular coordinates transforms de Sitter space into a sphere. The Hamiltonian
and the solution of the Schrödinger equation are expressed in terms of a discrete set of
variables. The quantization of these variables (as outlined in Sections 2–4) is achieved by
stochastic equations in the next section.

6. Stochastic Equations for de Sitter Field and Fields in an Expanding Flat Metric

In this and in subsequent sections, we discuss the stochastic time evolution for positive,
negative and imaginary time. Until now, only positive time was considered in the stochastic
representation (45), because the Brownian motion is defined for a positive time. We can
obtain a stochastic representation for a negative time, taking the complex conjugation of
Equation (25)

ih̄∂−tψ
∗
t = H∗ψ∗

t ≡ H̃(−t)ψ∗
t . (75)

If the Schrödinger Equation (25) is to be defined for positive and negative time, then the
expressions for the Hamiltonian as a function of the metric tensor must have a meaning
in this range of time. This may be not possible if Hawking–Penrose positivity conditions
of the energy-momentum are to be satisfied [32] (then the metric tensor may become
degenerate and 1√−g infinite). The Einstein equations are invariant under the time reflection.
However, the reflected metric can violate the requirement of −g > 0, as will be discussed
in Section 10. In such a case, H̃(−t) for t > 0 in the interpretation (24) does not define a
Hermitian operator. In fact, in Section 10, H(−t) will be anti-Hermitian. In such a case,
the Schrödinger equation for a positive time is transformed into a diffusion equation for a
negative time.

In general, on a globally hyperbolic manifold, if we find Γt from Equation (28), then
the stochastic equation generated by the Hamiltonian (24) reads (where J is defined in
Equation (30))

dΦs = −J (t − s)Γt−sΦsds +
√

ih̄
√

g00(−g)−
1
4 (t − s)dWs. (76)

For a negative time, Equation (76) reads

dΦs = J (t − s)Γt−sΦsd(−s) +
√
−ih̄

√
g00(−g)−

1
4 (t − s)dW−s. (77)
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With
√−g = −i

√
|g| and (−g)

1
4 =

√
−i|g| 1

4 in Equation (77) for −g < 0. Such a choice
of square roots will give the real noise (

√
−i cancels) and a positive operator HE in the

diffusion Equation (26).
Equation (77) can be rewritten as

dΦs = G−1∂tG(t − s)Φsd(−s) +
√

h̄
√

g00|g|−
1
4 (t − s)dW−s. (78)

where G is the solution of the wave Equation (34) (with an inverted metric). Equation (76)
is a generalization of Equation (44) (considered in the Minkowski space-time).

In the expanding metric (67), the Hamiltonian (24) for t > 0 is

H =
1
2

∫
dx

(
− h̄2a−3 δ2

δΦ(x)2 + a(∇Φ)2 + M2a3Φ2
)

. (79)

The stochastic Equation (76) for t ≥ 0 reads

dΦs = −a(t − s)−3Γ(t − s)Φsds + a(t − s)−
3
2
√

ih̄dWs. (80)

By a differentiation of Equation (80), we obtain a random wave equation

(∂2
s − a−2(t − s)△+ M2)Φs + 3a−1(t − s)∂ta(t − s)∂sΦs

=
(

9
2 a−1(t − s)∂ta(t − s)− a−3(t − s)Γ(t − s)

)√
ih̄∂sW

+
√

ih̄a−
3
2 (t − s)∂2

s W.

(81)

Equation (80) has the solution (with the initial condition Φ at s = 0)

Φs = ut−su−1
t Φ +

√
ih̄ut−s

∫ s

0
u−1

t−τa−
3
2

t−τdWτ . (82)

Equation (80) can be interpreted in the semi-classical approximation if in the solution (3.20)
Γ is real (so u is real). Then, in the limit h̄ → 0, Equation (80) reads

dΦs

ds
= −a−3(t − s)Γ(t − s)Φs. (83)

Equation (83) relates the Hamilton–Jacobi limit of the Schrödinger equation with its classical
solution Φs. In the standard formulation of the Hamilton–Jacobi theory, if S is the classical
action, then the classical trajectory is defined by [44]

a−3 dΦs

ds
=

δS
δΦs

.

From Equation (82), the classical solution with the initial condition Φ is

Φs = ut−su−1
t Φ,

where ut−s is the classical solution of the wave equation resulting from the Lagrangian (22).
For the negative time, the stochastic evolution is a simple reflection if a(t) = a(−t),

as appears in the effective field theories resulting from the string theory [54,55]. Then, we
have H̃(−t) = H(t), and a is contracting to zero as |t| → 0 and expanding to infinity when
t → ∞. In such a case, the stochastic Equation (77) takes the form

dΦs = Γ(s − t)a−3(t − s)Φsd(−s) +
√
−ih̄a−

3
2 (t − s)dW−s,

where a−3Γ = u−1∂tu. It has the solution

Φs(Φ) = u(−)
t−s (u

(−)
t )−1 −

√
−ih̄u(−)

t−s

∫ −s

0
(u(−)

t+τ)
−1a−

3
2

t+τdWτ , (84)
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where u(−)
t is the solution of the wave Equation (68) for a negative time. In this case, the

field Φs can be considered as a simple reflection of the one for s > 0. We discuss an example
of a(t) ≃ |t| in Section 10.

We return to de Sitter expanding metric (57). From Equation (69),

Γ = a3 d
dt

ln
(

a−
3
2 Zν

( k
H

exp(−Ht)
))

.

Hence,

Φs = exp(−
∫ s

t0
(a−3Γ)(t − τ)dτ)Φ +

√
ih̄
∫ s

t0
exp(−

∫ s
τ (a−3Γ)(t − τ′)dτ′)a(t − τ)−

3
2 dWτ

or
Φs = a(t − s)−

3
2 Zν(

k
H exp(−Ht + Hs))a(t − t0)

3
2(

Zν(
k
H exp(−Ht + Ht0))

)−1
Φ +

√
ih̄a(t − s)−

3
2 Zν(

k
H exp(−Ht + Hs))∫ s

t0

(
Zν(

k
H exp(−Ht + Hτ))

)−1
dWτ .

(85)

The solution of the stochastic equation determines the field correlation functions (from
Equations (47) and (85), Φ̂ denotes the quantum field, we set t0 = 0)

(ψ
g
0 , Φ̂t(k)Φ̂(k′)ψ

g
0 ) =

∫
dΦ|ψg

t (Φ)|2Φ(k)E
[
Φt(Φ, k′)

]
= i(Γ(t)− Γ(t)∗)−1Zν(

k
H )a(t)

3
2

(
Zν(

k
H exp(−Ht))

)−1
δ(k + k′),

(86)

where we have used the covariance (from Equation (40))∫
dΦ|ψg

t (Φ)|2Φ(k)Φ(k′) = ih̄(Γ − Γ∗)−1δ(k + k′). (87)

In general,
Zν = βH(1)

ν + αH(2)
ν ,

where Hν are the Hankel functions (in order to satisfy canonical commutation relations we
must have |α|2 − |β|2 = 1).

In order to calculate the rhs of Equation (87) we apply (with z = k
H exp(−Ht))

Γ(t)− Γ(t)∗ = a3Hz(Z∗
ν Zν)−1

(
d
dz Z∗

ν Zν − d
dz ZνZ∗

ν

)
. (88)

The rhs of the expression (87) may have any sign. For β = 0 and α = 1 (the Bunch–
Davies vacuum [52]), we have

Γ − Γ∗ = i
(

H(2)∗
ν H(2)

ν

)−1
(89)

Then, inserting Equation (89) in Equation (86), we obtain

(ψ
g
0 , Φ̂t(k)Φ̂(k′)ψ

g
0 ) = h̄H(2)

ν ( k
H )a(t)

3
2

(
H(2)

ν ( k
H exp(−Ht)

)∗
δ(k + k′). (90)

From Equation (47), using Equation (90), we can also calculate (for the massless field)

(ψ
g
0 , Φ̂t(k)Φ̂t(k′)ψ

g
0 ) = (ψ

g
t , Φ(k)Φ(k′)ψ

g
t )

= h̄δ(k + k′)H(2)∗
3
2

H(2)
3
2
( k

H exp(−Ht))

and
(ψ

g
0 , Φ(k)Φ(k′)ψ

g
0 )− (ψ

g
0 , Φ̂t(k)Φ̂t(k′)ψ

g
0 )

= h̄δ(k + k′) 1
2k (1 − exp(−2Ht))
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a result obtained in [56–59].
In a similar way, using Equation (47), we calculate higher order correlation functions

(ψ
g
0 , Φ̂t(k1)Φ̂t(k2)Φ̂(k′

3)Φ̂(k′
4)ψ

g
0 )

=
∫

dΦ|ψg
t (Φ)|2Φ(k1)Φ(k2)E

[
Φt(Φ, k′

3)Φt(Φ, k′
4)
]

In this equation, we insert the solution (82). The integral over Φ is the Gaussian integral
with the covariance (87). The expectation value in the formula for the correlations is

E
[
Φt(Φ, k′

3)Φt(Φ, k′
4)
]

= (u0Φ)(k′
3)((utΦ)(k′

3))
−1(u0Φ)(k′

4)((utΦ)(k′
4))

−1

+ih̄u2
0δ(k′

3 + k′
4)
∫ t

0 u−2
τ (k′

3)a−3
τ dτ ≡ Ecl + Gt,

(91)

where the Gt term (it still will be discussed in subsequent sections) being the quantum
fluctuation of Φt is proportional to h̄. The integral (91) can explicitly be calculated for
M = 0. Then, inserting H(2)

3
2

a
3
2
τ uτ(k) = Cz−

3
2 (z − i) exp(−iz)

with a certain constant C and z(τ) = k
H exp(−Hτ), we obtain the integral in Equation (91).

The integral reads
Gt = −ih̄( k

H − i)2 H2

k3 exp(−2i k
H )∫ k

H exp(−Ht)
k
H

y2(y − i)−2 exp(2iy)dy.

For a small k, the leading infrared behavior of the real part of Gt is Ht
k confirming the

diffusive behavior of Φt discovered in [56–59].
In the case of an inverted metric (58) describing the Euclidean anti-de Sitter space the

correlation function is an analytic continuation of Equation (90)

H(2)
ν (i k

H )a(t)−
3
2

(
H(2)

ν (i k
H exp(−Ht)

)∗
δ(k + k′)

≃ Kν(
k
H )a(t)−

3
2 Kν(

k
H exp(−Ht)

)
δ(k + k′)

(92)

with ν = 3
2

√
1 + 4µ2

9H2 . The correlation function (90) coincides with the one derived
in [50–52] describing the quantum free field in de Sitter space, with the ground state
invariant under the de Sitter group. The two-point function (92) describes the Euclidean
version of the quantum field on the anti-de Sitter space [6,46].

With the solution (85)–(90), we shall have the same problem with a perurbative
construction of an interaction (ultraviolet divergencies and renormalization) as in the QFT
in the Minkowski space-time. In Sections 11 and 12, we discuss a method to construct
interactions when the solution of the wave equation u(t) is a real function, and we do not
insist on the existence of the ground state. In the derivation of Equation (90), we have
chosen as u the Hankel function H(2)

ν ( k
H exp(−Ht)). In such a case, Γ is complex. Hence,

ψ
g
t is not a pure phase WKB solution. If M = 0, then ν = 3

2 . We could chose as u the Bessel
functions J 3

2
or Y3

2
, which are expressed by trigonometric functions. In such a case, Γ is

real and ψ
g
t is a pure phase. We obtain another representation of de Sitter field with caustic

singularities, which will be discussed in another model in Section 10. The Bessel functions
of an imaginary argument Kν in Equation (92) give a solution in Euclidean AdS. In such a
case, uν is a real function without caustic poles. We can construct interaction without an
ultraviolet cutoff by means of the Feynman–Kac formula, as discussed in Section 12.
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Let us still determine the stochastic field (76) resulting from the Hamiltonian (60). It is
the solution of the stochastic equation

dΦlm(s) = −∂τ ln(ulm(τ − s))Φlm(s)ds +
√

ih̄H
3
2 cos(τ − s)dwlm(s), (93)

where ulm is the solution of Equation (63) and wlm are Gaussian processes with mean zero
and the covariance

E[wlm(s)wl′m′(s′)] = δll′δ(m + m′)min(s, s′), (94)

where m = (j, σ) (as explained at Equation (59)) and δ(m + m′) = δ(j − j′)δ(σ + σ′).
The Euclidean Hamiltonian (62) generates the stochastic equation

dΦlm(s)E = −∂τ ln(uE
lm(τ − s))ΦE

lm(s)d(−s) +
√

h̄H
3
2 cosh(τ − s)dwlm(−s), (95)

where uE
lm is the solution of Equation (65).

The solution defines a real diffusion process solving the diffusion Equation (26) for
τ ≤ 0.

The solution of Equation (93) is

Φlm(s) = ulm(τ − s)ulm(τ)
−1Φlm +

√
ih̄H

3
2 ulm(τ − s)

∫ s
0 (ulm(τ − t))−1 cos(τ − t)dwlm(t). (96)

Equation (95) has the solution

ΦE
lm(s) = uE

lm(τ − s)uE
lm(τ)

−1Φlm +
√

h̄uE
lm(τ − s)H

3
2
∫ s

0 (u
E
lm(τ − t))−1 cosh(τ − t)dwlm(t), (97)

where Φlm is the initial condition at s = 0. We need to calculate

E[(Φlm(s)− E[Φlm(s)])(Φlm(s′)− E[Φl′m′(s′)])] = Glm(s, s′)δll′δ(m + m′).

