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Abstract: The practical implementation of massive multi-user multi-input–multi-output (MU-MIMO)
downlink communication systems power amplifiers that are energy efficient; otherwise, the power
consumption of the base station (BS) will be prohibitive. Constant envelope (CE) precoding is gaining
increasing interest for its capability to utilize low-cost, high-efficiency nonlinear radio frequency
amplifiers. Our work focuses on the topic of CE precoding in massive MU-MIMO systems and
presents an efficient CE precoding algorithm. This algorithm uses an alternating minimization
(AltMin) framework to optimize the CE precoded signal and precoding factor, aiming to minimize
the difference between the received signal and the transmit symbol. For the optimization of the CE
precoded signal, we provide a powerful approach that integrates the majorization-minimization
(MM) method and the fast iterative shrinkage-thresholding (FISTA) method. This algorithm combines
the characteristics of the massive MU-MIMO channel with the second-order Taylor expansion to
construct the surrogate function in the MM method, in which minimizing this surrogate function
is the worst-case of the system. Specifically, we expand the suggested CE precoding algorithm to
involve the discrete constant envelope (DCE) precoding case. In addition, we thoroughly examine the
exact property, convergence, and computational complexity of the proposed algorithm. Simulation
results demonstrate that the proposed CE precoding algorithm can achievean uncoded biterror rate
(BER) performance gain of roughly 1 dB compared to the existing CE precoding algorithm and has
an acceptable computational complexity. This performance advantage also exists when it comes to
DCE precoding.

Keywords: alternating minimization; constant envelope precoding; majorization-minimization
method; fast iterative shrinkage-thresholding method; second-order Taylor expansion

1. Introduction

Massive MIMO technology is widely regarded as a revolutionary advancement in the
fifth generation mobile communication system [1]. Compared with small-scale MIMO sys-
tems, large-scale antenna arrays at transmitters have been demonstrated to offer substantial
benefits in terms of spectrum efficiency, energy efficiency, and reliable transmission [2–4].
In contrast to conventional small-scale MIMO systems that employ highly linear and power-
inefficient radio frequency (RF) amplifiers, the practical implementation of massive MIMO
systems requires the RF amplifiers to be power-efficient. Otherwise, the power consump-
tion of the base station (BS) would be prohibitive. Therefore, it is crucial to use RF amplifiers
with a certain power efficiency to avoid excessive power consumption at the BS [5]. Re-
grettably, energy-efficient RF amplifiers frequently exhibit inferior linearity characteristics,
necessitating a lower peak-to-average power ratio (PAPR) for the input signals.

In response to the demand for energy-efficient and cost-effective RF components in
wireless communication systems, constant envelope (CE) transmission that forces each
antenna unit to transmit a constant envelope signal and allows the use of the most energy-
efficient and cheapest power amplifiers (PAs) has attracted great attention from researchers.
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CE precoding was initially introduced by Mohammed and Larsson in [6]. Specifically, in the
single-antenna CE constraint, the equivalent complex baseband signal of each transmit
antenna is restricted to have a CE [7]. By combining with instantaneous CSI, CE precoding
only transmits the phase of the desired information symbol to multiple antennas. CE
precoding reduces the PAPR compared to non-CE precoding by providing a quasi-CE
continuous-time RF signal to each PA. On the other hand, when highly efficient PAs
with nonlinear amplitude transfer functions are used, the output distortion can be greatly
reduced [8]. Furthermore, the low PAPR properties of the CE signals enable the utilization
of cost-effective RF components that have a decreased dynamic range.

Based on all the advantages of CE precoding mentioned above, CE precoding has
become a potential research direction. However, it is important to mention that the CE
characteristics of the transmit signal are typically non-convex, which brings challenges to
precoding design. By adopting multi-user interference (MUI) as the design goal, the CE
precoding problem can be modeled as a non-convex nonlinear least squares (NLS) problem,
and its local minimum can be obtained using the gradient descent method [9]. Nevertheless,
the CE constraint can lead to the error-floor issue in situations with a high signal-to-noise-
ratio (SNR). On this basis, the cross-entropy optimization (CEO) method was proposed
in [10] to improve the CE precoding design optimal search. Furthermore, an alternating
minimization projected gradient (GP-AltMin) method was proposed in [11]. This method
improves the performance at high SNR by ignoring the noise of the system. Zhang et al. [12]
studied a single-user multiple-input single-output (MISO) system with CE constraint for
each antenna and proposed constellation designs for fixed-rate and variable-rate adaptive
receivers. In [8], the joint design of transmit antenna grouping and receive beamforming
vectors was conducted with the objective of minimizing the maximum symbol error rate
(SER) in the data stream. Nevertheless, this typically necessitates a significant computa-
tional expenditure. Shao et al. [13] introduced a novel first-order algorithm that utilizes
a projected gradient (PG) method in order to effectively minimize the SER of the system.
To further accelerate the convergence rate of the PG method, a low-complexity fast gradient
projection (FPG) algorithm similar to the fast iterative shrinkage-thresholding (FISTA) algo-
rithm was considered. However, this approach necessitates a greater quantity of iterations
in order to attain convergence. In [14], a novel algorithm was provided that integrates
gradient extrapolation with the majorization-minimization technique (GEMM). This al-
gorithm is not only suitable for CE precoding, but can also be applied to one-bit DACs
precoding. Nevertheless, this approach must be used to approximate the SER expression
of the system when formulating the optimization objective. Wang et al. [15] rotated and
scaled each constellation point individually to take advantage of the additional degrees of
freedom by jointly optimizing the transmit signal matrix and complex scaling factors to
maximize the signal-to-interference-to-noise ratio (SINR) at the receiver.

Recently, researchers have found that including the concept of constructive interference
(CI) in the design of precoding can significantly enhance system performance. Inspired by
this, the authors in [16] investigated the utilization of CI to take advantage of the MUI in the
system, with the aim of reducing the SER. In [17], a CEO-based method was proposed for
PSK modulations, which achieved significant performance improvements over the classic
CE precoding method based on interference minimization in [9]. Furthermore, Liu et al. [18]
proposed an effective Riemannian conjugate gradient (RCG) method to address the CE
precoding problem that takes into account CI and achieves a balance between performance
and complexity. However, in fact, this CI-based CE precoding design is only suitable for
PSK modulations. The CE characteristic of the signal assumes that the phase of the phase
shifter is continuous or has nearly continuous phase resolution. Often, this is unsatisfactory.
Therefore, it is necessary to study the discrete constant envelope (DCE) precoding methods
in which the phase shifters have finite phase resolution. The investigation in [19] focused
on the transmit signals in the DCE case. In [19], a PG-based symbol-level mean square error
(MSE) precoding algorithm was proposed, which is not only applicable to the strict CE
constraint, but also to the polygon constraint of DCE. In [20], a greedy precoding design
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using the MSE of system as the design criterion was proposed. The DCE precoder was
solved in [21] when using a single common PA and separate digital phase shifters. This
method combines DCE with CI to improve performance. Moreover, the authors in [11,14]
have expanded their investigations to accommodate the DCE transmit signals.