We have

Glm(s, s′) = ih̄ulm(τ − s)ulm(τ − s′)H3
∫ m(s,s′)

0 dt(ulm(τ − t))−2 cos2(τ − t) (98)

for the field (96) and

GE
lm(s, s′) = h̄uE

lm(τ − s)uE
lm(τ − s′)H3

∫ m(s,s′)
0 dt(uE

lm(τ + t))−2 cosh2(τ − t) (99)

for the inverted metric of Equation (56).
For a general l and M, the solution of the wave equation is defined by the Legendre

functions [50]. We are unable to calculate the integrals in Glm(s, s′) (98) and (99) exactly.
For l = 0 and M = 0, we have

u00(τ) = τ +
1
4

sin(2τ) (100)

and
uE

00(τ) = τ +
1
4

sinh(2τ).

For a large l, we can obtain the WKB solution (the odd solution) of the wave equation

ulm(τ) = (
dS
dτ

)−
1
2 sin(S(τ)) cos(τ), (101)

where
S(s) =

∫ s

0
dτ

√
l(l + 2) + 1 + (M2 − 2H2)H−2 cos−2(τ).
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In the even solution, we replace sin in Equation (101) by cos. For the Euclidean Equation (65),
the WKB solution is of the form (101), but the trigonometric functions are replaced by hyper-
bolic functions. So, the odd solution reads

uE
lm(τ) = (

dSE

dτ
)−

1
2 sinh(SE(τ)) cosh(τ) (102)

with
SE(s) =

∫ s

0
dτ

√
l(l + 2) + 1 + (µ2 − 2H2)H−2 cosh−2(τ). (103)

For the Euclidean version, an exponential solution of Equation (65) will be needed (the sum
of even and odd solutions)

ulm(τ) = (
dSE

dτ
)−

1
2 exp(SE(τ)) cosh(τ). (104)

We can calculate Glm using the WKB approximation with the result

Glm(s, s′) = ih̄H3ulm(τ − s)ulm(τ − s′)(cot(S(τ − m(s, s′))− cot S(τ)) (105)

for ulm defined by Equation (101) and

Glm(s, s′) = h̄H3uE
lm(τ − s)uE

lm(τ − s′)(coth(SE(τ − m(s, s′))− coth SE(τ)) (106)

for the inverted metric in Equation (102).
In the case of the exponential solution (104), we obtain

Glm(s, s′) = h̄H3uE
lm(τ − s)uE

lm(τ − s′)(exp(−2SE(τ − m(s, s′))− exp(−2SE(τ))). (107)

For the even solutions of the WKB form defined by cos and cosh in Equations (101) and (102),
the cotangent functions in Equations (105) and (106) are replaced by the tangents. The
approximate expression for Glm(s, s′) can be applied for calculations of the propagators
and field correlations in subsequent sections. In Appendix F, we express fields in de Sitter
space and their correlations in the cosmic time. There, we also discuss de Sitter fields in
two dimensions (see earlier papers [60,61]), where we express the correlation functions by
elementary functions.

With the trigonometric functions entering Glm(s, s′), we have the difficulty with the
integrability over time in the definition of the evolution kernel in Section 7 of quantum field
theory in the Schrödinger formulation (because of the poles of the trigonometric functions in
Equation (105)). We note that the replacement of the trigonometric functions by hyperbolic
functions (signature inversion) in the approximate WKB solutions (106) avoids this difficulty.
This analytic continuation allows a definition of the Feynman–Kac formula for a real time (but
with an inverted spatial signature), as will be discussed in Sections 11 and 12.

7. The Propagator for the Schrödinger Evolution of the Scalar Field

We can express the time evolution either by the solution of the stochastic equation as
in Equation (45) or by an evolution kernel defined by

(Utψ)(Φ) =
∫

dΦ′K̃t(Φ, Φ′)ψ(Φ′).

We write ψ in the form (5). Then, the definition of the kernel is rewritten as

(Utψ
g
0 χ)(Φ) = ψ

g
t

∫
dΦ′Kt(Φ, Φ′)χ(Φ′). (108)

We represent χ as a Fourier transform

χ(Φ) =
∫

dΛχ̃(Λ) exp(i(Λ, Φ)).
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Then, from Equation (45), we obtain

Kt(Φ, Φ′) =
∫

dΛE
[

exp
(

i(Λ, Φt(Φ)− Φ′)
)]

. (109)

We calculate the expectation value of Φt with the result

E
[

exp
(

i(Λ, Φt(Φ)− Φ′)
)]

= exp
(

i(Λ, u0u−1
t Φ − Φ′)− 1

2 (Λ, GtΛ)
)

. (110)

Then, calculating the Λ integral we obtain (up to a normalization constant)

Kt(Φ, Φ′) = det G− 1
2

t exp
(
− 1

2

(
(u0u−1

t Φ − Φ′), G−1
t (u0u−1

t Φ − Φ′)
)]

, (111)

where
Gt(k, k′) = E[(Φt(k)− < Φt > (k))(Φt(k′)− < Φt > (k′))]
≡ Gt(k)δ(k + k′)

with < Φ >= E[Φ].
In a homogeneous expanding space-time for positive time (to be concise, from now on

we omit the δ(k + k′) term in Gt(k, k′))

Gt = ih̄u2
0

∫ t

0
u−2

t−τa−3
t−τdτ. (112)

Equation (112), (where m(s, s′) ≡ min(s, s′), is a consequence of

E
[ ∫ s

0
fτdWτ(k)

∫ s′

0
fτ′dWτ′(k

′)
]
=

∫ m(s,s′)

0
f 2
τ dτδ(k + k′)

following from the definition of the stochastic integral [38].
In the presence of an interaction from Equation (46), we obtain a generalization of the

Formula (111) for the evolution kernel as

Kt(Φ, Φ′) =
∫

dΛE
[

exp
(

i(Λ, Φt(Φ)− Φ′)
)

exp
(
− i

h̄

∫ t
0 V(Φs(Φ))ds

)]
.

Clearly, we cannot explicitly calculate this expectation value and the Λ integral as we
did in Equations (110) and (111), but we can perform such calculations in a perturbation
expansion in V, as will be discussed in Sections 11 and 12.

For negative time in Equation (78), the correlation function is

Gt = ih̄u(−)
0 u(−)

0

∫ −t

0
(u(−)

t+τ)
−2a−3

t+τdτ (113)

where u(−) is the solution of the wave equation for a negative time. Let us note that, for
positive time, we obtain an oscillating propagator Kt, which is a pure phase, whereas for an
inverted metric (for the negative time), we obtain a real function describing a transition
function for a diffusion.

The result of (111) and (112) gives an explicit formula for the evolution kernel. Another
way to calculate this propagator involves a solution of the Cauchy problem for the wave
equation, as discussed briefly at the end of Appendix D (such calculations are performed in
more detail in [62]). Note that a real u leads to a purely imaginary Gt. Then, we obtain the
propagator (111), which is a pure phase in agreement with the Feynman Formula (36) and
Appendix D. If u is complex, then Γ is complex. Hence, Gt is complex. Such a modification
of the kernel results from its definition (108) involving ψ

g
t , which is not a pure phase.
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Using the expectation value (110), we can also calculate the field correlation functions
in a state ψ

g
0 χ with a Gaussian state χ of the form

χ = det B
1
2 exp(−1

2
(Φ, BΦ)). (114)

Then, from Equation (110) (up to a constant multiplier)

χt(Φ) = det B
∫

dΛ exp(− 1
2 (Λ, B−1Λ))

exp
(

i(Λ, u0u−1
t Φ)− 1

2 (Λ, GtΛ)
)
= det(1 + BGt)

− 1
2

det B
1
2 exp

(
− 1

2 (u0u−1
t Φ, (B−1 + Gt)−1u0u−1

t Φ)
)

.

(115)

Next,
(Φχ)t(Φ) = u0u−1

t B−1(B−1 + Gt)−1Φ det B
1
2 det(1 + BGt)

− 1
2

exp
(
− 1

2 (u0u−1
t Φ, (B−1 + Gt)−1u0u−1

t Φ)
)

.
(116)

Then, the field correlation function according to Equation (48) can be calculated (for a
general solution ψ

g
t of the Schrödinger Equation (25)) from the formula

(ψ
g
0 χ, Φ̂t(k)Φ̂(k′)ψ

g
0 χ) = δ(k + k′)

∫
dΦ|ψg

t |2χ∗
t (Φ)Φ(k)(Φχ)t(Φ, k′), (117)

where χt and (Φχ)t have been evaluated in Equations (115) and (116).
The integral (117) is Gaussian. Hence, we derive an explicit (although quite complicated)

formula for the correlation function. The formula simplifies if, e.g., |ψg
t |2 is integrable (when

i(Γ − Γ∗) < 0) and χ = 1 (as in Equation (91)). Then, (Φχ)t(Φ) = E[Φt(Φ)] = u0u−1
t Φ.

We can calculate the field correlations in various states (ψg
0 χ, Φ̂(t, x)Φ̂(x′)ψg

0 χ) using
the propagator (111) as∫

dΦdΦ′dΦ′′
(

Ut(Φ, Φ′)(ψ
g
0 χ)(Φ′)

)∗
Φ(x)Ut(Φ, Φ′′)Φ′′(x′)(ψg

0 χ)(Φ′′)

=
∫

dΦdΦ′dΦ′′|ψg
t (Φ)|2Kt(Φ, Φ′)∗Kt(Φ, Φ′′)χ(Φ′)∗χ(Φ′′)Φ(x)Φ′′(x′)

(118)

with
Ut(Φ, Φ′) = ψ

g
t (Φ)Kt(Φ, Φ′)(ψ

g
0 (Φ

′))−1. (119)

We can express all multi-time correlation functions by the evolution kernel. As an example,

(ψ
g
0 χ, Φ̂t(x)Φ̂t′(x′)ψ

g
0 χ) = (Utψ

g
0 χ, Φ(x)Ut,t′Φ(x′)ψg

0 χ) (120)

where
Ut,t′(Φ, Φ′) = ψ

g
t (Φ)K(t,t′)(Φ, Φ′)(ψ

g
t′(Φ

′))−1. (121)

Hence, in terms of the kernels Equation (120) is expressed as∫
dΦdΦ′dΦ′′

(
Ut(Φ, Φ′)(ψ

g
0 χ)(Φ′)

)∗
Φ(x)Ut,t′(Φ, Φ′′)Φ′′(x′)(ψg

0 χ)(Φ′′) =∫
dΦdΦ′dΦ′′|ψg

t (Φ)|2Kt(Φ, Φ′)∗K(t,t′)(Φ, Φ′′)χ(Φ′)∗χ(Φ′′)Φ(x)Φ′′(x′)
(122)

The kernel K(t,t′) is obtained as in Equation (109)

K(t,t′)(Φ, Φ′) = (det G(t, t′))−
1
2 exp

(
− 1

2
(u0(ut−t′)

−1Φ − Φ′)G(t, t′)−1(u0(ut−t′)
−1Φ − Φ′)

)
, (123)

where now the process Φs is the solution of the stochastic equation with an initial value at
t′ (instead of zero)

Φs = ut−s(ut−t′)
−1Φ +

√
ih̄ut−s

∫ s

t′
u−1

t−τa−
3
2

t−τdWτ (124)
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Hence, from Equations (109) and (110),

G(t, t′) = ih̄u2
0

∫ t

t′
u−2

t−τa−3
t−τdτ (125)

Similarly to Equation (122) in terms of the kernel Ut,t′(Φ, Φ′), we can express the n-
point functions

(ψ
g
0 χ, Φ̂t1(x1) . . . . . . Φ̂tn(xn)ψ

g
0 χ) = (Ut1 ψ

g
0 χ, Φ(x1)Ut1,t2 Φ(x2) . . . . . . Utn−tn−1 Φ(xn)ψ

g
0 χ) (126)

In the presence of interaction, there are additional Feynman–Kac factors in K(t,t′) as in
Equation (48)

exp
(
− i

h̄

∫ t

t′
V(Φs)ds

)
At the end of this section, we would like to discuss different notions of propagators in
the literature [63,64] (the one for the metric a ≃ t has been discussed in [65,66]). In these
papers, the propagator has been defined as the inverse of the operator A appearing in
the action (22) when written in the form

∫
dxL =

∫
dxΦAΦ. We could also represent this

propagator by Schwinger’s proper time

A−1 = i
∫ ∞

0
dτ exp(−iτA).

By formal functional integration, the functional integral average < ϕ(x)ϕ(x′) > is equal
to A−1(x, x′)(the kernel satisfying AA−1 = 1). In general, by formal differentiation of the
lhs of Equation (117) using Equation (23) in the metric (67), we obtain for t > 0 under the
assumption that the quantum field satisfies the wave equation

∂2
t (ψ

g
0 χ, Φ̂t(k)Φ̂(k′)ψ

g
0 χ) = ∂t(ψ

g
0 χ, a−3Πt(k)Φ̂(k′)ψ

g
0 χ)

= (−3H∂t − a−2k2 − M2)(ψ
g
0 χ, Φt(k)Φ(k′)ψ

g
0 χ)δ(k + k′).

Hence, the correlation function also satisfies the wave equation. If χ = 1 and |ψg
t |2 is

integrable, then

(ψ
g
0 , Φ̂t(k)Φ̂(k′)ψ

g
0 ) =

∫
dΦ|ψg

t |2Φ(k)E[Φt(k′)]
= u0(k)u∗

t (k)δ(k + k′)

because E[Φt(k′)] = (u0u−1
t Φ)(k) (from Equation (82)) and i(Γ − Γ∗) ≃ (utu∗

t )
−1 from

the Wronskian (as has been exploited in the particular case of the de Sitter metric (57)
in Equation (90)). We can conclude that, although the correlation function in any state
is a solution of the wave equation, then the solution of the equation for the correlation
functions is not unique, because it depends on the state under consideration. If there is a
unique ground state (as in de Sitter space) invariant under a symmetry group, then we
can distinguish the solution having this invariance [51]. In other states, the two-point
correlation function must be determined through calculations, e.g., from Equation (117) by
means of the propagator (111) (as will be discussed at the end of Section 9).

In QFT in the Minkowski space-time in the ground state (11), we obtain A−1 as the
Lorentz invariant Green function of ∂2

t −△+ M2 equal to 1
2 ν−1 exp(−iν|t − t′|), where

ν =
√
−△+ M2. In the case of the de Sitter space-time, the calculation with χ = 1 and ψg

defined by Γ in Equation (90) coincides (as discussed after Equation (117)) with the result
of an expectation value computed either by a formal functional integration or derived
by an expansion of the field in creation and annihilation operators defined by de Sitter
invariant vacuum [47,50,51]. In the time-dependent metric of this section (as well as in
Section 8), there is no candidate for a vacuum. Hence, it remains unclear in which state ψ

g
0 χ

the two-point correlation function could be equal to A−1. If there is no unique vacuum for
the quantum field in an expanding metric, then the physical meaning of A−1 is obscure,
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whereas the propagator defined in this section (and the correlation functions defined by the
propagator) has a clear meaning for the canonically quantized field theory of Section 3. A
relation of the propagator Kt to A−1, defined as the causal propagator, has been discussed
in ref. [62]. In this paper, the definition of the propagator Kt is related to the solution
of the Cauchy problem, as expressed by the causal propagator. We briefly discuss the
method of the calculation of Kt using the solution of the Cauchy problem for A at the end
of Appendix D.

8. Power-Law Expansion

In this and subsequent sections, we discuss some soluble wave equations. We are
unable to derive an explicit solution of the wave Equation (68) in a homogeneous space-
time for an arbitrary expansion a(t). In Appendix B, we solve this equation for a large k by
means of the WKB method (it can be made exact as in [63]). Then, in this approximation,
we can calculate the propagator (111) and the field correlation functions (Appendix B).

In this and subsequent sections, we discuss soluble models. First, we consider the
model with the power-law expansion a2 = b−2

0 (t + γ)2α with a general α ∈ R and t + γ > 0
(we shift the initial time by γ in order to pose the initial condition at t = 0, even if γ = 0
corresponds to a degenerate metric). If t + γ < 0, then a is a complex function in general
(but even powers of t lead to admissible models with a topology change between positive
and negative time [67]). We discuss the case α = 1

2 for t+γ < 0 in Section 10. The expansion
law a = b−1

0 |t + γ|α for both positive t + γ and negative t + γ appears in cosmological
models resulting from string theory [54,55]. Such a metric cannot be a solution of general
relativity, because it is not differentiable at t + γ = 0.

The wave equation for t + γ > 0 has the form

∂2
t u + 3α(t + γ)−1∂tu + b2

0(t + γ)−2αk2u + M2u = 0. (127)

The corresponding stochastic equation is

dΦs = −u−1(t − s)∂tu(t − s)ds +
√

ih̄a−
3
2 dWs.

For t + γ < 0 and a = b−1
0 |t + γ|α (in string inspired models [54,55]), the wave equation is

∂2
t u + 3α(t + γ)−1∂tu + b2

0|t + γ|−2αk2u + M2u = 0.

Equation (127) is explicitly soluble if M = 0 ([68], 2.162 Equation (1a)). The solution is
(for t + γ > 0, we may choose here either complex-valued or real-valued Bessel functions)

u = (t + γ)
1−3α

2 Zν(
b0

1 − α
k(t + γ)1−α), (128)

where
ν =

1 − 3α

2(1 − α)
.

α is related to w in the equation of state (p = wρ)

α =
2

3(1 + w)
.

Note that ν = − 1
2 if α = 1

2 (radiation, w = 1
3 ) and ν = − 3

2 if α = 2
3 (dust, w = 0). We

discuss α = 1
2 in detail in Section 10.
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Let us briefly consider the interesting case of α = 2
3 . Then, a real solution valid for

both t + γ > 0, as well as t + γ < 0, which is continuous at t + γ = 0, is expressed by
elementary functions (T = 3b0(t + γ)

1
3 is the conformal time)

u = (t + γ)−
2
3

(
cos(3b0k(t + γ)

1
3 )− (3b0k(t + γ)

1
3 )−1 sin(3b0k(t + γ)

1
3 )
)

.

The real solutions u are distinguished in our approach as they lead to real Γ and purely
imaginary Gt in Equation (112). This property is relevant for a construction of interactions
via the Feynman–Kac formula (see Section 11). We also consider a complex solution, which
gives a square integrable ψ

g
t

u = (t + γ)−
1
2 H(2)

3
2
(3b0k(t + γ)

1
3 )

The two-point function in this state is discussed at the end of this section.
For a general ν from Equation (69), we obtain

Γ = (t + γ)3α d
dt

ln
(
(t + γ)

1
2−

3α
2 Zν(

b0

1 − α
k(t + γ)1−α)

)
.

The stochastic Equation (80) reads

dΦs = − d
dt ln

(
(t + γ − s)

1
2−

3α
2 Zν(

b0
1−α k(t + γ − s)1−α)

)
Φsds +

√
ih̄(t + γ − s)−

3α
2 dWs. (129)

The solution is

Φs =
(
(t + γ − s)

1
2−

3α
2 Zν(

b0
1−α k(t + γ − s)1−α)

)
(
(t + γ − t0)

1
2−

3α
2 Zν(

1
1−α k(t + γ − t0)

1−α)
)−1

Φ

+
√

ih̄
(
(t + γ − s)

1
2−

3α
2 Zν(

b0
1−α k(t + γ − s)1−α)

)
×
∫ s

t0
dτ

(
(t + γ − τ)

1
2−

3α
2 Zν(

b0
1−α k(t + γ − τ)1−α)

)−1
(t + γ − τ)−

3
2 αdWτ .

(130)

Let
z(t + γ) =

b0k
1 − α

(t + γ)1−α.

The general complex solution which can give a normalizable ψ
g
t is a superposition of

Hankel functions. The Wronskian for the Hankel functions is (here H(2) = H(1)∗)

(
d
dz

H(2))H(1) − (
d
dz

H(1))H(2) = − 4i
πz

Hence, for Zν = H(1)
ν , we obtain

Γ − Γ∗ =
4i
π
(H(2)

ν H(2)∗
ν )−1(t + γ)3α H (131)

Now, Γ − Γ∗ of Equation (131) leads to a normalizable Gaussian state (allowing a computa-
tion of correlation functions, an analog of Equation (90))

(ψ
g
0 , Φ̂t(k)Φ̂(k′)ψ

g
0 ) =

∫
dΦ|ψg

t (Φ)|2ΦE
[
Φt(Φ)

]
= πh̄

4H H(2)
ν (z(γ))H(2)∗

ν (z(t + γ))(t + γ)1− 3
2 αδ(k + k′).

We can express the correlations in the case of dust α = 2
3 , ν = − 3

2 by elementary functions.
The two-point function at small k behaves as

k−3 exp(iz(t + γ)− iz(γ))
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It has the infrared singularity. Gt is complex but the small k expansion contains a real part

ℜGt ≃
t
k

δ(k + k′)

similar to the one in de Sitter space.
The random fields defined by the Hankel function H(2)

ν do not allow definition of the
interaction by means of the Feynman–Kac integral in Sections 11 and 12. We can establish
the Feynman integral with the choice Jν or Yν as Zν. In such a case, after solving the
Schrödinger equation with an interaction in Section 11, we must look for states which are
square integrable and define the correlation functions by means of Equation (48) (these
could be the Gaussian states of Equation (116)).

9. The Expansion a2(t) = ϵ
b2

0
(t + γ)2

This is the limiting case (α → 1) of Equation (127). It describes the w = − 1
3 fluid

corresponding to the coasting cosmology [69] or Dirac–Milne cosmology [70]. The scale
a(t) is invariant under t + γ → −t − γ) (it is contracting for t + γ < 0 and expanding for
t + γ > 0; we choose γ > 0 for t > 0 and γ < 0 for t < 0). The scalar field theory of these
models has been also discussed in [65,66]. As noticed in Section 5, the Einstein equations
which can appear in the path integral of quantum gravity together with a2 ≃ t2 give also
the solution with a2 ≃ −t2 (with the same w = − 1

3 ). The model with a2 < 0 is interesting
for the construction of an interaction via the Feynman–Kac formula, as will be discussed in
Section 12.

The wave equation reads (with M = 0)

d2u
dt2 + 3(t + γ)−1 du

dt
+ ϵ(t + γ)−2b2

0k2u = 0. (132)

In Equation (132), we add a parameter ϵ = ±1 in order to describe a model with an inverted
spatial metric resulting from the solution of Friedmann equations a2 = − 1

b2
0
(t + γ)2 with

w = − 1
3 . Choosing

√−g = i
√
|g|, we obtain a diffusion equation for positive time instead

of the Schrödinger equation. The diffusion equation makes sense only in one direction of
time (either positive or negative). Our choice of the square root of

√−g in this section gives
the diffusion equation for a positive time. The diffusion Equation (26) reads

h̄∂tψt =
1
2

∫
dx

(
h̄2b3

0|t + γ|−3 δ2

δΦ(x)2 −
|t+γ|

b0
(∇Φ)2 − µ2b−3

0 |t + γ|3Φ2
)

ψt (133)

The equation for χ is

∂tχt =
∫

dx
(

h̄
1
2

b−3
0 |t + γ|−3 δ2

δΦ(x)2 − u−1∂tuΦ(x)
δ

δΦ(x)

)
χt, (134)

where u is the solution of Equation (132) with ϵ = −1. We could consider the model of
Section 3, where there is dx

√
|g| as the volume element. In such a case, we still have the

Schrödinger Equation (instead of the diffusion equation). Then, the equation for χ is

∂tχt =
∫

dx
(

h̄
i
2

b3
0|t + γ|−3 δ2

δΦ(x)2 − u−1∂tuΦ(x)
δ

δΦ(x)

)
χt,

where u satisfies Equation (132) with ϵ = −1. We could also treat the introduction of ϵ in
Equation (132) as a technical step for a derivation of solutions, which subsequently are to
be continued analytically to ϵ = 1. There is no continuous transition between ϵ = −1 and
ϵ = 1.
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The solution of Equation (132) is [68] (true for t + γ > 0 as well as for t + γ < 0)

u = C1|t + γ|−1−µ + C2|t + γ|−1+µ, (135)

where
µ =

√
1 − ϵb2

0k2. (136)

The conformal time is
T =

∫
dta−1 = b0 ln(t + γ).

Hence, the classical solution in conformal time

u = C1 exp(−b−1
0 T(µ + 1)) + C2 exp(−b−1

0 T(−µ + 1))

for large momenta (with ϵ = 1) µ ≃ ikb0 looks like a free wave (with a decaying amplitude).
We choose C1 = 0. Then,

iΓ = −|t|3u−1∂tu = −t2(µ − 1) < 0.

Hence, ψ
g
t (40) is square integrable.

The solution of the stochastic Equation (80) for the model (134) is

Φs = ut−su−1
t Φ +

√
h̄ut−sb

3
2
0

∫ s

0
u−1

t−τ(t + γ − τ)−
3
2 dWτ . (137)

We are interested in an explicit calculation of the evolution kernel and correlation functions.
In such calculations, we need to evaluate

Gs,s′(k, k′) = E[(Φs′(k)− < Φs′ > (k))(Φs(k′)− < Φs > (k′))] ≡ Gs,s′(k)δ(k + k′),

where < Φ >≡ E[Φ].