As previously stated, CE precoding methods typically exhibit favorable performance.
Motivated by this, our study focuses on the development of a CE precoding design that
aims to minimize the difference between the received signal and transmit symbol in massive
MU-MIMO systems. In comparison with [14], which focuses on designing the minimum
SER of the system under the worst-case for a single user, our method aims to optimize the
overall performance of the system. We address this by formulating a CE precoding problem
using the minimum mean square error (MMSE) criterion. It is important to note that in [14],
it is required to make an approximation of the objective problem, and we intentionally
avoid doing so. The main contributions are as follows:

1. One of the main challenges in solving the CE precoding problem is the interdepen-
dence between the CE precoded signal and the precoding factor. To address this
problem, we employ a two-stage iterative procedure involving an alternating min-
imization (AltMin) framework. When addressing the CE precoded signal, the CE
constraint is simplified and transformed into unit modulus constraints by introduc-
ing an auxiliary variable. Additionally, the unit modulus constraint is converted to
continuous by adding a penalty term to the objective function.

2. The optimal precoded signal is obtained using the majorization-minimization (MM)
framework. In the MM framework, the key is how to construct the surrogate function.
We exploit the channel characteristics of massive MU-MIMO systems and combine
them with a second-order Taylor expansion to obtain an efficient surrogate function.
Unlike the one-step GEMM method described in [14], we obtain the precise values
of the auxiliary variables through multiple iterations. In addition, we derive the
L-Lipschiz constant and analyze the exact property, convergence, and computational
complexity of the proposed algorithm.

3. The proposed method is extended to DCE precoding schemes that have finite phase
resolution. At first, we manipulate the continuous phase of the CE signal to align
with the PSK constellation by performing a straightforward rotation. Then, we employ
algebraic knowledge to derive the DCE precoded signal by making secondary decisions.

4. Simulation results demonstrate that in the CE precoding case, the proposed algorithm
exhibits superior uncoded BER performance and a lower computational complexity
when compared to existing approaches. In both PSK modulation and QAM modula-
tion, the suggested CE precoding method can achieve a performance gain of about
1 dB. In the 3-phase case, the proposed algorithm also has better performance.

The remainder of this paper is organized as follows: In Section 2, we present the model
of the CE precoding system for the massive MU-MIMO system and the CE precoding
problem based on the MMSE criterion. In Section 3, we give the detailed process of the
algorithm for solving the CE precoding problem. Furthermore, the proposed algorithm
is extended to the DCE case. The performance of the proposed algorithm is illustrated
by analyzing its exact property, convergence, and computational complexity in Section 4.
Section 5 presents the simulation, numerical results, and analysis. Section 6 is a summary
of this paper.

Notations: In this paper, a, a, and A are the scalars, vectors, and matrices. For matrices
and vectors, ∥·∥2 stands for the spectral norm and Euclidean norm, respectively. Operator
|·| represents the absolute value of a scalar or the cardinality of a set. The transpose and
its conjugate transpose of a vector or matrix are denoted by (·)T and (·)H . ⟨a, b⟩ is the
Euclidean inner product. ℜ(·) and ℑ(·) denote the real and imaginary parts of the vector or
matrix. The ⌈·⌉means rounding up to an integer. The set of complex numbers is denoted
by C. The matrix I is an identity matrix with the appropriate dimensions.
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2. System Model and Problem Formulation
2.1. System Model

As shown in Figure 1, we consider a single-cell, single-carrier massive MU-MIMO
downlink transmission system in TDD mode, in which the BS is equipped with a large-scale
antenna array NTX and communicates with Nu single-antenna users at the same time, that
is NTX≫Nu. At the BS, each RF chain is connected to a phase shifter, and it is assumed that
the phase shifter can produce continuous phase values throughout the entire phase range.
Therefore, the input constellation symbol vector s = [s1, . . . , sNu ]

T ∈ O passes through
the precoder and phase shifters to form a transmit signal x =

[
x1, . . . , xNTX

]T ∈ CNTX with
a constant envelope, where O is the set of constellation points. The CE precoded signal
transmitted by the t-th antenna at the BS is expressed as

xt =

√
PT

NTX
ejθt , ∀t ∈ {1, 2, . . . , NTX}, (1)

where θt ∈ [0, 2π] is the phase of the CE precoded signal xt. PT is the instantaneous transmit
power, and this shows that the CE precoded signal satisfies ∥x∥2

2 ≤ PT . The CE property
forces the transmit signal x to satisfy the CE constraint, that is

V1 =

{
x ∈ CNTX

∣∣∣∣∣|xt| =

√
PT
Nt

, t = 1, . . . , NTX

}
. (2)

Assuming a transmission time duration not exceeding the channel coherence time.
For such a system, the discrete-time complex baseband signal received at users during the
downlink of an arbitrary coherence interval can be expressed as

y = Hx + n, (3)

where y=[y1, . . . , yNu ]
T ∈CNu denotes the received signal vector of all users. The matrix

H ∈ CNu×NTX denotes the downlink channel, which is perfectly known at the BS. The vector
n ∈ CNu is an additive noise and n ∼ CN

(
0, σ2I

)
.

Figure 1. The CE precoder for the massive MU-MIMO downlink system.

2.2. Problem Formulation

In the CE precoding design, the task is to design the transmit signal x under the CE
constraint so that the MSE between the transmit symbol s and its estimated value ŝ is
minimized. In order to facilitate the use of channel gain, an additional precoding factor
ψ ∈ R [22] is introduced in the CE precoding design. The users can use the precoding factor
ψ to obtain an estimate of the transmit symbol s from the received signal y, i.e., ŝ = ψy.
At the receiving end, the users can estimate the precoding factor for the block-fading
channel using either pilot-based estimation or blind estimation [23], where a direct way
to obtain the estimated precoding factor for the user is to use the pilots known at the user
side. The MSE between the transmit symbol and its estimated value ŝ can be obtained by

Es

[
∥s− ŝ∥2

2

]
= ∥s− ψHx∥2

2 + ψ2Nuσ2, (4)

where we restrict the precoder results in the same precoding factor ψ for all the users [24].
With this assumption, the MSE after precoding will be roughly the same for all users,
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which guarantees a certain degree of fairness among the users [22]. Thus, the CE precoding
problem based on the MMSE criterion is stated as,

min
x,ψ
∥s− ψHx∥2

2 + ψ2Nuσ2

s.t. x ∈ V1, ψ ∈ R.
(5)

Since the CE constraint of the CE precoded signal is non-convex, the optimization
problem (5) is non-convex. Generally, the optimization problem (5) is NP-hard. In addition,
the mutually coupled CE precoded signal and precoding factor also bring difficulties for
directly optimizing the CE precoding problem (5). Next, the CE precoded signal and
precoding factor will be solved separately in an AltMin method, and an effective algorithm
based on the MM framework will be proposed to obtain the CE precoded signal.