The operator µ =
√

1 + ϵb2
0△ with ϵ = 1 cannot be defined in the infinite dimensional

setting. For this reason, we consider the model with the inverted signature (ϵ = −1)
△ → −△ when µ is a self-adjoint positive operator in L2(dx). When C1 = 0 then, with the
inverted signature, the operator ut−su−1

t = t+γ
t+γ−s (

t+γ−s
t+γ )µ is well-defined as a contractive

semigroup acting upon Φ in Equation (137).
We have (with C1 = 0 and t + γ > 0) the following for Model (134):

Gs,s′(k) = h̄ut−sut−s′
∫ m(s,s′)

0 dτu−2
t−τ(t + γ − τ)−3

= h̄
2µ (t − s + γ)−1+µ(t − s′ + γ)−1+µ(

(t + γ − m(s, s′))−2µ − (t + γ)−2µ
)

,
(138)

where m(s, s′) = min(s, s′).
It can be checked that the rhs of Equation (138) is expressed by a well-defined operator

exp(−rµ) (ϵ = −1), where r ≥ 0.
For equal time in Model (138), we have

Gt =
h̄

2µ γ−2
(

1 − (1 + t
γ )

−2µ
)

(139)

The limit γ = 0 is infinite expressing the degeneracy of the metric at t + γ = 0. The
evolution kernel is defined by Gt in Equation (111). We can express the correlation function
of Equation (138) by the two-point function GE

M of the scalar free field with a mass M using
the formula (ν =

√
k2 + M2)

(2π)−3
∫

dk exp(ikx)(2ν)−1 exp(−sν)
= (2π)−4

∫
dk0dk exp(ikx + ik0s)(k2

0 + k2 + M2)−1 = GE
M(s, x)

(140)
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It can be seen from Equations (138) and (140) that the random field Φs(k) has correlation
function with the same large k behavior (the same short distance behavior) as the quantum
Euclidean free field (after the signature inversion). This holds true for all stochastic fields
defined in this paper. In the construction of polynomial interactions (Sections 11 and 12),
and in the expansion of non-polynomial interactions in powers of the fields [71], we shall
have the same ultraviolet singularity and the same renormalization problem as in the
conventional Fock space approach or in the constructive Euclidean framework. However,
in the standard approach to QFT in four dimensions, we cannot go beyond the perturbative
framework because after a renormalization the Feynman–Kac factor becomes unbounded.
In non-polynomial interactions the superpropagator [71] becomes extremely singluar. This
can change in the stochastic approach (as discussed in Sections 11 and 12), because we can
work with (bounded) Feynman–Kac oscillatory factors (in particular, the superpropagator
becomes an oscillatory hence Lebesgue integrable function).

10. The Radiation Background a2(t) = c−1
0 (t + γ)

In this section, we consider the massless scalar field with α = 1
2 in Equation (132). We

insert γ ≥ 0 for t ≥ 0 and γ ≤ 0 for t ≤ 0, so that when γ ̸= 0, the metric is not degenerate.
The metric (for t + γ > 0) is the solution of the Friedmann equation for radiation with
the energy density ρ = ρ0a−4 and the pressure p = 1

3 ρ. It is usually rejected at t + γ < 0
because the inverted signature has no classical meaning ([72], Section 112), as it violates
the local special relativity principles. The inverted metric can appear as a stationary point
in quantum gravity, defined as an average over the metric tensor. The causal structure in
quantum gravity can disagree with the classical one at the Planck scale.

We are interested in the behavior of the quantum scalar field evolution for the metric
a2(t) = c−1

0 (t + γ) for positive as well as negative time in the limit γ = 0. The Gaussian
solution (40) is determined by a solution of the equation

d2u
dt2 +

3
2
(t + γ)−1 du

dt
+ (t + γ)−1c0k2u = 0 (141)

true for t + γ > 0, as well as for t + γ < 0.
For t + γ < 0 we choose

√−g = −i
√
|g|. With such a choice of the square root, the

diffusion Equation (26) reads

h̄∂tψt =
1
2

∫
dx

(
− h̄2c

3
2
0 |t + γ|− 3

2 δ2

δΦ(x)2

+c−
1
2

0 |t + γ| 1
2 (∇Φ)2 − M2c−

3
2

0 |t + γ| 3
2 Φ2

)
ψt

(142)

The equation for χ is

∂tχt =
∫

dx
(
− h̄

1
2

c
3
2
0 |t + γ|−

3
2

δ2

δΦ(x)2 − u−1∂tuΦ(x)
δ

δΦ(x)

)
χt. (143)

Equations (142) and (143) are well-defined for t + γ < 0, because the generator of the
diffusion has a positively definite second order differential operator.

We could consider the metric glk = δlkc−1
0 |t + γ|, which does not have the second

derivative at t + γ = 0. For this reason, it cannot be a solution of Einstein equations, but
appears as a solution in the effective field theory resulting from the string theory [54]. For
this metric, the Schrödinger Equation (25) reads

∂tχt =
1
2

∫
dx

(
ih̄

1
2

c
3
2
0 |t + γ|−

3
2

δ2

δΦ(x)2 − u−1∂tuΦ(x)
δ

δΦ(x)

)
χt,

where u is the solution of the equation

d2u
dt2 +

3
2
(t + γ)−1 du

dt
+ |t + γ|−1c0k2u = 0. (144)
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In order to obtain a solution of Equation (144), it is useful to change the cosmic time

t into the conformal time T as T = 2c
1
2
0

√
t for t > 0 and T = −2c

1
2
0
√
−t for t < 0 (then

a2(T) ≃ T2 as in [73]). Inserting ũ = Tu into Equation (144), we can see that ũ satisfies the
oscillator equation. Hence, the solution of Equation (144) for t + γ > 0 is a superposition of
plane waves

u = A1T−1 exp(ikT) + A2T−1 exp(−ikT).

It follows that the solution of Equation (144) for positive as well as negative time is

ut = C1|t + γ|− 1
2 cos(2k

√
c0
√
|t + γ|) + C2|t + γ|− 1

2 sin(2k
√

c0
√
|t + γ|) (145)

We obtain a different solution of Equation (141). We express it by real functions (for
t + γ > 0)

ut = C1(t + γ)−
1
2 cos(2k

√
c0
√

t + γ) + C2(t + γ)−
1
2 sin(2k

√
c0
√

t + γ) (146)

If t + γ < 0, then the solution of Equation (141) is

u(−)
t = C1(−t − γ)−

1
2 cosh(2k

√
c0
√
−t − γ) + C2(−t − γ)−

1
2 sinh(2k

√
c0
√
−t − γ) (147)

For t + γ < 0 Equation (141) (with k2 → −△) is an elliptic equation. It does not de-
scribe waves.

The limit γ → 0 of ut exists for all |t| ≥ 0 (see a discussion of continuity in [67,74–76])
only if C1 = 0. Then, the limit t + γ → 0 for positive time, as well as for the negative time,
is equal to u0 = 2C2

√
c0k. The limit t + γ → 0 of ∂tut also exists from both sides

(∂tut)|t=0 = −4
3

C2
√

c0c0k3.

The solution of the stochastic Equation (80) for t ≥ s ≥ 0 is

Φs(Φ) = ut−su−1
t Φ +

√
ih̄ut−sc

3
4
0
∫ s

0 u−1
t−τ |t + γ − τ|− 3

4 dWτ . (148)

For −t ≥ −s ≥ 0 of the (string) metric, a(t) ≃ |t| 1
2 the field Φs determined by Equations (77)

and (84) is

Φs(Φ) = ut−su−1
t Φ +

√
−ih̄ut−sc

3
4
0
∫ −s

0 u−1
t−τ |t + γ + τ|− 3

4 dWτ . (149)

The quantum field theory depends (for a positive time) on the correlation function

Gss′ = E[(Φs(k)− E[Φs](k))(Φs′(k′)− E[Φs′ ](k′))] = δ(k + k′)ih̄c
3
2
0 ut−sut−s′

×
∫ m(s,s′)

0 dτu−2
t−τ |t + γ − τ|− 3

2 ≡ δ(k + k′)Gss′(k).
(150)

where we denote m(s, s′) ≡ min(s, s′) if t ≥ s ≥ 0 and t ≥ s′ ≥ 0. The δ(k + k′) term in
Equation (150) will be omitted in the formulas below.

For a negative time of a2 ≃ t in the model (141)–(143), there is no
√

i in Equation (82),
which is canceled by the

√
i factor in a−

3
2 . Hence, the counterpart of Equation (149) for the

negative time leads to the diffusion process Φs solving the diffusion Equation (143)

Φs(Φ) = u(−)
t−s (u

(−)
t )−1Φ +

√
h̄u(−)

t−s c
3
4
0
∫ −s

0 (u(−)
t−τ)

−1|t + γ + τ|− 3
4 dWτ ,

where, by u(−)
t , we denote the solution (147) of the “wave equation” (141) for the nega-

tive time. The correlation functions of the fields for a negative time are determined by
the formula
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Gss′ = E[(Φs(k)− E[Φs](k))(Φs′(k′)− E[Φs′ ](k′))]

= δ(k + k′)h̄c
3
2
0 u(−)

t−s u(−)
t−s′

×
∫ m(s,s′)

0 dτ(u(−)
t−τ)

−2|t + γ + τ|− 3
2 ≡ δ(k + k′)Gss′(k),

(151)

where, for the negative time m(s, s′) ≡ min(−s,−s′), if −t ≥ −s ≥ 0 and −t ≥ −s′ ≥ 0.
As can be seen from Equation (143), for a negative time, Φs becomes a real diffusion

process and Kt in Equation (111) is a real transition function. The Schrödinger evolution
equation (together with the Feynman–Kac formula) takes the form of an evolution of the
diffusion process. The reason for this is the purely imaginary value of

√−g. If a(t) ≃
|t + γ| 1

2 then the expression for Φs and Gss′ for negative time resembles the ones for the
positive time (for a negative time it is a reflection of the one for a positive time).

We can express the integrals (150) and (151) by elementary functions if C2 = 0, C1 = 0,
C1 = ±C2 and C1 = ±iC2.

If C2 = 0, then we have, for t + γ > 0,

ut = (t + γ)−
1
2 cos(2

√
c0k

√
t + γ). (152)

If C1 = 0, then
ut = (t + γ)−

1
2 sin(2

√
c0k

√
t + γ). (153)

If −t − γ > 0, then

u(−)
t = (−t − γ)−

1
2 cosh(2

√
c0k

√
−t − γ) (154)

and
u(−)

t = (−t − γ)−
1
2 sinh(2

√
c0k

√
−t − γ). (155)

When C1 = ±C2, then

u(−)
t = (−t − γ)−

1
2 exp(±2

√
c0k

√
−t − γ). (156)

For the solution (152), we obtain

Gss′ = ih̄ut−sut−s′c
3
2
0
∫ m(s,s′)

0 dτ|t + γ − τ|− 1
2 (cos(2

√
c0k

√
t + γ − τ))−2

= ih̄ut−sut−s′c0
1
k (tan(2

√
c0k

√
t − m(s, s′) + γ)− tan(2

√
c0k

√
t + γ))

(157)

where
u0 =

1√
γ

cos(2
√

c0k
√

γ). (158)

The limit γ → 0 of ut does not exist at t = 0. Then, the evolution kernel (111) is not defined.
For the solution (153),

Gss′ = ih̄ut−sut−s′c
3
2
0
∫ m(s,s′)

0 dτ|t + γ − τ|− 1
2 (sin(2

√
c0k

√
t + γ − τ))−2

= ih̄ut−sut−s′c0
1
k (cot(2

√
c0k

√
t + γ)− cot(2

√
c0k

√
t − m(s, s′) + γ))

(159)

The limit γ → 0 of u0 in Equation (153) is 2
√

c0k. When t → 0 and γ → 0 then m(s, s′) → 0
and Gss′ → 0 in Equation (159).

For the solution (154), we obtain at t + γ < 0 in Equation (151)

Gss′ = h̄u(−)
t−s u(−)

t−s′c
3
2
0
∫ m(s,s′)

0 dτ|t + γ + τ|− 1
2 (cosh(2

√
c0k

√
−t − γ − τ))−2

= h̄u(−)
t−s u(−)

t−s′c0
1
k (tanh(2

√
c0k

√
−t − m(s, s′)− γ)

− tanh(2
√

c0k
√
−t − γ)).

(160)

u0 has no limit when γ → 0. Hence, the propagator (111) cannot be defined in this limit.
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For u(−)
t of Equation (155), we have

Gss′ = h̄u(−)
t−s u(−)

t−s′c
3
2
0
∫ m(s,s′)

0 dτ|t + γ + τ|− 1
2 (sinh(2

√
c0k

√
−t − γ − τ))−2

= h̄u(−)
t−s u(−)

t−s′c0
1
k (coth(2

√
c0k

√
−t − γ)

− coth(2
√

c0k
√
−t − m(s, s′)− γ))

(161)

The limit γ → 0 of u0 in Equation (161) together with Equation (111) also defines the evolu-
tion kernel in the limit γ → 0. There is an apparent singularity as k → 0 in the correlation
Gss′(k), but this singularity is canceled by the volume element dk in the definition of the
evolution kernel (111).

Gss′ (161) is decaying for a large k as

Gss′ ≃ h̄ 1
2 c0(−t + s − γ)−

1
2 (−t + s′ − γ)−

1
2 k−1(

exp(−4
√

c0k
√
−t − m(s, s′)− γ + 2

√
c0k

√
−t − γ + s

+2
√

c0k
√
−t − γ + s′)

− exp(−4
√

c0k
√
−t − γ + 2

√
c0k

√
−t − γ + s

+2
√

c0k
√
−t − γ + s′)

)
The correlation functions of the field Φs(x) can be expressed (according to Equation (150)
as the Fourier transform of Gss′ . From the large k behavior of (161) and Equation (140), we
can conclude that the short distance behavior of the correlations of Φs(x) is the same as in
the Euclidean free field theory of the scalar field.