3. Majorization-Minimization Method for Constant Envelope Precoding

In order to effectively solve the coupling between the CE precoded signal x and precod-
ing factors ψ, the AltMin framework is used to decouple the optimization problem (5) into
two subproblems, in which ψ or x are solved alternately while maintaining correspondingly
another variable x or ψ which is fixed. Specifically, each iterative process of applying the
AltMin framework to solving the optimization problem (5) is expressed as the following
two steps:

ψi+1 = arg min
ψ∈R

∥∥∥s− ψHxi
∥∥∥2

2
+ ψ2Nuσ2, (6a)

xi+1 = arg min
x∈V1

∥∥∥s− ψi+1Hx
∥∥∥2

2
+

(
ψi+1

)2
Nuσ2, (6b)

where the algorithm alternately solves the precoding factor and the CE precoded signal
until the stopping condition

∣∣∣MSEi+1 −MSEi
∣∣∣/MSEi+1 ≤ ϵO is met.

In the first step of AltMin, that is to solve subproblem (6a), given the CE precoded
signal x, expand and rewrite subproblem (6a) as a quadratic function about the precoding
factor ψ

∥s− ψHx∥2
2 + ψ2Nuσ2

= sHs− 2ψsHHx + ψ2∥Hx∥2
2 + ψ2Nuσ2.

(7)

Setting the partial derivative of (7) with respect to the precoding factor ψ to 0, we
can obtain

ψ =
ℜ
{

sHHx
}

∥Hx∥2
2+Nuσ2

. (8)

Next, the CE precoded signal is optimized by solving subproblem (6b), taking into
account the precoding factor ψ. When the precoding factor ψ is provided as a constant,
ψ2Nuσ2 will be eliminated from Equation (6b). To simplify further processing, define
the auxiliary variable u and make x =

√
PT/NTX u. Let H̃ =

√
PT/NTX ψH. Hence,

the subproblem (6b) can be reformulated as

min
u

∥∥s− H̃u
∥∥2

2

s.t. u ∈ V2,
(9)

where V2 =
{

u ∈ CNTX ||ut| = 1, t = 1, . . . , NTX
}

. This means that any ut in V2 is on the
unit circle.

It can be seen from (9) that although the objective function to be optimized is quadratic,
the constraint V2 is a non-convex unit modulus constraint, so the problem is still non-convex.
The generally employed approach for solving problems with a quadratic objective function
is the semi-definite relaxation (SDR) method [25–27]. SDR has the advantage of employing



Entropy 2024, 26, 349 6 of 22

a non-convex optimization problem to approximate the objective function. Although SDR
is capable of calculating approximate solutions to non-convex optimization problems in
polynomial time, the worst-case computational complexity is proportional to N4.5

Tx [27],
hindering its application to large-scale applications. To improve the effectiveness of solving
the optimization problem (9), we can explore the implementation of the penalty method in
the unit modulus optimization problem. This involves relaxing the unit modulus constraint
set for solving the CE precoded signal x and incorporating a penalty function into the
objective function to ensure that the solution lies on the unit circle [28].

Let f (u) =
∥∥s− H̃u

∥∥2
2, the optimization problem can be written as

min
u∈V3
Fρ(u) = f (u)− ρ∥u∥2

2, (10)

where V3 =
{

u ∈ CNTX ||ut| ≤ 1, t = 1, . . . , NTX
}

. The ρ> 0 is a penalty parameter. Since
CE precoded signals are complex, the penalty term −ρ∥u∥2

2 is used to push each ut to
any position on the unit circle. It is important to note that while the constraint of the
optimization problem (10) exhibits convexity, the objective function is non-convex. Hence,
the optimization problem (10) may be classified as a convex constrained minimization
problem with a non-convex objective function. This problem can be effectively tackled
by employing first-order optimization techniques like the PG method. In general, first-
order optimization approaches exhibit a modest level of iterative complexity; however,
the iterations needed to attain convergence can be significant. In the theory of convex
optimization, it is usual to employ Nesterov- or FISTA-type acceleration algorithms [29]
as a way to minimize the number of iterations required. In addition, in large-scale MU-
MIMO systems, the optimization problem (10) is usually a large-scale problem, which
poses a challenge to using classic algorithms to solve this optimization problem, and the
MM architecture can solve this problem [30]. Next, a novel algorithm derived from the
MM framework and FISTA method is introduced to efficiently address the optimization
problem (10).

3.1. Surrogate Function Using Second-Order Taylor Expansion

Before providing the proposed method, an overview of the fundamental concepts un-
derlying the MM framework for addressing minimization problems is provided. The MM
framework is used to iteratively solve a series of simpler problems to replace non-convex
optimization problems that are difficult to solve directly [31–33]. For example, consider
minimizing the function J(w) within the feasible set w ∈ W . Minimizing the function
J(w) becomes challenging when the objective function or constraint are non-convex. Thus,
rather than directly minimizing the function J(w), the surrogate function J

(
w
∣∣∣wk

)
of

the original objective function is minimized during the k-th iteration. A valid surrogate
function has the following properties:

J
(

w
∣∣∣wk

)
> J(w), ∀w ∈ W , (11a)

J
(

wk
∣∣∣wk

)
= J

(
wk

)
, (11b)

∇J
(

wk
∣∣∣wk

)
= ∇J

(
wk

)
. (11c)

The above properties indicate that the surrogate function is a tight upper bound of the
original objective function. Therefore, the algorithm based on the MM framework starts
from the feasible initial point w0 ∈ W and iteratively minimizes the surrogate function

wk+1 = arg min
w∈W

J
(

w
∣∣∣wk

)
. (12)
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To effectively utilize the MM framework for solving problem (10), the crucial aspect is
to construct the surrogate function for the objective function. The following Lemma 1 serves
as the foundation for the efficient development of surrogate functions [34]. The detailed
proofs are described in [35].

Lemma 1. Consider a quadratic function of the form aHSa, where S is a positive semi-definite ma-
trix, then the surrogate function of the aHSa function at point ak is aHTa+ 2ℜ

(〈
a, (S− T)ak

〉)
+〈

ak, (T− S)ak
〉

, where T is a positive semi-definite matrix and T ≥ S.

For any quadratic differentiable function with bounded curvature, Lemma 1 is also
known as the quadratic upper bound principle [32]. We first construct the surrogate
function of Fρ(u). By expanding Fρ(u), we can obtain

Fρ(u) = sHs− sHH̃u− uHH̃Hs + uHH̃HH̃u− ρ∥u∥2
2. (13)

According to Lemma 1, we consider alternatives uHH̃HH̃u in (13). We define
S = H̃HH̃, and consider the second-order Taylor expansion of uHSu around uk as

uHSu =
〈

uk, Suk
〉
+

〈
uk, S

(
u− uk

)〉
+

(
u− uk

)H
Suk +

(
u− uk

)H
S
(

u− uk
)

. (14)

For the massive MIMO system, the channel matrix H is a fat matrix, and S is a positive
semi-definite Hermitian matrix. Based on the Lemma 1, we replace the matrix S with a
matrix T, where T ≥ S. This implies that (14) is rewritten as

uHSu ≤
〈

uk, Suk
〉
+

〈
uk, S

(
u− uk

)〉
+

(
u− uk

)H
Suk +

(
u− uk

)H
S
(

u− uk
)

= uHTu + uH(S− T)uk +
〈

uk, (S− T)u
〉
+

〈
uk, (T− S)uk

〉
.

(15)

Since S is a positive semi-definite Hermitian matrix, we perform eigenvalue decomposi-
tion on S and extract the maximum eigenvalue λmax, that is λmax = eig(S). We choose
T = λmaxI, then T ≥ S can be satisfied. Putting T = λmaxI into (15), we can obtain

uHSu ≤ λmaxuHu + uH(S− λmaxI)uk +
〈

uk, (S− λmaxI)u
〉
+

〈
uk, (λmaxI− S)uk

〉
. (16)

We define

g
(

u
∣∣∣uk

)
= λmaxuHu + uH(S− λmaxI)uk +

〈
uk, (S− λmaxI)u

〉
+

〈
uk, (λmaxI− S)uk

〉
. (17)

Substituting g
(

u
∣∣∣uk

)
into (13), we obtain the surrogate function G

(
u|u k

)
of Fρ(u)

Gρ

(
u|u k

)
= sHs− sHH̃u− uHH̃Hs + g

(
u|u k

)
− ρ∥u∥2

2. (18)

It should be noted that, unlike the classical MM framework that approximates the
non-convex part of the objective function, we use T = λmaxI to process uHH̃HH̃u in (13)
according to Lemma 1, and the resulting surrogate function Gρ

(
u|u k

)
is an upper bound on

Fρ(u), which is a worst-case. The surrogate function Gρ

(
u|u k

)
satisfies the properties (11).

Next, we will use the above surrogate function and combine MM framework with the
FISTA algorithm to iteratively solve the optimization problem (10).
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3.2. MM Method For Solving CE Precoding

We take the general form of the MM method as shown below to find the minimum of
the surrogate function Gρ

(
u|u k

)
uk+1 = arg min

u∈V3

Gρ

(
u
∣∣∣uk

)
, k = 0, 1, 2, . . . (19)

In the process of solving (19), we use the FISTA method [36] to solve. The FISTA
method for solving min

u∈V3
Gρ

(
u
∣∣∣uk

)
is

uk+1 = Π
V3

(
zk − µ−1∇Gρ

(
zk|u k

))
, k = 0, 1, 2, . . . , (20)

where µ is the step size. Notably, zk − µ−1∇Gρ

(
zk
∣∣∣uk

)
does not always satisfy the CE

constraint. Consequently, we project zk − µ−1∇Gρ

(
zk
∣∣∣uk

)
to the CE constraint set V3, i.e.,

Π
V3

(
zk − µ−1∇Gρ

(
zk
∣∣∣uk

))
= ej∡(zk−µ−1∇Gρ(zk|uk )), (21)

where j is the imaginary unit. The ∡ is the corresponding phase. The gradient vector of
Gρ

(
zk
∣∣∣uk

)
is

∇Gρ

(
zk|u k

)
=2

(
(λmax−ρ)zk+(S−λmaxI)uk−H̃Hs

)
. (22)

The zk is an extrapolated point and is updated with respect to uk−1 from the previous
iteration and uk from the current iteration

zk = uk + αk

(
uk − uk−1

)
, (23)

with

αk =
ξk−1 − 1

ξk
, ξk =

1 +
√

1 + 4ξ2
k−1

2
, (24)

and with ξ−1 = 0, u−1 = u0. The {αk}k≥0 is the extrapolation sequence. In particular,
when αk = 0 in (23), the FISTA method is simplified to the PG method.

For the step size, we choose to use the L-Lipschiz constant as the step size µ. When
f (u) is a convex function on [−1, 1]NTX , the Lipschitz continuity condition of f (u) holds
according to the following lemma:

Lemma 2. For a function f (u) that is L-Lipschitz continuous in the domain [−1, 1]NTX , its
L-Lipschitz constant is

L = 2
√

NTX
∥∥H̃

∥∥2
2. (25)

Proof. See Appendix A for a proof.

In summary, the proposed MM (SoTMM) algorithm using the second-order Taylor
expansion as the surrogate function uses (21) to (23) to iteratively minimize the upper
bound of the objective function to solve the non-convex CE precoding problem (9) until

the stopping condition
∥∥∥uk+1 − uk

∥∥∥2

2
≤ ϵI is met. After obtaining the optimal value of

u, the CE precoded signal can be obtained using the relationship x =
√

PT/NTX u. As a
convenience, Algorithm 1 provides a summary of the detailed procedures for resolving
the optimization problem (5), which is divided into two iteration loops: the inner iteration
loop used to solve the CE precoded signal x, with k as the index; and the outer iteration
loop used to optimize the precoding factor ψ, with i as the index.
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Algorithm 1 SoTMM method for solving problem (5)

Input: s, H, σ2.
1: Initialization: x0 = 0;
2: Set: i = 0, ϵO > 0.
3: repeat
4: Compute the precoding factor ψ by (8);
5: Let H̃ =

√
PT/NTX ψH, and use (25) to calculate the Lipschitz constant;

6: Set: u0 = u−1 =
(
1/
√

PT/NTX
)
xi, ξ−1 = 0, penalty parameter ρ > L, step size

µ = L, k = 0, ϵI > 0.
7: Define S = H̃HH̃ and extract the largest eigenvalue λmax by eigenvalue decomposi-

tion of S;
8: repeat
9: Compute αk and ξk by (24);

10: Compute the extrapolated point zk by (23);
11: Compute the gradient vector ∇Gρ

(
zk
∣∣∣uk

)
by (22);

12: Compute the zk − µ−1∇Gρ

(
zk|u k

)
and update uk+1 = ej∡(zk−µ−1∇Gρ(zk|uk ));

13: k← k + 1;
14: until A stopping criterion triggers.
15: Reconstruction x =

√
PT/NTX u;

16: i← i + 1;
17: until A stopping criterion triggers.
Output: x, ψ.

3.3. DCE Precoding

In previous studies, we assume that the phase shifters of the CE precoder can produce
continuous phase values throughout the entire phase range, or that the phase shifters have
approximately continuous phase resolutions. If the above two situations are not the case, we
should consider the DCE precoding for phase shifters with a finite phase resolution. In what
follows, we will extend the proposed SoTMM algorithm to DCE precoding design. In the
DCE precoding case, the CE constraint V1 of the transmit signal x will be discretized as

X =
{

ej 2π
2κ p|p = 1, 2, · · · 2κ

}
, (26)

where κ is the discrete resolution of the phase shifter, that is, κ is a positive integer of κ ≥ 2.
Therefore, after using Algorithm 1 to obtain the optimal CE precoded signal x, each signal
element in the CE precoded signal x needs to be discretized to the closest DCE constraint
set X points.

Figure 2 shows a diagram of the CE constraint set and the DCE constraint set, where
the discrete resolution of the DCE constraint set is κ = 3. The red parts represent the CE
constraint set of CE precoding and the DCE constraint of DCE precoding, respectively,
and the shaded parts represent the relaxed constraint set. As can be seen from Figure 2,
the CE constraint can be regarded as a continuous point on a circle with a radius of√

PT/NTX , while the DCE constraint is a discrete point on the circle. Therefore, DCE
precoding design is converted into a problem of how to design discrete phases on a circle,
that is, designing a mapping method to discretize the continuous CE precoded signal into
the DCE precoded signal. In general, it is difficult to obtain a strict algebraic expression of
this mapping relationship. Existing research shows that in DCE precoding design, the CE
precoded signal can be mapped to the 2κ-PSK constellation to obtain the DCE precoded
signal [19].
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(a) (b)

Figure 2. Illustration of constraint set. The red parts are the constraint set and the shaded parts are
the relaxed constraint set. (a) CE set; (b) DCE set.