The exponential solutions define the correlation functions

Gss′ = h̄u(−)
t−s u(−)

t−s′c
3
2
0
∫ m(s,s′)

0 dτ|t + γ + τ|− 1
2 (exp(−2

√
c0k

√
−t − γ − τ))−2

= h̄u(−)
t−s u(−)

t−s′c0
1
2k (exp(4

√
c0k

√
−t − m(s, s′)− γ)

− exp(4
√

c0k
√
−t − γ))

(162)

for the minus sign in (156) and

Gss′ = ih̄u(−)
t−s u(−)

t−s′c
3
2
0

×
∫ m(s,s′)

0 dτ|t + γ + τ|− 1
2 (exp(2k

√
−t − γ − τ))−2

= ih̄u(−)
t−s u(−)

t−s′c0
1
2k (exp(−4

√
c0k

√
−t − γ)

− exp(−4
√

c0k
√
−t − m(s, s′)− γ))

(163)

for the plus sign. There is no limit γ → 0 of u0.
At the end of this section, let us consider some superpositions of the solutions (152)

and (153) with complex coefficients. So for positive time, let us consider (for a negative
time the solution of the “wave equation” (141) is given by Equation (147))

ut = (t + γ)−
1
2 exp(2i

√
c0k

√
t + γ). (164)

Calculating the field correlations, we obtain

Gss′ =
h̄
2

1√
c0k

1√
t+γ−s

1√
t+γ−s′

exp(2i
√

c0k(
√

t + γ − s +
√

t + γ − s′))(
exp(−4i

√
c0k

√
t + γ − m(s, s′)− exp(−4i

√
c0k

√
t + γ)

) (165)

For Gt in the propagator (111), we have
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Gt = − 1
2γ

√
c0k

(
exp(−4i

√
c0k

√
t + γ) + 4i

√
c0k

√
γ)− 1

)
= − 1

2γ
√

c0k

(
cos(−4

√
c0k

√
t + γ) + 4

√
c0k

√
γ)− 1

−i sin(−4
√

c0k
√

t + γ) + 4
√

c0k
√

γ)
) (166)

Note that ℜGt > 0. Hence, the function defining Kt(Φ, Φ′) in Equation (111) is integrable
(this would not be so if, instead of ut in Equation (164), we have considered u∗

t ).
With a complex ut, the solution ψ

g
t (40) of the Schrödinger equation is not a phase

factor, and it may grow to infinity for a large Φ (this would be so for u∗
t ). Let us calculate

from Equation (69) for ut of Equation (164)

iΓ = a3u−1∂tu = −
√

c0k(t + γ)− i
2

√
t + γ. (167)

Hence, ℜ(iΓ) < 0, showing that ψ
g
t is square integrable for the complex solution (164) for

positive time. The correlation function is

(ψ
g
0 Φ̂t(k)Φ̂(k′)ψ

g
0 ) = γ− 1

2 exp(2i
√

c0k
√

γ)(t + γ)
1
2 exp(−2i

√
c0k

√
t + γ)

×(2
√

c0k(t + γ))−1δ(k + k′)

Then, for a small time,

(ψ
g
0 , Φ(k)Φ(k′)ψ

g
0 )− (ψ

g
0 Φ̂t(k)Φ̂(k′)ψ

g
0 ) ≃

(
t(4

√
c0kγ2)−1 + itγ− 3

2

)
δ(k + k′)

This real and imaginary parts of the diffusive (linear in t) behavior of Φ2 can also be seen
from Equation (165).

For the negative time with the solution

u(−)
t = (−t − γ)−

1
2 exp(2

√
c0k

√
−t − γ) (168)

ψ
g
t is also square integrable, as iΓ = (a2)

3
2 u(−)∂tu(−) < 0. For the solutions (164) and (168) in

the free field theory in the radiation background, we can calculate correlation functions using
the Formula (47), as we did in the case of the de Sitter background in Equations (90) and (91).
However, with these solutions, ut it is difficult to define the interaction via the Feynman–Kac
formula, because we are unable to prove that the Feynman–Kac factor is a bounded function
(as discussed in [36] and in Sections 11 and 12).

We may consider more general superpositions of solutions of wave Equation (141) by
an addition of a piece with negative frequency to Equation (164) for a positive time

ut = (t + γ)−
1
2 (exp(2i

√
c0k

√
t + γ) + (α + iβ) exp(−2i

√
c0k

√
t + γ) (169)

and

u(−)
t = (−t − γ)−

1
2 (exp(2

√
c0k

√
−t − γ) + (α + iβ) exp(−2

√
c0k

√
−t − γ). (170)

for a negative time. We can calculate Γ = a3u−1∂tu for a positive time and
Γ = −i(|a2|) 3

2 (u(−))−1∂tu(−) for a negative time. We did not find square integrable
solutions (ℜ(iΓ) < 0), except for the cases (164) and (168), leading to a square inte-
grable wave function for a quantum scalar field in a radiation background. The limit
γ → 0 of the degenerate metric does not exist from both sides of time except of the
solutions (153) and (155).
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Let us summarize the results of this section. When we choose real solutions u, then,
for a positive time (when −g > 0), Γ is real. Hence, ψ

g
t is a pure phase. Gt (112) (as well as

Gss′ ) is purely imaginary. For negative time, a is purely imaginary a = ic−
1
2

0

√
|t + γ|. Then,

iΓ = c−
3
2

0 |t + γ|
3
2 u(−)

t ∂tu
(−)
t (171)

is a real function. We have checked, using Equation (155), that iΓ is negative (hence ψ
g
t is

square integrable) for the solution (155) when we obtain

ic
3
2
0 |t + γ|−

3
2 Γ =

1
2
|t + γ|−1 −

√
c0k|t + γ|−

1
2 coth(2

√
c0k

√
−t − γ) < 0

For small |t + γ|, we have iΓ ≃ − 5
6 |t + γ| 3

2 c−
1
2

0 k2. There can be a smooth limit γ → 0 of
quantum scalar field theory when the metric passes from positive to negative signature.
This happens if Γ in the WKB state (40) is determined by the classical wave function
solution (153) (for t + γ > 0) and (155) (for t + γ < 0). Gt is purely imaginary for a positive
time, G0 = 0 and Gt becomes a real positively definite function for a negative time. For
the exponential solutions, ℜiΓ is also negative, as discussed at Equation (168). We have
obtained the dynamics of the fields Φs(x) in all cases (152)–(157). However, the limit
γ → 0 of the generate metric exists only for solutions (153) and (155). The solution (153)
(for positive time) and its continuation to (155) (for negative time) are distinguished from
all solutions of the wave equation as the corresponding Gaussian wave function being
the WKB solution for positive time becomes a Gaussian normalizable wave function for
the negative time. This behavior resembles the one in the elementary WKB approach
when the wave function exp( i

h̄

∫
dx

√
2(E − V), before a potential barrier takes the form

exp(− 1
h̄

∫
dx

√
2(V − E) inside the barrier, suggesting a tunneling process for the scalar

field after crossing the classical barrier of an inverted signature.
If a(t) ≃ |t| 1

2 , then the quantum scalar field evolution is unitary, and remains oscilla-
tory, whereas for a2(t) ≃ t, the oscillatory behavior for positive time becomes a diffusion
at negative time as if the system encountered a barrier. In such a case, the evolution fails
to be unitary. If we stopped the evolution at certain space-like surface according to the
Hawking–Penrose singularity theorem [32], then unitarity would be violated as well. If,
in the Lagrangian (22) and in the Hamiltonian (24), we replace

√−g by
√
|g|, then the

resulting time evolution would resemble the one of an upside-down oscillator (it would be
still unitary after an inversion of the signature).

Finally, we note that the correlation functions (157) are infinite if 2k
√

c0
√

t + γ =
(n + 1

2 )π. In Equation (159), we obtain a pole at 2
√

c0
√

t + γk = nπ, where n is a natural
number. So the fields Φs(Φ) are well-defined for small k

√
t + γ. This difficulty already

appears for a quantum mechanical oscillator of frequency k (see Appendix A). It means
that the time evolution on the WKB states should be carefully extended from small values
of time. The problem is connected with caustic singularities in semiclassical expansion [77].

11. Interaction with an Ultraviolet Cutoff

In this section, we discuss the Feynman–Kac formula for states of the WKB form
exp( i

h̄ ΦΓΦ)χ, where Γ is a real bilinear form defined by a real solution of the wave equation.
In models of Section 6, the real solution u (leading to a real Γ) is a real Bessel function or the
mode function in the expansion in spherical functions in Section 5. In [36], we have shown
in quantum mechanics and in QFT in the Minkowski space-time that if the first (WKB) term
on the rhs of Equation (44) is real, then Gss′ is purely imaginary (as it is for the inverted
oscillator). In such a case for trigonometric or exponential interactions, the perturbation
series is absolutely convergent. In this section, we consider the free fields of Sections 3–10
and potentials of the form

V(Φ) = λ
∫

B
dx

√
|g|dµ(α) : exp(iαΦs(x)) :, (172)
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where µ is a complex measure, B ⊂ R3 is a bounded domain, : − : denotes the normal
ordering, α can be real or purely imaginary, and χ is of the form

χ(Φ) =
∫

dν(α0) exp(iα0( f , Φ)) (173)

with f ∈ L2(dx). The exponential model (α imaginary) appears as Starobinski model for
inflation [78] and the trigonometric interaction as the model of natural inflation [79].

We discuss also polynomial interactions of the form

V(Φ) = λ
∫

B
dx

√
|g| : ΦN

s : (x), (174)

where N = 4n and n is a natural number. In the latter case, we consider the Feynman–Kac
solution for the holomorphically extended initial wave function ψ(

√
iΦ) (such states in the

Feynman integral have been discussed first in [34,80]). Extensions of the wave functions (a
complex scaling) are studied in the theory of resonances [81,82]. If in the expanding flat
metric (67), we put the scalar field in a spatial box of length L, then k is discrete k = 2πn

L ,
with n = (n1, n2, n3), where nj are integers. For a small time, the Feynman formula
will be well-defined if we restrict the range of n. First, we consider general formulas
without specifying the number of k modes or Φlm modes (59). Then, we explain why a
restriction to a finite number of modes (or an ultraviolet cutoff) is necessary in the case of
the pseudoRiemannian metric.

The solution of the Schrödinger equation with the potential (172) (positive time, a
bounded region B) reads

ψt(
√

iΦ) = ψ
g
t (
√

iΦ)E
[

exp
(
− λ i

h̄

∫
B dx

∫ t
0 dsa3 exp(iN π

4 )

:
(

ut−su−1
t Φ +

√
h̄ut−s

∫ s
0 (a

3
2 u)−1(t − τ)dWτ

)N
:
)

χ(
√

iΦt(Φ))
] (175)

In Equation (175), a necessary and sufficient condition for the stochastic integral (82) to be
well-defined is that the integral (112) for Gt exists (this is equivalent to Gss′ being finite).
With the processes of Section 10, this requirement can be achieved (because of the caustic
poles [77]) only for a small time if we have a finite number of modes or an ultraviolet
cutoff κ (k < κ), so that tκ is sufficiently small. For a free field, the ultraviolet cutoff can be
introduced by a restriction of states χ in Equation (108) as Fourier transforms to Λ, which
have their support on |k| < κ. Another way is to introduce in the stochastic Equation (80),
and in Equation (175), the ultraviolet regularized Brownian motion Wκ

s → Ws with κ → ∞.
The regularized Brownian motion is defined by the covariance

E[Wκ
s (k)W

κ
t (k

′)] = min(s, t)δ(k + k′)ρκ(k), (176)

where ρ is an ultraviolet cutoff restricting k to k ≤ κ (ρκ(k) → 1 when κ → ∞). If N = 4n,
then the exponential in Equation (175) is bounded by 1. In such a case,

|ψκ
t (
√

iΦ)| ≤ E
[
|ψ(

√
iΦt(Φ))|

]
(177)

The rhs of Equation (177) is finite for a large class of functions (e.g., the ones of Equation (173)).
A renormalization of the polynomial interaction (175) is required if the perturbation expansion
in the coupling constant λ is to be finite.

For the trigonometric interaction (172) an expansion of the exponential in Equation (46)
(inside E[..]) leads to integrals dµ(αj)dν(α0) of functions of the form

λn

n!

∫
ds1 . . . dsndx1 . . . dxnE

[
: exp(iα1Φs1(x1)) : . . . . : exp(iαnΦsn(xn)) :

× exp(iα0
∫

dx f (x)Φt(x))
]
.

(178)
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The expectation value (178) is (j ̸= r because of the normal ordering)

exp
(
− 1

2 ∑j ̸=r αjαr
∫

dk exp(ik(xj − xr))Gsjsr (k)
)

(179)

times functions depending on the initial value Φ

exp
(

i ∑
j

αj(ut−sj u
−1
t Φ)(xj) + iα0

∫
dx(u0u−1

t Φ)(x) f (x)
)

(180)

Most explicitly, the problem with the interaction in the Feynman–Kac Formula (46) appears in
the model of Section 10, where Gss′ has been calculated exactly. For a finite number of modes
and small sj < t, the covariance Gsj,sr(k) is well-defined (as seen in Equations (157) and (180))
if the modes satisfy 2k

√
c0
√

t + γ < π
2 . The Formulas (175) and (178) do not extend to

arbitrary time and arbitrarily large k, because the Formula (157) gives an infinite Gss′(k) if
2k
√

c0
√

t + γ = (n + 1
2 )π (a pole at this value of k). In Equation (159), we obtain a similar

pole at 2
√

c0
√

t + γk = nπ, where n is a natural number. However, the Lebesgue integral
over sj and αj in Equation (178) exists for a finite number of modes if Gt is purely imaginary,
even if k is large so that the trigonometric functions have poles. This is a consequence of the
Lebesgue theorem saying that the Lebesgue integral of a bounded function with singularities
on a set of Lebesgue measure zero exists. We may hope that, after an integration over sj and
αj, we can go to the limit of an infinite number of modes.