Using κ = 3 as an example, Figure 3 illustrates the process of DCE precoding projection.
The red points represent the DCE precoded signal, the green circles and points represent the
projected DCE precoded signal, and the orange squares represent the 8-PSK constellation
points. As can be seen from Figure 3a, the CE precoded signal obtained using Algorithm 1
satisfies the CE constraint, that is, the CE precoded signal all falls on the circle. When
κ = 3, the DCE precoded signal can be projected to the 8-PSK constellation point by simply
rotating π/8 counterclockwise. According to Figure 3b, we will give a detailed projection
process. During the projection process, a quadratic decision is used to make the mapping

result more accurate. First, project the point located on
⌢

AB to the nearest point x̂ on the
straight line AB, that is

x̂i+1 = cos
(

2π

2κ

)
+ jℑ

(
xi+1

)
. (27)

In order to determine the final projection point, the straight line equation is used to divide
the straight line AB. Combining algebraic knowledge, the equation of the straight line ℓ1
can be obtained as

ℓ1 : ℑ(x) = ℜ(x). (28)

Therefore, we can obtain the division of the straight line AB

prox
(

x̂i+1
)
=


ej 3π

8 ,ℑ
(

x̂i+1
)
≥ ℓ1,

ej π
8 ,ℑ

(
x̂i+1

)
< ℓ1,

(29)

where prox(·) means discretizing the input signal. Using the above formula, the CE
precoded signal can be discretized into an 8-PSK constellation. Combining (27)–(29),
the discrete expression of DCE precoding for arbitrary phases is given as

prox
(

x̂i+1
)
=


ej
(

2π
2κ +

(n−1)π
2κ

)
,ℑ

(
x̂i+1

)
≥ ℓn−1,

ej
(

2π
2κ − (n−1)π

2κ

)
,ℑ

(
x̂i+1

)
< ℓn−1,

(30)

where n =
⌈
∡x+π/2κ

2π/2κ

⌉
. The point on the arc projects to the nearest point x̂ on the corre-

sponding straight line as

x̂i+1 = cos
(nπ

2κ

)
+ jℑ

(
xi+1

)
. (31)
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The straight line ℓn−1 is given by

ℑ(x) = cos
(nπ

2κ

)
ℜ(x). (32)

To summarize, by utilizing (30)–(32), it is possible to obtain the DCE precoded signal
with arbitrary phases. Finally, the DCE precoding factor is recalculated according to (8).

(a) (b)

Figure 3. The projection of DCE precoding, κ = 3. (a) DCE set, κ = 3; (b) The projection onto the
right half plane.

4. Performance Analysis

In this section, the exact property of the penalty optimization problem (10), the conver-
gence performance, and the computational complexity of the proposed SoTMM algorithm
are analyzed in detail.

4.1. The Exact Property of Problem (10)

For the minimization problem (10), it is natural to question whether the penalty
optimization problem is an exact restatement of the original optimization problem (9).
The following Theorem 1 [14] can illustrate this problem.

Theorem 1. Assume that the function f is Lipschitz continuous in the feasible set V3. Then, there
is a constant ρ̄ > 0 such that for any ρ > ρ̄, any (global) optimal solution to the optimization
problem (10) is also the (global) optimal solution to the optimization problem (9). Especially, in the
CE precoding case, ρ̄ = L, where L is the Lipschitz constant of function f in V3.

Theorem 1 shows that when the penalty parameter is large enough, the optimal
solutions of problems (10) and (9) are equivalent. In particular, this equivalent result does
not require additional dynamic adjustment of the penalty parameter ρ, which also provides
a theoretical basis for the selection of the penalty parameter ρ.

4.2. Convergence Analysis

In fact, the convergence analysis of non-convex first-order methods involving the
accelerated proximal gradient method or the FISTA method is challenging. Here, we are
inspired by [14] to prove the convergence performance of the SoTMM algorithm using
gradient extrapolation. Theorem 2 describes the convergence performance of the proposed
SoTMM algorithm.

Theorem 2. Suppose there is a Lipschitz constant LF such that the function F has a Lipschitz
continuous gradient. And for any ū ∈ V3, there is a Lipschitz constant LG such that the surrogate
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function Gρ(·|ū ) has a Lipschitz continuous gradient. In addition, assuming that αk obtained from
the (21) to (23) satisfies 0 ≤ αk ≤ ᾱ, making

min
m=0,··· ,k

dist
(

0,∇F
(

um+1
)
+ ∂IV3

(
um+1

))
≤ C

√
8

(k + 1)(1− ᾱ2)µ
(F (u0)−F ∗)

(33)

is true, then the proposed SoTMM is guaranteed to find a stationary point, where

C = max((LG + µ)ᾱ, LF + µ). (34)

Proof. See Appendix B for a proof.

4.3. Complexity Analysis

To illustrate the computational complexity of the SoTMM algorithm, we discuss the
number of multiplications performed by the algorithm. First of all, it needs to be made clear
that the SoTMM algorithm requires two iteration loops, inner and outer. The main complex-
ity of the inner iteration loop comes from computing the gradient vector ∇Gρ

(
zk
∣∣∣uk

)
of

the surrogate function Gρ

(
zk
∣∣∣uk

)
. The gradient computation in Lines 11–12 of Algorithm 1

is N2
TX + NTXNu + 3NTX, where the computational complexity of the projection operation

is ignored. In the inner iteration loop, the eigenvalue decomposition of matrix S and the
calculation of the extrapolation point zk require N2

TX and NTX multiplications, respectively.
In Algorithm 1, lines 5, 6, and 14 are the relevant steps of the outer iteration loop, requiring
a total of NTXNu + 2NTX multiplication operations. In addition, in Algorithm 1, calculat-
ing the precoding factor ψ requires N2

TX + NTXNu + NTX complex multiplications. Hence,
the overall computational complexity required to execute the proposed SoTMM algorithm
once to obtain the optimal CE precoded signal and precoding factor is equal to

O
(

K1

(
2N2

TX + 2NTXNu + 3NTX + K2

(
N2

TX + NTXNu + 4NTX

)))
, (35)

where K1 and K2 are the maximum number of iterations for the inner and outer iteration
loops, respectively.

5. Simulation Results and Discussions

We conduct simulation experiments to validate the performance of the proposed
SoTMM algorithm and compare it to several existing CE precoding schemes. Among the
involved comparison algorithms are the ZF precoding scheme employing direct projection
to the CE constraint (ZF-CE), the GP-AltMin [11], the FPG method [13], and the GEMM
algorithm [14] (simulation evaluations are carried out utilizing the simulation parameters
as suggested in [11,13,14]). Moreover, as a benchmark, we consider a ZF precoding scheme
without CE constraint (ZF-non). The simulations consider the commonly used massive
MU-MIMO downlink wireless communication system. The specific simulation conditions
are set as follows: Assuming that the communication channel H between the BS and the
users is a standard complex Gaussian channel, that is, H ∼ CN (0, I). SNR is defined as
SNR = PT/σ2, where the transmit power is normalized to 1. All the simulation results are
the average of 103 Monte Carlo simulations. According to Theorem 1, the penalty parameter
ρ > L and the step size µ = L are set in the proposed SoTMM algorithm. In particular,
in Figure 4, one simulation experiment is enough to illustrate the convergence performance
of the SoTMM algorithm.
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Figure 4. Convergence performance of the SoTMM algorithm with different system scales. (a) Outer
iteration convergence performance; (b) Inner iteration convergence performance.