In de Sitter space in the massless case (M = 0), we can obtain real solutions Jν and Yν

of the wave equation. With a finite number of modes for a small time, we can define the
interaction (172) in the Feynman–Kac formula in de Sitter space-time. The expression (179)
will again be a pure phase factor (bounded by 1). We are unable to calculate Gss′ explicitly
in this case. However, we expect that an integral of oscillating functions defining Gss′ will
again show caustic singularities. Such caustic poles appear already in the evolution kernel
(the Mehler formula for an oscillator) of free field theory. For a free field, even though
the Mehler kernel (see Appendix A) has the caustic singularities at t = π

ω (n + 1
2 ), the

calculation of expectation values in the ground state gives correlation functions, which have
an extension to an arbitrary time (this may be a consequence of the fact that the ground
state is time-independent). We do not know whether such an extension of correlation
functions is possible in the models of Sections 8–10. In Sections 6 and 8, we have discussed
complex u, leading to an integrable |ψt|2. Such a wave function u defines the free quantum
field in de Sitter space-time and in the universe expanding as |t|α. The correlation functions
in such states show no caustic poles. In particular, we can construct de Sitter invariant
correlation functions taking the Hankel function Hν as the solution of the wave Equation
(see Equation (90)).

In the next section, we show that the inversion of the signature which removes the caus-
tics allows to define the Feynman integral without the ultraviolet cutoff (or the restriction
on the number of modes).

12. Inverted Metric without an Ultraviolet Cutoff

In [36], we have discussed the models (172)–(174) (see Appendixes C and E in this
paper) in the Minkowski space-time. We have obtained a convergent perturbation series by
an inversion of the signature of (∇Φ)2 in the Lagrangian (3) (but in contradistinction to
Euclidean quantum field theory the time remains real). In the models of Sections 8–10, the
inversion of the signature means k2 → −k2 in Equation (68) or k → ik.

In Section 11, we have shown that if Γ is real, then we have a well-defined Feynman
formula for a finite number of modes (or an ultraviolet cutoff) and a small time t. In
this section, we discuss the Feynman integral for fields on a manifold with an inverted
(Euclidean) metric in the interpretation (27). Then, we have the Schrödinger equation for
t > 0, as well as t < 0 and Gss′ which is purely imaginary and without the caustic poles,
hence the model similar to that discussed in [36]. We obtain such a Feynman integral



Entropy 2024, 26, 329 35 of 49

if, in the integral over metrics (with the interpretation of
√−g as

√
|g| for an inverted

metric), there appear stationary points (as solutions of Einstein equations) with an inverted
signature. The stationary point may appear as the four-sphere (in addition to the de Sitter
space of Section 6), as the metric a2 ≃ −t2 in the coasting cosmology of Section 9, and in
the background a2 ≃ t of Section 10, if the Feynman integral is considered for negative
time. With the inverted signature, there are no caustics in Gss′ . If the term

√−g in the
Feynman integral (or in the Hamiltonian (24)) is replaced by

√
|g| (or if the inversion of

signature is considered as a technical tool on an intermediate stage of the construction
of quantum fields), then Gss′ will be purely imaginary. In such a case, we can apply the
Feynman formula of Section 11 to trigonometric and Φ4n interactions with an arbitrarily
large t and without an ultraviolet cutoff (owing to the bound (177)). The ultraviolet limit
exists, although the terms in the perturbation expansion (in λ in Equation (175) and in α in
Equation (172)) are divergent. Note that the Formula (175) is well-defined for an arbitrarily
large time with an ultraviolet cutoff, ensuring that the functions in the exponential are
bounded. Because of the bound (177), we may apply the Lebesgue dominated convergence
theorem to claim that the limit κ → ∞ with ρκ(k) → 1 exists. The interaction Φ4 deserves
a detailed studies because of its role in the standard model. A renormalization of the
interaction is necessary if the perturbation series in λ is to be finite. The counterterms
for Φ4 are the same as in the conventional perturbation expansion because the ultraviolet
singularity of the stochastic field is the same as the one of the quantum field.

We discuss the removal of regularization in more detail in the case of the trigonometric
interactions (172). Using the representation (172) and (173), we calculate the expectation
value over the Brownian motion Wκ

s of the n-th order term in the perturbation expansion.
We obtain a perturbation series of the form

λn 1
n!

∫
∏r dsrdxr A(Φ) exp

(
− ∑j ̸=r

1
2 αjαrGκ

sj ,sr (xj, xr)
)

, (181)

where A(Φ) is a bounded function depending on the initial value Φ of the field Φs. The
exponential factor in Equation (181) is a pure phase as the covariance Gκ

s,s′ is purely imagi-
nary. As a consequence, the perturbation series is absolutely convergent if

∫
d|µ| < ∞. In

the model of Section 10 with the interpretation (27) of the Hamiltonian for the negative
time (when a2 < 0), there will be no caustics poles so that Gsj ,sr (xj, xr) (after the removal
of the ultraviolet cutoff) is well-defined outside the coinciding points, which have the
zero Lebesgue measure ds1dx1 . . . . . . dsndxn. As a consequence of the Lebesgue theorem,
the integral (181) exists also after the removal of the ultraviolet cutoff. In the model of
Section 9 with ϵ = −1, the function Gss′(k) is non-singular as a function of k. The Fourier
transform of Gss′(k) in Equation (179) is singular when (sj, xj) → (sr, xr), because Gss′(k)
does not fall fast enough for large k. So, Gss′(xj − xr) is divergent at the coinciding points
(s, xj) → (s′, xr). This is the reason (as discussed at the end of Section 2) that, in the
Euclidean space, the non-polynomial interactions cannot be defined. In the Minkowski
space-time, the two-point function is a complex distribution singular on the light-cone, so
that the Formula (181) would be untractable [71]. However, with the real time and the in-
verted metric, the exponential in Equation (181) is a pure phase bounded by 1. The integral
over the singular points can be treated by means of the Lebesgue lemma. According to the
Lebesgue lemma, an integral of a bounded function with singularities on a set of measure
zero exists. When we consider an ultraviolet regularized model (as in Section 11) then,
applying the Lebesgue dominated convergence theorem, we can conclude that, in the limit
κ → ∞, the expression (178) is integrable and the integrals are bounded by |λ|n|B|ntn 1

n! ,
because the exponential (181) is a pure phase.

An analogous formula can be derived in the (Euclidean) de Sitter space in the met-
ric (56) and the interpretation (27) of the Hamiltonian. In such a case, the process is
generated by the Hamiltonian (61). Then, instead of the Formula (181), we obtain (where
ωj are coordinates on s3)
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∫
∏j dsjdωj exp

(
− 1

2 ∑j ̸=r αjαr
∫

∑lm Ylm(ωr)Ylm(ωj)
∗Glm

sjsr

)
(182)

Glm
sjsr is purely imaginary and without caustic singularities. The infinite sum in the expo-

nential (182) is convergent to a purely imaginary function singular at the coinciding points
(sj, ωj) and (sr, ωr). It has the same singularity as the Green function on S4. Hence, simi-
larly as in Equation (181), we can prove the existence of the integrals and their non-triviality
using Lebesgue lemma on dominated convergence.

In the metric (57), the analytic continuation of the metric to the Euclidean (58) leads
to a field theory on AdS. As discussed at the end of Section 5 by means of the analytic
continuation k → ik, we obtain a real solution u(k) of the “wave equation” on the Euclidean
anti-de Sitter space. With the real u, the corresponding stochastic field has the Gss′ correla-
tion function which is purely imaginary. In such a case, the expression (179) is integrable,
defining the Euclidean quantum field theory on AdS.

13. Summary

We have developed a functional Schrödinger description of the time evolution of
the scalar field in an external metric, which is a solution of Einstein equations. We do
not restrict ourselves to the solutions with the Lorentzian signature, but also discuss
solutions of Einstein equations with an Euclidean signature. Such a metric can be relevant
when averaging the scalar field theory over all metrics in quantum gravity. In such
a case, all saddle points contributing to the path integral over the scalar field should
be taken into account. We work in the functional formulation of quantum field theory.
Solutions of the Schrödinger equation define a random field whose correlation functions
determine correlation functions of the quantum field. We consider Gaussian solutions
of the Schrödinger equation for free field theory. The interaction is introduced by the
Feynman–Kac formula. A proper choice of the Gaussian solution facilitates a definition
of an integrable Feynman–Kac factor. We have shown that Gaussian solutions of the
Schrödinger equation for a free field theory are determined by the classical solutions of the
wave equation in an external metric. We studied in detail fields on de Sitter space-time
and on the flat expanding space-time. The stochastic field correlation functions in a flat
expanding space-time can be expressed by well-known cylinder functions, whereas the
ones in de Sitter space require infinite series of Legendre functions. We have found a
particular solution in a radiation background, which is of the WKB form (a Gaussian phase
factor) for a positive time and a Gaussian square integrable function for a negative time
(one may consider it as composed from two solutions for positive and negative time). This
is an analog of the Gibbons–Hartle–Hawking solution in de Sitter space-time, which is
glued from a solution for a positive time and another one for an imaginary time (positive
and negative signature). We construct a general solution of the Schrödinger equation as
a perturbation of the Gaussian (WKB) solution. We show how to calculate correlation
functions of quantum fields in terms of correlation functions of stochastic fields. Then, the
Feynman–Kac formula can be applied to construct solutions of the Schrödinger equation
with an interaction. We discuss polynomial and trigonometric interactions. It is shown
that the WKB solutions determined by real solutions of the classical wave equation (with
an inverted signature) are distinguished from the point-of-view of the Feynman–Kac
formula. The WKB solutions define stochastic fields, which allow for the definition of
the Feynman–Kac factor as a bounded function. We briefly discussed the Φ4 interaction
with a positive and negative coupling, important for the standard model and models of
inflation. We pointed out that, with an inverted signature, an analytic continuation and
the standard renormalization, the Feynman–Kac factor can be bounded and defined with
finite renormalized perturbation series. This model requires further investigation. We
studied, in detail, the trigonometric interaction showing that the perturbation series of the
Schrödinger wave function evolution can be expressed by pure phase factors. The phase
factors are well-defined for a small time and a finite number of modes in the Lorentzian
metric, and for an arbitrary time with an infinite number of modes (no ultraviolet cutoff)
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in the case of the inverted metric with the Hamiltonian (27). Then, a further Lebesgue
integration of these phase factors, which are singular on a set of zero Lebesgue measure,
gives a finite result. This is in contradistinction to the standard Minkowski QFT of the
trigonometric interaction, when the vacuum correlation functions are exponentials of
unbounded complex functions (or distributions) which have infinite Lebesgue integrals. In
this paper, a functional Schrödinger evolution has been derived for a scalar field. We shall
extend this formulation to gauge fields when random self-duality equations will play the
role of stochastic equations for the scalar field.
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Appendix A. Expansion around a Time-Dependent Solution in Euclidean and
Minkowski QFT

We consider a solution of Equation (17)

ut = cosh(νt), (A1)

where ν =
√
−△+ M2.

Then, Γt = ν tanh(νt). The stochastic Equation (9) reads

dΦs = −ν tanh(ν(t − s))Φsds +
√

h̄dWs. (A2)

With ut of Equation (A1),the solution of Equation (A2) is

Φs = cosh(ν(t − s))(cosh(νt))−1Φ

+
√

h̄ cosh(ν(t − s))
∫ s

0

(
cosh(ν(t − τ))

)−1
dWτ .

(A3)

We can express the solution of Equation (6) in the form

χt(Φ) = E[χ(Φt(Φ))] =
∫

dΦ′Kt(Φ, Φ′)χ(Φ′),

where
Kt(Φ, Φ′) = E[δ(Φ′ − Φt(Φ))] =

∫
dΩE[exp(i(Ω, Φ′ − Φt(Φ))]. (A4)

We calculate the expectation value (A4). For this purpose, we need

E
[( ∫ t

0

(
Ω,

(
cosh(ν(t − τ))

)−1
dWτ

)2]
=

∫ t
0

(
Ω,

(
cosh(ν(t − τ))

)−2
Ω
)

dτ =
(

Ω, 1
ν tanh(νt)Ω

)
In order to calculate the evolution kernel, we need to perform the Ω integral in Equation (A4)
with the result (the Mehler formula for an imaginary time)

Kt(Φ, Φ′) = det
(

ν coth(νt)
) 1

2
exp

(
− 1

2h̄

(
Φ′ − (cosh(νt))−1Φ

)
×ν coth(νt)

(
Φ′ − (cosh(νt)−1Φ

)) (A5)

The formula is well-defined in an infinite number of dimensions. It also follows from the
Mehler formula [83].