5.1. Convergence Analysis

Figure 4 depicts the inner and outer convergence performance of the proposed SoTMM
algorithm in different system settings when SNR = 5 dB and 16QAM modulation. The con-
vergence performance of the SoTMM algorithm is explained by checking the iteration gap
of the inner and outer iteration stop conditions, respectively, that is,

∆MSE =
MSEi+1 −MSEi

MSEi+1 , (36)

∆u =
∥∥∥uk+1 − uk

∥∥∥2

2
. (37)

It can be concluded from Figure 4a that the SoTMM algorithm using the AltMin
framework can achieve convergence in systems with different scales. As the number of
BS antennas increases, the number of iterations required for the SoTMM algorithm to
achieve convergence also increases. When the iterations exceed 30, the iteration gap of the
SoTMM algorithm with different system sizes converge to 10−5. Figure 4b illustrates the
convergence of the inner iteration loop using the MM framework to solve u. As can be
seen from Figure 4b, similar to the outer iteration situation, as the number of BS antennas
increases, more iterations are required for ∆u to converge to 10−4. Nonetheless, it only
takes about 20 iterations for ∆u to converge to 10−4 across different system sizes. Therefore,
in the following simulations, the maximum iteration of the outer iteration loop is set to 40,
and the maximum iteration of the inner iteration loop is set to 20.

5.2. CE Precoding

We compare the uncoded BER performance of the proposed SoTMM algorithm in the
massive MU-MIMO system, where the BS is equipped with 128 transmit antennas to com-
municate with 16 single antenna users. First, we compare the uncoded BER performance
of the algorithm when the transmit symbol is generated by the constant modulus constel-
lation, that is, 16PSK. It can be seen from Figure 5 that the performance of the proposed
SoTMM algorithm is better than that of FPG, GEMM, and GP-AltMin, and the SNR gap
between the SoTMM and the ideal ZF is only 1 dB, which is promising. Different from PSK
modulation, which can easily generate CE transmission signals, we pay more attention to
the performance of the proposed algorithm in non-constant modulus modulation. There-
fore, Figures 6 and 7 verify the performance of the proposed algorithm when the input
constellation symbols s are generated by 16QAM and 64QAM modulation, respectively.
From Figure 6, several conclusions can be drawn. First of all, compared with the transmit
symbols using 16PSK modulation, the performance of all algorithms in the non-constant
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modulus of 16QAM is improved, possibly because the distance between the constellation
points of 16PSK is closer than that of 16QAM in the case of normalized transmit power,
so the system performance will be reduced. Second, the ZF-CE precoding that directly
projects the ZF precoded signal to the CE constraint has the worst performance, which is
related to the limitations of the linear ZF precoding itself. Compared with the FPG and
GEMM precoders, the proposed SoTMM precoder has the best performance. As can be seen
from Figure 6, when the SNR exceeds 8 dB, as the SNR further increases, the performance
advantage of the SoTMM precoder gradually becomes prominent. Compared with the ideal
ZF precoding, the performance gap between the two precoders is about 1.2 dB. Finally,
it can be seen from Figure 6 that the performance of the SoTMM and the GP-AltMin are
similar. However, the GP-AltMin ignores the impact of noise when solving the CE precoded
signals, thus improving performance. When considering the impact of noise on the CE
precoded signals, the performance of the GP-AltMin needs to be further confirmed. When
the constellation symbols s are generated using 64QAM modulation, the performance of
all CE precoders decreases, among which the ZF-CE suffers an obvious performance loss.
Similar to the 16QAM modulation situation, the proposed SoTMM precoder still has the
lowest BER performance. When the uncoded BER is 10−4, the uncoded BER performance
gap between the ideal ZF precoding and the SoTMM is only 1.7 dB. This shows that the
proposed SoTMM precoder has superior gains in uncoded BER performance compared
with other CE precoders.
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Figure 5. The uncoded BER performance for different CE precoders in (NTX, Nu) = (128, 16) system,
16PSK.
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Figure 6. The uncoded BER performance for different CE precoders in (NTX, Nu) = (128, 16) system,
16QAM.



Entropy 2024, 26, 349 15 of 22

0 5 10 15 20

SNR [dB]

10
-4

10
-3

10
-2

10
-1

10
0

U
n

c
o
d
e
d

 B
E

R

ZF-non

ZF-CE

FPG

GEMM

GP-AltMin

SoTMM

0.014

0.016

1.7dB

Figure 7. The uncoded BER performance for different CE precoders in (NTX, Nu) = (128, 16) system,
64QAM.

5.3. DCE Precoding

In the previous simulations, the performance of the proposed SoTMM algorithm
under CE constraint was verified. Next, we apply the SoTMM algorithm to the DCE
constraint case to further elaborate on the performance of the proposed SoTMM algorithm.
Figures 8–10 verify the uncoded BER performance of the SoTMM algorithm in different
DCE cases. The simulations consider that the BS is equipped with 128 transmit antennas to
communicate with 16 single antenna users. The constellation symbols s are generated by
16PSK, 16QAM, and 64QAM modulations, respectively. Some conclusions can be drawn
from Figures 8–10. First, it can be seen from Figure 8 that, similar to the CE precoding case,
the uncoded BER of the algorithm is slightly higher when the input symbol s is generated
by 16PSK compared with 16QAM. Secondly, as the discrete resolution κ of the phase shifter
increases, the uncoded BER performance of all algorithms continues to improve. Secondly,
when the discrete resolutions are κ = 2 and κ = 3, the uncoded BER performance of the
C2PO (C3PO) and the GP-AltMin are almost the same, and are significantly worse than
the SoTMM. In particular, in Figure 9, when the discrete resolution is κ = 3, the uncoded
BER performance of the proposed SoTMM is improved by about 3 dB compared with the
C3PO and GP-AltMin. Third, when the discrete resolution of the phase shifter is raised to
κ = 4, both the GP-AltMin and the SoTMM exhibit comparable uncoded BER performance,
which closely approximates the performance achieved by the method when using a phase
shifter with infinite resolution. Fourth, Figure 10 demonstrates that when the modulation
is converted from 16QAM to 64QAM modulation, the uncoded BER performance of the
2-phase and 3-phase GP-AltMin and C2PO (C3PO) will change to unacceptable levels
and gradually approach saturation. This error-floor problem can be greatly mitigated
by increasing the discrete resolution. Even in the 2-phase and 3-phase cases of 64QAM
modulation, the proposed SoTMM still has better uncoded BER performance. Finally, unlike
the C2PO (C3PO) algorithm for specific discrete phases, the SoTMM algorithm is suitable
for DCE precoding design with arbitrary phase shifter discrete resolution. In conclusion,
the suggested SoTMM algorithm, as demonstrated in Figures 8–10, is more suitable for
practical applications compared to the existing CE precoding technique and can be more
flexibly extended to DCE precoding design.
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Figure 8. The uncoded BER performance for different CE precoders in different DCE cases.
(NTX, Nu) = (128, 16) system, 16PSK.
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Figure 9. The uncoded BER performance for different CE precoders in different DCE cases.
(NTX, Nu) = (128, 16) system, 16QAM.
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Figure 10. The uncoded BER performance for different CE precoders in different DCE cases.
(NTX, Nu) = (128, 16) system, 64QAM.
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5.4. Complexity Analysis