We can perform the whole procedure in the real-time t → it. Then, the stochastic
Equation (44) reads

dΦs = ν tan(ν(t − s))Φsds +
√

ih̄dWs (A6)
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The formula for the evolution kernel (A5) takes the form

Kt(Φ, Φ′) = det
(

iν cot(νt)
) 1

2

exp
(

i
2h̄

(
Φ′ − (cos(νt))−1Φ

)
ν cot(νt)

(
Φ′ − (cos(νt))−1Φ

)) (A7)

In Equation (A7), we encounter the difficulty that cot(νt)−1 is infinite when ν(k)t = (n + 1
2)π.

Equation (A7) can make sense for a small time if we introduce an ultraviolet cutoff restricting
the range of k. Let us note that the ultraviolet cutoff is unnecessary if we flip the signature
(but the time remains real)

∇2 → −∇2

together with M2 → −µ2. In such a case in Equation (A7), ν → iν, cos(ωt) → cosh(νt)
and ν cot(νt) → ν coth(νt), where ν =

√
−△+ µ2. Now, the stochastic Equation (A6) (real

time but an inverted signature) reads

dΦs = ν tanh(ν(t − s))Φsds +
√

ih̄dWs (A8)

with the solution

Φs = cosh((t − s)ν)(cosh(tν))−1Φ +
√

ih̄ cosh((t − s)ν)
∫ s

0

(
cosh((t − τ)ν)

)−1
dWτ

We calculate Gss′ with the result

Gss′ = ih̄ cosh((t − s)ν) cosh((t − s′)ν)ν−1(tanh(ν(t − m(s, s′))− tanh(νt))

The propagator resulting from Equation (48) (this is the propagator for an upside-down
oscillator discussed in more detail in Appendixes C and D) is

Kt(Φ, Φ′) = det
(

iν coth(νt)
) 1

2
exp

(
i

2h̄

(
Φ′ − (cosh(νt))−1Φ

)
ν coth(νt)(

Φ′ − (cosh(νt))−1Φ
)) (A9)

This model could be applied for a construction of a time evolution of trigonometric and Φ4n

interactions, as in Section 12 and [36] (where in [36] we used ψg = exp( i
2h̄ ΦνΦ) instead of

ψg = exp( i
2h̄ Φν tanh(νt)Φ) considered in this appendix).

Appendix B. Field Correlations and the Propagator at Large Momenta

We consider the wave equation

d2u
dt2 + 3H

du
dt

+ a−2k2u + M2u = 0 (A10)

at large k. Let u = a−
3
2 v, then v satisfies the equation

d2v
dt2 +

dS
dt

v = 0 (A11)

where

S(s) =
∫ s

0
dt

√
M2 + a−2k2 − 3

4
a−2(

da
dt

)2 − 3
2

a−1 d2

dt2 a (A12)

The field correlation function

Gs,s′(k, k′) = E[(Φs′(k)− < Φs′ > (k))(Φs(k′)− < Φs > (k′))]
≡ Gs,s′(k)δ(k + k′)
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is
Gs,s′(k) = ih̄ut−sut−s′

∫ m

0
dτu−2

t−τa−3
t−τdτ, (A13)

where m = min(s, s′).
In the large k (the WKB method), we obtain the approximate solution of Equation (A11)

v(t) = (
dS(t)

dt
)−

1
2 exp(±iS(t)). (A14)

We can form the even solution

v(t) = (
dS(t)

dt
)−

1
2 cos(S(t)). (A15)

In the odd solution, we replace cos by sin.
With the inverted metric (and M2 → −µ2)

SE(s) =
∫ s

0
dt

√
µ2 + a−2k2 +

3
4

a−2(
da
dt

)2 +
3
2

a−1 d2

dt2 a (A16)

Then, the even solution is

vE(t) = (
dSE(t)

dt
)−

1
2 cosh(SE(t)) (A17)

and the exponentially growing solution

vE(t) = (
dSE(t)

dt
)−

1
2 exp(SE(t)) (A18)

With u = a−
3
2 v, we can calculate Gs,s′(k) from Equation (A13) for the even solution, for

the Euclidean even solution, and for the Euclidean exponentially growing solutions. The
results are expressed by Equations (105)–(107), where we skip the indices lm. So for the
Euclidean exponentially growing solution, we obtain (uE = a−

3
2 vE)

Gs,s′ = h̄uE(τ − s)uE(τ − s′)(exp(−2SE(τ − m(s, s′))− exp(−2SE(τ)) (A19)

For a large k, the correlation Gs,s′ behaves as A(s, s′)k−1 exp(−B(s, s′)k) with certain func-
tions A and B. Hence, it has the same short distance behavior as the two-point function of
the Euclidean free scalar field (see Equation (140)).

Appendix C. The Oscillator with an Inverted Signature in Quantum Mechanics

For the convenience of the reader, we briefly discuss the results of [36] in this appendix
and Appendix E, which constitute simplified version of the models considered in this paper.
We consider the Schrödinger equation in quantum mechanics

ih̄∂tψt = (− h̄2

2
∇2

x −
ν2x2

2
+ Ṽ(x))ψt ≡ Ĥ0 + Ṽψt. (A20)

We write the solution of the Schrödinger Equation (A20) in the form

ψt(x) = ψ
g
t χ = exp(−ν

2
t) exp(i

νx2

2h̄
)χt(x). (A21)

We express the solution by the Brownian motion.
For the wave function ψ

g
t = exp(− ν

2 t) exp( iν
h̄ x2), the stochastic Equation (44) reads

dqs = −νqds +
√

ih̄dws. (A22)
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We assume that the initial wave function χ and the potential Ṽ are holomorphic
functions. Then, the solution of Equation (A20) is given by the Feynman–Kac formula

χt(x) = E
[

exp
(
− i

h̄

∫ t

t0

dsṼ(qs(x))
)

χ(qt(x))
]
, (A23)

here, qs(x) is the solution of the Langevin Equation (A22) with the initial condition qt0(x) = x.
The solution (A23) has been discussed earlier in [17,19–21,34]. It is a real-time version of
the Feynman–Kac formula [5,38].

We define the evolution kernel (for Ṽ = 0) as

exp(− νt
2 + iνx2

2 )E[χ(qt(x))] =
∫

K(t; x, y) exp( iνy2

2 )χ(y)dy = (Utψ)(x) (A24)

leading to the result (the Mehler formula for the evolution kernel of an oscillator with
ω → iν) [83])

K(t; x, y) = exp(tĤ0)(x, y) = (2πh̄iν−1 sinh(νt))−
1
2

exp
(

iν
2h̄ sinh(νt)

(
(x2 + y2) cosh(νt)− 2xy

))
.

(A25)

It is related to the kernel (A9) through a similarity transformation by means of the WKB
factor exp( i

2h̄ xνx).
We consider potentials of the form of the Fourier transforms of a complex measure [18,84]

Ṽ(x) = g
∫

dµ(a) exp(iax), (A26)

and wave functions of the same form

ψ(x) =
∫

dρ(a0) exp(ia0x), (A27)

where a ∈ R.
We prove that the solution of Equation (A20) can be expressed as a convergent pertur-

bation series if
∫

d|µ| < ∞ and
∫

d|ρ| < ∞

χt(x) = E
[

∑n
1
n!

(
− i

h̄

∫ t
t0

Ṽ(qs)ds
)n

χ0(qt(x))
]
, (A28)

We show that the perturbation series (A28) in powers of Ṽ is absolutely convergent. With
the Fourier representation (A26), we can see that the N-th order term is of the form (a
simpler version of Equation (181))∫

∏r dµ(ar) exp(∑j,k f (aj, ak))

exp
(
− 1

2 ih̄ ∑j,k ajak
∫ min(sj ,sk)

0 exp(−ν(sj + sk − 2s))ds
)

,
(A29)

where
f (aj, ak) = iαajx exp(−νsj) + iαakx exp(−νsk). (A30)

It is clear that absolute values of the terms (A29) integrated over s are bounded by 1, leading
to a convergent perturbation expansion in which each term (A28) is bounded by 1

n! t
nCn

with a certain positive constant C.

Appendix D. QFT in a Formal h̄ Expansion

We calculate the generating functional in a formal expansion in h̄ (up to the O(
√

h̄)
terms) for the Lagrangian (22) with an inverted signature of the spatial metric in the
Minkowski space-time, and an inverted sign of the mass square M2 → −µ2

Z[J] =
∫

dϕ exp( i
h̄

∫
dx(L+ Jϕ)) = exp

(
i
h̄

∫
dx(L(ϕc) + Jϕc)

)
det

(
i(−∂2

t −∇2 + µ2 − Ṽ
′′
(ϕc))

)− 1
2
,

(A31)



Entropy 2024, 26, 329 41 of 49

where
L =

1
2
((∂tϕ)

2 + (∇ϕ)2 + µ2ϕ2)− Ṽ(ϕ)

and ϕc(t, x) ≡ ϕc
t (x) is the solution of the equation

(−∂2
t −∇2 + µ2)ϕc − Ṽ′(ϕc) = −J. (A32)

For the propagator, we have the expression

K(t; ϕ, ϕ′) =
∫

ϕ0=ϕ,ϕt=ϕ′ dϕ exp( i
h̄

∫
dxL) = exp

(
i
h̄

∫
dxL(ϕc)

)
×det

(
i(−∂2

t −∇2 + µ2 − Ṽ′′(ϕc))
)− 1

2
,

(A33)

where
(−∂2

t −∇2 + µ2)ϕc − Ṽ′(ϕc) = 0. (A34)

Equation (A34) is solved with the boundary conditions ϕc
0 = ϕ, ϕc

t = ϕ′. Equations (A31)
and (A33) have a form similar to the ones in Euclidean field theory, but the potential enters
with the opposite sign.

For Ṽ = 0, we can obtain explicit formulae from Equations (A31)–(A34)

Z[J] = exp(− 1
2h̄

JGJ), (A35)

where
G(t, x; t′, x′) = i

(
exp(−ν|t − t′|)(2ν)−1

)
(x, x′) ≡ iGE(t, x; t′, x′) (A36)

where GE is the two-point function for the Euclidean free field (with ν =
√
−△+ µ2).

In the expanding flat metric with no potential, the formula for the evolution ker-
nel reads

K(t; ϕ, ϕ′) =
∫

ϕ0=ϕ,ϕt=ϕ′ dϕ exp( i
h̄

∫
dx

√−gL) = exp
(

i
h̄

∫
dx

√−gL(ϕc)
)

×det
(

i(−∂2
t − a−2∇2 − 3a−1∂ta∂t + µ2)

)− 1
2
,

(A37)

where
(−∂2

t −∇2 − 3a−1∂ta∂t + µ2)ϕc = 0 (A38)

is solved with the boundary conditions ϕc
0 = ϕ, ϕc

t = ϕ′. We would obtain the form of the
kernel (111) if we could solve the boundary problem (A38) explicitly. The determinant (for

a given a(t)) depends only on time. Then, exp
(

i
h̄

∫
dxL(ϕc)

)
gives the quadratic form in

the exponential of Equation (111). This way of calculating the evolution kernel is discussed
in [62] (without an inversion of the metric).

Appendix E. Feynman Integral in QFT of Trigonometric Interactions

An extension of Equations (A20)–(A22) to QFT takes the form (after a subtraction of
the infinite vacuum energy)

ψt(ϕ) = exp(
i

2h̄
ϕνϕ)E[χ(ϕt(ϕ))] (A39)

where

ϕt(t0, ϕ) = exp(−ν(t − t0))ϕ +
√

ih̄
∫ t

t0

exp(−ν(t − s))dWs, (A40)

where ν =
√
−△+ µ2.
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From Equation (A40), we obtain the correlation function in field theory as

E[ϕt(ϕ, y)ϕs(ϕ, x)]
= (exp(−(t − t0)ν)ϕ)(y)(exp(−(s − t0)ν)ϕ)(x)

+
(

1
2ν exp(−ν(t + s − 2t0))

)
(x, y) + G(t, y; s, x)

(A41)

with
G(t, y; s, x) = i(−∂2

0 −△+ µ2)−1(t, y; s, x)

= i
2

(
ν−1 exp(−ν|t − s|)

)
(x, y) = iGE(t, y; s, x),

(A42)

where GE is the two-point function of Euclidean free quantum field. The Feynman–Kac
formula reads

ψt(ϕ) = exp( i
2h̄ ϕνϕ)

E
[

exp
(
− i

h̄

∫ t
t0

: Ṽ(ϕs(ϕ, x)) : dxds
)

χ(ϕt(ϕ))
]
.

(A43)

For the exponential interaction (172), the n-th order term has the form∫
Ω dx1 . . . . . . dxnds1 . . . dsndµ(a1) . . . dµ(an)∏j ̸=k

exp
(
− 1

2 ih̄ajak
∫ min(sj ,sk)

t0(
exp(−(sj + sk))ν) exp(2τν)

)
(xj, xk)dτ

)
.

(A44)

The absolute value of the integrand (A44) is 1, as in quantum mechanics in Appendix C
(Equation (A29)) and in the models with an inversion of the metric in Section 12 (Equation (181)).
The formulas of this appendix exhibit a simpler and more explicit version of the discussion of
Sections 11 and 12.