In this subsection, we elucidate the complexity of the proposed SoTMM algorithm
by quantifying the number of complex multiplications involved in the SoTMM precoding
method within MU-MIMO systems of varying dimensions. The number of users in the
massive MU-MIMO systems is set to 16. Table 1 displays the computational complexity
of several CE precoding technologies. Figure 11 presents a comparison of the number of
complex multiplications used by various CE precoding techniques in variable BS transmit
antenna systems. Based on the findings presented in Figure 11, it is evident that the
GP-AltMin exhibits the least computational complexity, while the GEMM follows closely
behind. This is because only one-step projected gradient method is used in the GP-AltMin to
optimize the CE precoded signal. However, the performance of algorithms using one-step
projected gradient methods is usually unsatisfactory. The GP-AltMin artificially ignores
the noise in the system to improve performance. However, improving the GP-AltMin
in systems affected by noise may bring additional computational complexity. It is worth
noting that while the GP-AltMin technique has low computational complexity, the SoTMM
approach, as seen in Figures 9 and 10, can be more efficiently used for DCE case design.
Compared with the GEMM algorithm, although the proposed SoTMM algorithm requires
more computational complexity in the (NTX, Nu) = (128, 16) system. Nevertheless, when
considering the prior examination of uncoded BER performance, it is evident that the
SoTMM method outperforms the GEMM algorithm in terms of uncoded BER performance
(as shown in Figure 7, the performance gap is about 1 dB). Out of all the CE precoding
techniques, FPG has the greatest computational complexity. This is because, as can be seen
from Table 1, although the computational complexity of one iteration of the FPG algorithm
is modest, in order to obtain the best performance, the FPG requires more iterations. This
leads directly to the overall computational complexity of the FPG algorithm being too high.
As a conclusion, the proposed SoTMM algorithm can efficiently strike a balance between
uncoded BER performance and complexity.

Table 1. The complex multiplication of different CE precoding algorithms.

Methods Maximum Iterations Computational Complexity

FPG K = 5000 O
(
K
(
5NTXNu + 2N2

u + 2NTX + 5Nu
))

GEMM K = 400 O(K(NTXNu + 3NTX + 8Nu))
GP-

AltMin K1 = 20, K2 = 5 O(NTXNu + K1(NTXNu + NTX + K2(2NTXNu + Nu)))

SoTMM K1 = 40, K2 = 20 O
(
K1

(
2N2

TX + 2NTXNu + 3NTX + K2
(

N2
TX + NTXNu + 4NTX

)))
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The number of BS antenna

10
4

10
5

10
6

10
7

10
8

10
9

FPG

GEMM

GP-AltMin

SoTMM

Figure 11. Comparison of computational complexity of different CE precoding algorithms, Nu = 16.
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6. Conclusions

In this paper, a novel CE precoding scheme for massive MU-MIMO downlink systems
is proposed. Different from existing methods, the CE precoded signal and precoding factor
are designed to make the received signal approximate the transmit symbol as much as
possible. This algorithm employs an AltMin framework that combines the MM method
and the FISTA method to iteratively optimize variables. In particular, the second-order
Taylor expansion and the properties of the massive MU-MIMO channel are employed to
formulate a surrogate function that is effective in facilitating implementation of the MM
technique. Furthermore, this approach is expanded into the DCE precoding design. This
work thoroughly examines the exact property, convergence, and computational complexity
of the suggested algorithm. The simulation findings demonstrate that this algorithm
exhibits favorable uncoded BER performance and possesses computational efficiency,
whether in the CE precoding case or DCE precoding case. In future, we intend to expand
the scope of our work to a wider range of applications, such as combining low-resolution
digital-to-analog converters precoding and CE transmission to further reduce the power
consumption of the system.
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Appendix A. Proof of Lemma 2

First, we can find that fρ(u) is continuous in [−1, 1]NTX , so it is differentiable ev-
erywhere. Suppose u1 and u2 are two different input variables of fρ(u), and satisfy
−1 ≤ u1 ≤ 1 and −1 ≤ u2 ≤ 1, then, we can obtain

| f (u1)− f (u2)| =
∣∣∣∥∥s− H̃u1

∥∥2
2 −

∥∥s− H̃u2
∥∥2

2

∣∣∣. (A1)

Using the matrix/vector operator norm inequality, we can obtain the following in-
equality

| f (u1)− f (u2)| =
∣∣∣∥∥s− H̃u1

∥∥2
2 −

∥∥s− H̃u2
∥∥2

2

∣∣∣
≤

∥∥(s− H̃u1
)
−

(
s− H̃u2

)∥∥2
2

≤
∥∥H̃

∥∥2
2∥u1 − u2∥2

2.

(A2)

On the other hand, since −1 ≤ u1 ≤ 1 and −1 ≤ u2 ≤ 1 hold, there is always

∥u1 − u2∥2 ≤ 2
√

NTX. (A3)

The equality holds if, and only if, u1 or u2 equals 1 and the other variable equals−1. Substituting
(A3) into the last inequality of (A2), we can obtain the upper bound of | f (u1)− f (u2)| as

| f (u1)− f (u2)| ≤ 2
√

Nt
∥∥H̃

∥∥2
2∥u1 − u2∥2. (A4)
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According to
∣∣ fρ(u1)− fρ(u2)

∣∣/∥u1 − u2∥2 [37], we can obtain that (A4) is bounded as

L = 2
√

NTX
∥∥H̃

∥∥2
2, (A5)

where L is a positive constant with
∥∥H̃

∥∥2
2 ̸= 0.

Appendix B. Proof of Theorem 2

It is pointed out in [38] that gradient iteration uk+1 = zk − µ−1∇uGρ

(
zk
∣∣∣uk

)
can be

regarded as the proximal regularization of the linearized function G at xk [39]. There-
fore, in the proposed SoTMM algorithm, the updated uk+1 in (20) can be equivalently
rewritten as

uk+1 = min
u

µk
2

∥∥∥∥uk −
(

zk − 1
µ
∇uGρ

(
zk
∣∣∣uk

))∥∥∥∥2

2
+ IV3(u), (A6)

where IV3(·) is the indicator function, that is, when u ∈ V3, IV3(u) = 0; when u /∈ V3,
IV3(u) = ∞. The first-order optimality condition of (A6) at point uk+1 is

µ
(

uk+1 − zk
)
+∇uGρ

(
zk
∣∣∣uk

)
+ ∂IV3

(
uk+1

)
= 0. (A7)

We assume vk+1 ∈ ∂IV3

(
uk+1

)
, and define ∇F

(
uk+1

)
= µ

(
uk+1 − zk

)
+∇uGρ

(
zk
∣∣∣uk

)
according to (20), then, vk+1 = −∇F

(
uk+1

)
. We can further rewrite (A7) as

dist
(

0, µ
(

uk+1 − zk
)
+∇uGρ

(
zk
∣∣∣uk

)
+ ∂IV3

(
uk+1

))
≤

∥∥∥µ
(

uk+1 − zk
)
+∇uGρ

(
zk
∣∣∣uk

)
+ vk+1

∥∥∥
2

=
∥∥∥µ

(
uk+1 − zk

)
+∇uGρ

(
zk
∣∣∣uk

)
−∇F

(
uk+1

)∥∥∥
2

≤
∥∥∥∇uGρ

(
zk
∣∣∣uk

)
−∇F

(
uk+1

)∥∥∥
2︸ ︷︷ ︸

first term

+
∥∥∥µ

(
uk+1 − zk

)∥∥∥
2︸ ︷︷ ︸

second term

,

(A8)

where dist(a,χ) = infb∈χ∥a− b∥2. Next, we will illustrate the convergence of the algorithm
by analyzing the characteristics of the first and second terms of (A8). First, the first term of
(A8) can be written as∥∥∥∇uGρ

(
zk
∣∣∣uk

)
−∇F

(
uk+1

)∥∥∥
2

(a)
=

∥∥∥∇uGρ

(
zk
∣∣∣uk

)
−∇uGρ

(
uk+1

∣∣∣uk+1
)∥∥∥

2

≤
∥∥∥∇uGρ

(
zk
∣∣∣uk

)
−∇uGρ

(
uk

∣∣∣uk
)∥∥∥

2
+

∥∥∥∇uGρ

(
uk

∣∣∣uk
)
−∇uGρ

(
uk+1

∣∣∣uk+1
)∥∥∥

2
(b)
≤ LG

∥∥∥zk − uk
∥∥∥

2
+ LF

∥∥∥uk − uk+1
∥∥∥

2
(c)
= LGαk

∥∥∥uk − uk−1
∥∥∥

2
+ LF

∥∥∥uk − uk+1
∥∥∥

2
,

(A9)

where LG is the Lipschitz constant of Gρ, and LF is the Lipschitz constant of F . In the
derivation of (A9), (a) is derived from ∇uGρ(u|u ) = ∇F (u); (b) is derived from the
Lipschitz continuity of ∇F (u) and ∇uGρ(u|u ); (c) is derived from (23).
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The second term in (A8) is analyzed below. According to (23), we can obtain∥∥∥µ
(

uk+1 − zk
)∥∥∥

2
= µ

∥∥∥uk − uk+1 + αk

(
uk − uk−1

)∥∥∥
2

≤ µ
∥∥∥uk − uk+1

∥∥∥
2
+ µαk

∥∥∥uk − uk−1
∥∥∥

2
.

(A10)

Combining (A8)–(A10), we can obtain

dist
(

0, µ
(

uk+1 − zk
)
+∇uGρ

(
zk|u k

)
+ ∂IV3

(
uk+1

))
≤ LGαk

∥∥∥uk − uk−1
∥∥∥

2
+ LF

∥∥∥uk − uk+1
∥∥∥

2
+ µ

∥∥∥uk − uk+1
∥∥∥

2
+ µαk

∥∥∥uk − uk−1
∥∥∥

2

≤ C
(∥∥∥uk − uk−1

∥∥∥
2
+

∥∥∥uk − uk+1
∥∥∥

2

)
,

(A11)

where C = max((LG + µ)ᾱ, LF + µ). Therefore, it can be seen that F has a finite lower
bound, so let F ∗ ≜ infu∈V3F (u). Consider the following Lemma A1 [40].

Lemma A1. Define u+ = Π
χ

(
z− µ−1∇H(z)

)
, where z = u + α(u− ū), u, ū ∈ χ, 0 ≤ α ≤ ᾱ,

and H(·) have Lipschitz continuous gradients; the feasible set χ is convex; the gradient step size
µ makes the H(·) satisfy the descent property during the iteration process, that is, H(u+) ≤
H(z) + ⟨∇H(z), u+ − z⟩+ µ

2 ∥u+ − z∥2
2. Then, we obtain H(z)−H(u+) ≥ µ

2 ∥u+ − u∥2
2 −

α2∥u− ū∥2
2.

According to the update rule (21) to (23) of the SoTMM algorithm, we can obtain

F
(

uk
)
−F

(
uk+1

)(a)
≥ Gρ

(
uk

∣∣∣uk
)
− Gρ

(
uk+1

∣∣∣uk
)

(b)
≥ µ

2

(∥∥∥uk+1 − uk
∥∥∥2

2
− ᾱ2

∥∥∥uk − uk−1
∥∥∥2

2

)
,

(A12)

where (a) is obtained from F (u) = Gρ(u|u ) and Gρ(u|ū ) ≥ F (ū); (b) is obtained from
Lemma A1 and α ≤ ᾱ. Therefore, it can be obtained

F
(

u0
)
−F

(
uk+1

)
=

k

∑
m=0

(
F (um)−F

(
um+1

))
≥

k

∑
m=0

µ

2
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2
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∥∥∥2

2
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=
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∑
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2
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−
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∑
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µᾱ2

2
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2
+

µ

2
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∥∥∥2

2

=
k−1

∑
m=0

(
1− ᾱ2)µ

2
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∥∥∥2

2
+

µ

2

∥∥∥uk+1 − uk
∥∥∥2

2

≥
k

∑
m=0

(
1− ᾱ2)µ

2

∥∥∥um+1 − um
∥∥∥2

2
.

(A13)

We can further rewrite (A13) as

F
(

u0
)
−F

(
uk+1

)
≥ 1

2

k

∑
m=0

C1

∥∥∥um+1 − um
∥∥∥2

2
+

1
2

k+1

∑
m=1

C1

∥∥∥um − um−1
∥∥∥2

2

(a)
= C2 min

m=0,··· ,k

(∥∥∥um+1 − um
∥∥∥2

2
+

∥∥∥um − um−1
∥∥∥2

2

)
,

(A14)
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where C1 =
(
1− ᾱ2)µ/2 , C2 = (k + 1)C1/2 . (a) is obtained from x0 = x−1. Based on the

relationship a + b ≤
√

2(a2 + b2), (A14) can be further rewritten as

min
m=0,··· ,k

(∥∥∥um+1 − um
∥∥∥2

2
+

∥∥∥um − um−1
∥∥∥2

2

)
≤

√
8

(k + 1)(1− ᾱ2)µ
(F (u0)−F ∗). (A15)

Substituting (A15) into (A11), we can obtain

min
m=0,··· ,k

dist
(

0,∇F
(

um+1
)
+ ∂IV3

(
um+1

))
≤ C min

m=0,··· ,k

(∥∥∥um − um−1
∥∥∥

2
+
∥∥∥um − um+1

∥∥∥
2

)
≤ C

√
8

(k + 1)(1− ᾱ2)µ
(F (u0)−F ∗).

(A16)

In summary, it can be seen that when (A16) is established, um+1 ∈ V3 is the stationary point
of the proposed algorithm.
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