Appendix F. De Sitter Space in the Cosmic Time

We obtain for the metric (51) the Hamiltonian (24)

H = 1
2 ∑lm

(
( 1

H cosh(Ht))−3Π2
lm + 1

H cosh(Ht)l(l + 2)Φ2
lm + M2( 1

H cosh(Ht))3Φ2
lm

)
(A45)

defining for t ≥ 0 the Schrödinger Equation (25). The Hamiltonian for the Euclidean metric
(54) in the interpretation (27) is (we change M2 → −µ2)

H = 1
2 ∑lm

(
( 1

H cos(Ht))−3Π2
lm − 1

H cos(Ht)l(l + 2)Φ2
lm − µ2( 1

H cos(Ht))3Φ2
lm

)
(A46)

In the interpretation (26), when
√−g is imaginary, then we have the diffusion equation

h̄∂tψ = HEψ with

HE = 1
2 ∑lm

(
( 1

H cos(Ht))−3Π2
lm + 1

H cos(Ht)l(l + 2)Φ2
lm + µ2( 1

H cos(Ht))3Φ2
lm

)
(A47)

The operator HE is positive. Hence, the diffusion equation should be considered for the
negative time.

We expand the solution of the wave equation in spherical harmonics as in Section 5.
Then, u satisfies the equation

∂2
t ulm + 3H tanh(Ht)∂tulm + M2ulm + l(l + 2)(

1
H

cosh(Ht))−2ulm = 0 (A48)

and, in the Euclidean case (54),

∂2
t ulm − 3H tan(Ht)∂tulm − µ2ulm − l(l + 2)(

1
H

cos(Ht))−2ulm = 0 (A49)
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The stochastic equation for the fields is

dΦlm(s) = −u−1
lm ∂tulm(t − s)Φlm(s)ds +

√
ih̄(

1
H

cos(H(t − s)))−
3
2 dwlm(s) (A50)

and the one for the diffusion (26) is

dΦE
lm(s) = −(uE

lm)
−1∂tuE

lm(t − s)ΦE
lm(s)ds +

√
h̄(

1
H

cosh(H(t − s)))−
3
2 dwlm(s) (A51)

The two-dimensional de Sitter model is soluble in terms of elementary functions, by means
of the methods developed in this paper (for the standard approach, see [60,61]). There
are minor differences in comparison to Equations (A45)–(A47) resulting from the fact that√−g = ( 1

H cosh(Ht))3 → 1
H cosh(Ht), because the three spatial dimensions are replaced

by one dimension. So, Equations (A48) and (A49) are changed into

∂2
t un + H tanh(Ht)∂tun + M2un + n2(

1
H

cosh(Ht))−2un = 0 (A52)

and, in the Euclidean case,

∂2
t un − H tan(Ht)∂tun − µ2un − n2(

1
H

cos(Ht))−2un = 0 (A53)

where n is a natural number. n is replacing l(l + 2) as an eigenvalue of the Laplacian on S1

(instead of the one on S3). If we introduce the variable

y = tanh(Ht)

then Equation (A52) in the massless case reads

(y2 − 1)∂2
yu + y∂yu − n2u = 0 (A54)

For Equation (A53), we set
y = tan(Ht)

Then, Equation (A53) is
(y2 + 1)∂2

yu + y∂yu − n2u = 0 (A55)

The solution of Equation (A54) for de Sitter is the Tchebyshev polynomial Pn

un = zn + z−n = Pn(y) (A56)

where
z = y + i

√
1 − y2 (A57)

Then, Gss′ can be expressed by elementary functions as

Gss′ = ih̄u(t − s)u(t − s′)
∫ m(s,s′)

0

dy
y

P−2
n (A58)

The solution for the sphere (A55) for n = 0 is ln z, where

z = y +
√

1 + y2 (A59)

For n > 0, we obtain a polynomial in y

un = zn + (−1)nz−n = P̃n(y) (A60)
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The diffusion resulting from the imaginary value of
√−g has the correlation

Gss′ = h̄u(t − s)u(t − s′)
∫ m(s,s′)

0

dy
y

P̃−2
n (A61)

In the interpretation of the Hamiltonian with
√−g →

√
|g|, we would replace h̄ → ih̄.

We solve the homogenous model with a(t) = exp(Ht) of Equation (57). The wave
equation reads

∂2
t u + H∂tu + k2 exp(−2Ht)u = 0 (A62)

The solution, which gives a negative iΓ, is

u(t) = exp(−i
k
H

exp(−Ht)) (A63)

Then,

Gss′ =
h̄
2k

u(t − s)u(t − s′)
(

exp
(

2i
k
H

exp(−H(t − m(s, s′))
)
− exp

(
2i

k
H

exp(−Ht)
))

(A64)

and

Gt =
h̄
2k

(
1 − cos

(
2

k
H
(exp(−Ht)− 1)

)
− i sin

(
2

k
H
(exp(−Ht)− 1)

))
(A65)

So that ℜGt > 0, proving that the propagator (111), defines an integrable function.
The inverted metric (58) describes the Euclidean version of the AdS field (the scalar

free field on the Poincare upper half plane). The solution is

uE = exp(− k
H

exp(−Ht)) (A66)

Now,

Gss′ =
h̄
2k

uE(t − s)uE(t − s′)
(

exp
(

2
k
H

exp(−H(t − m(s, s′))
)
− exp(2

k
H

exp(−Ht))
)

(A67)

and

Gt =
h̄
2k

(
1 − exp

(
2

k
H
(exp(−Ht)− 1)

))
> 0 (A68)

In summary, as follows from Equations (A58), (A61) and (A67), we can express the time
evolution propagator of Section 7 in the two-dimensional massless de Sitter model by ele-
mentary functions. Then, with the trigonometric interaction of Section 12 (Equation (181)),
we obtain a solution of the Schrödinger equation in the form of a convergent series of
elementary functions.

Appendix G. Scalar Field in d = 5 Dimension

We may ask the question of whether the signature inversion described in Section 10 on
the background of radiation (w = 1

3 ) in four dimensions can happen in other backgrounds.
To discuss this question, we consider the Friedmann equation in d dimensional space-time.
We assume p = wρ (where ρ is the energy density and p is the pressure). Then, from the
energy-momentum conservation,

ρ = ρ0a−(d−1)(1+w) (A69)

As a consequence, the Friedmann equation in a flat expanding universe reads [85]

(
da
dt

)2 = Ca−(d−1)(1+w)+2, (A70)
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where C is a positive constant. If we insert a2 = t in this equation, then we obtain the
condition 4 = (1 + w)(d − 1). Hence, for d > 5, the index w in the equation of state must
be negative. For a radiation background from the condition Tµ

µ = 0, we obtain w = 1
d−1 .

Hence, the condition a2 = t for radiation is satisfied only in four dimensions. The signature
would change when time is changing sign if a2 = t2n+1, where n is a natural number. Then,
Equation (A70) can be satisfied for a particular w > 0, but in the interval −1 ≤ w < 0. There
remains an interesting case of d = 5 and w = 0 (dust) when a2 = t. In five dimensions,
g does not change its sign when t becomes negative. In such a case, we have a unitary
evolution for positive as well as for a negative time with an inverted metric. The equation
for χ takes the form

∂tχt =
1
2

∫
dx

(
ih̄

1
2

c2
0(t + γ)−2 δ2

δΦ(x)2 − u−1∂tuΦ(x)
δ

δΦ(x)

)
χt, (A71)

where u is the solution of the equation

d2u
dt2 + 2(t + γ)−1 du

dt
+ (t + γ)−1c0k2u = 0. (A72)

The solution can be expressed by the cylinder function [68]

u = (t + γ)−
1
2 Z1(2

√
c0k

√
t + γ) (A73)

We can choose the Bessel function as Z1

J1(z) =
z
2

∞

∑
n=0

(−1)n 1
n!(n + 1)!

(z2)n

Then, u is defined for positive as well as for negative time. The stochastic Equation (for
positive time) reads

dΦs = −u−1∂tu(t − s)Φsds +
√

ih̄(t + γ − s)−1dWs (A74)

Then,

Gss′ = ih̄u(t − s)u(t − s′)
∫ m(s,s′)

0
u−2(t − τ)(t + γ − τ)−2dτ (A75)

Gss′ is purely imaginary. We could construct interactions in 5 dimensions in the way we
did in Sections 11 and 12.

Appendix H. Matter Field Schrödinger Evolution from Wheeler–DeWitt Equation

In this appendix, we would like to show how the Schrödinger equation in an external
metric discussed in this paper can appear in quantum gravity as a consequence of (Wheeler–
DeWitt) constraint on the canonical variables. The Wheeler–DeWitt [28,29] equation is
derived as a Hamiltonian constraint resulting from the diffeomorphism invariance of the
Einstein action(

− ch̄ν−2
p

∫
dxGijkl

δ2

δhijδhkl
− ch̄ν2

p
∫

dx
√

h(R − 2Λ) +
∫

dxH(h, x)
)

ψ = 0, (A76)

where H(h, x) is the density of the scalar field Hamiltonian (24), Λ is the cosmological
constant and

Gijkl =
1
2

h−
1
2 (hikhjl + hilhjk − hijhkl) (A77)

is a metric on the set of symmetric tensors. hij is the metric on the spatial hyper-surface
and H is the Hamiltonian (24).

νp = (16πGh̄c−3)−
1
2
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is the inverse of the the Planck length (G is the Newton constant). The metric Gijkl does not
have a definite sign. For a conformally flat metric hij = a2δij, the metric Gijkl is negatively
definite. In such a case, Equation (A76) becomes an equation of the hyperbolic type (a wave
equation), which can be written in the form

∫
dx

( δ2

δa(x)δa(x)
− ν4

p
8
3

a4(R(a)− 2Λ) + (ch̄)−1ν2
p

8
3

aH(a, x)
)

ψ(a, ϕ) = 0. (A78)

R(a) for a conformally flat metric depends on derivatives of a. We can solve Equation (A78)
if we assume that R(a) can be expressed as a function of a(x) (without derivatives). As an
example, this is possible if a(x) depends only on |x|. Then, we can express |x| by a and,
subsequently, R(|x|) as R(a).

We obtain the WKB solution treating ν−2
p as a small parameter

ψa = exp(±iν2
pS(a))ψa0 . (A79)

with

ν2
pS(a) =

∫
dx

∫ a(x)

a0

dα

√
−8

3
ν4

pα4(R(α)− 2Λ) +
8
3
(ch̄)−1ν2

pαH(α, x) (A80)

Expanding the square root in Equation (A80) in powers of the Planck length ν−2
p , we obtain

ν2
pS(a) =

∫
dx

∫ a(x)
a0

dα
(

ν2
p

√
− 8

3 α4(R(α)− 2Λ)

+ 4
3 αH(α, x)(ch̄)−1

(
− 8

3 α4(R(α)− 2Λ)
)− 1

2
)
+ O(ν−2

p ).
(A81)

Let us write

ψa = exp
(
± iν2

p

∫
dx

∫ a(x)

a0

dα

√
−8

3
α4(R(α)− 2Λ)

)
χa ≡ exp(±iν2

pScl)χa, (A82)

where

χa = exp
(
± i

4
3
(ch̄)−1

∫
dx

∫ a(x)

a0

dααH(α, x)
(
− 8

3
α4(R(α)− 2Λ)

)− 1
2
)

ψa0 . (A83)

Then, Scl in Equation (A82) satisfies the Hamilton–Jacobi equation∫
dx

δScl
δa(x)

δScl
δa(x)

+
8
3

∫
dxa4(R(a)− 2Λ) = 0

and χa is the solution of the equation

∓ich̄
∫

dx
3

4a(x)

√
−8

3
a(x)4(R(a(x))− 2Λ)

δχ

δa(x)
=

∫
dxH(a, x)χ. (A84)

In this Schrödinger-type equation, there is a functional derivative over a instead of time.
However, when we insert in the solution χa of Equation (A84) the classical solution a(t, x)
instead of a(x), then we have

∂tχ =
∫

dx
da(t, x)

dt
δχ

δa(t, x)
(A85)

We can replace the functional derivative in Equation (A84) by a time derivative if the
classical solution satisfies the equation

c
4a(t, x)

√
−8

3
a(t, x)4(R(a(t, x))− 2Λ) =

da(t, x)
dt

. (A86)
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Equation (A86) can be derived from the Hamilton–Jacobi formulation of general relativ-
ity [86]. As an example, consider a solution of Einstein equations without matter for the
Robertson–Walker space-time metric with negative scalar curvature

ds2 = dt2 − hij(t, x)dxidxj ≡ dt2 − a(t, x)2dx2, (A87)

where hij ≡ δija(t, x)2 = δija(t)2(1 − 1
4 |x|2)−2. Then, R(h) = −6a(t)−2. The solution of the

Friedmann equation without matter is a(t) = ct, which agrees with Equation (A86). In

another example, the solution a(t) = exp(
√

Λ
3 t) of the spatially flat equation (A86) (R = 0)

describing de Sitter space without matter also leads to the replacement of the functional
derivative in Equation (A84) by the time derivative.

Let us note that if R(a)− 2Λ > 0, then instead of the Schrödinger equation, we obtain
a diffusion equation in the WKB expansion in powers of ν−2

p .
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