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Abstract: Three-phase induction motors are widely used in various industrial sectors and are re-
sponsible for a significant portion of the total electrical energy consumed. To ensure their efficient
operation, it is necessary to apply control systems with specific algorithms able to estimate rotation
speed accurately and with an adequate response time. However, the angular speed sensors used
in induction motors are generally expensive and unreliable, and they may be unsuitable for use in
hostile environments. This paper presents an algorithm for speed estimation in three-phase induction
motors using the chaotic variable of maximum density. The technique used in this work analyzes the
current signals from the motor power supply without invasive sensors on its structure. The results
show that speed estimation is achieved with a response time lower than that obtained by classical
techniques based on the Fourier Transform. This technique allows for the provision of motor shaft
speed values when operated under variable load.

Keywords: chaos; stochastic process; time series; three-phase induction motors

1. Introduction

Three-phase induction motors (TIMs) are widely used in various industrial envi-
ronments mainly due to their characteristics: versatility, low cost, robustness, and high
efficiency. However, the intense use of TIMs is also responsible for a significant portion of
the total electricity consumption in the industry, accounting for about 68% [1]. Therefore,
continuous observation is necessary to improve energy efficiency in their applications.
For this reason, several studies have presented speed control, fault diagnosis, and esti-
mation methods in TIMs, aiming to reduce their electrical energy consumption without
compromising their dynamic performance.

Conceived initially as constant-speed electric motors, TIMs dramatically expanded
their applications through the advent of Variable-Frequency Drives (VFDs), which, in turn,
made it possible to control the operating parameters of these electric machines, such as
speed and torque. As an example of the potential for efficient energy use in this equipment,
we can observe that the law of similarity of rotors describes energy consumption in fluid
pumping applications by centrifugal pumps. That is, parameters such as power and torque
vary proportionally with the cube and square of the speed, respectively [2]. There is a 30%
speed reduction and a 66% decrease in power required for operation in this application.
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TIMs are also known to be nonlinear dynamic systems. Their parameters, such as
resistance, current, and inductance, vary with time and operating modes. The accuracy of
the speed estimation based on these parameters strongly depends on the need to fine-tune
these parameters included in the algorithm used. Consequently, any incompatibility of
the parameters can imply instability of the frequency inverter and errors in the speed
estimation [2].

Sensorless techniques are highlighted, with their main advantages being a reduction in
the complexity of the equipment structure, low cost, controller simplification, elimination
of the need for cables, better noise immunity, increased reliability, and lower maintenance
requirements. Furthermore, the angular speed sensors used in induction motors are
generally expensive and unreliable [3]. Likewise, hostile environments usually require
induction motors to operate without mechanical sensors [4,5]. Speed estimation can
generally be performed using two approaches: direct measurement by a harmonics injection
and through the supply of TIM currents or voltage signals. These approaches use specific
algorithms that replace the rotor position sensor, thus eliminating the need to install a
mechanical position sensor on the motor shaft [6,7].

In addition to the classical techniques, we can observe the nature of chaotic signals and
how they have helpful information for speed estimation. Chaotic signals can be present
in nonlinear dynamic systems and are characterized through several techniques in the
literature. Several electrical systems exhibit chaotic signals with distinct features, including
their apparent randomness, stemming from their non-repetitive nature and a significant
reliance on their initial conditions. For these reasons, studies of chaotic signals, especially
in electrical systems, become interesting, as these signals have essential information that
could, at first glance, be mistakenly interpreted as noise.

Within the concept of a chaos analysis, the SAC-DM (Signal Analysis based on Chaos
using Density of Maxima) technique has been extensively explored in analyzing the be-
havior of brushless direct-current (BLDC) motors [8–10], internal combustion engines
(ICEs) [11], and induction motors (IMs) [12], mainly due to its high sensitivity to small
changes in a motor’s behavior, which can indicate anything from incipient failures to
variations in the shaft rotation speed, as will be seen for induction motors for the first time
in this work.

In the next section, we present the state of the art related to the topic of this article,
which identifies the originality of the proposed technique and its main contributions.

2. State of the Art

Table 1 shows a selection of recent studies that have utilized the armature current from
three-phase induction motors to estimate shaft rotation speeds, demonstrating a range of
signal processing techniques. These techniques vary primarily by their signal processing
domain, leading to differences in estimation response times and accuracy, as measured by
relative percentage errors.

It can also be seen that chaos theory was used for the first time to estimate speed in
induction motors, using a hybrid approach (time/frequency), obtaining results compatible
with those found in the state of the art, as well as eliminating the use of engine nameplate
data to implement the technique, contrary to what happens in works based on the engine
model or equivalent circuit.

This paper aims to present an algorithm for speed estimation through current signals
at TIM terminals, using the chaotic component of the resulting signal. Among the main
innovation items and contributions of this work, we can highlight the following:

1. This work marks the first instance of applying chaos theory to predict the rotational
speed of induction motor shafts.

2. The presented technique is based on a hybrid, one-dimensional, time domain approach
using the frequency of occurrence of peaks in the current signal, providing significant
effectiveness in the estimation and a shorter response time than most related work, as
well as eliminating the use of engine nameplate data to implement the technique.
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Table 1. Comparison between the main techniques for induction motors speed estimation.

Work Domain Technique Response
Time

Relative
Error

[13] Frequency Chirp—z transform 0.2 s <0.16%
[14] Time Mathematical motor model 1.2 s -
[15] Frequency Modified Prony Method 0.3 s 0.15%
[16] Frequency Adaptive Sliding Window 0.1 s 1%
[17] Time Rotor flux second derivative 0.05 s -
[18] Time Mathematical motor model 1 s 1%

[7] Frequency Hilbert Transform and Goertzel
Algorithm 1 s <0.15%

[19] Time TIM equivalent circuit - -
[20] Frequency FFT - 0.9%

[3] Time Reactive-power-based model
reference - 0.5% to 1.5%

[21] Frequency Sliding-mode observer (SMO) - -
Proposed
Article

Time/
Frequency Chaos theory (SAC-DM) 0.2 s 0.31%

3. Signal Analysis Based on Chaos Using Density of Maxima (SAC-DM)

The methodological innovation introduced by the authors in [22] facilitates the robust
identification of chaotic dynamics across diverse systems, predicated upon a fundamental
time-series analysis of measurable system parameters. This framework has been meticu-
lously validated through a rigorous application of the Hamming distance metric, detailed
comprehensively in [23]. Importantly, this framework not only facilitates the accurate
identification of chaos but also introduces a new method for measuring the correlation
length within chaotic dynamics—a task that has traditionally required a significant amount
of data and time resources. This challenge is elegantly surmounted by a straightforward
measure of the density of maxima, calculated as the ratio of maxima occurrences within a
specified time interval. Consequently, this technique transcends chaos identification, serv-
ing as the cornerstone for developing signal processing methodologies rooted in variable
chaotic maximum density, collectively denominated as Signal Analysis based on Chaos
using Density of Maxima (SAC-DM) [9,10]. Through the proposed analytical framework,
characterized by the minimal signal sample in time denoted as qi(t), the chaotic behavior
within the system under scrutiny, exemplified herein by the TIM armature current signal,
is meticulously delineated.

To render this paper self-contained, we shall elucidate the fundamental concept un-
derlying the computation of correlation length, typically requiring substantial data, via
SAC-DM, which necessitates only scant data. Let us consider the interval [t, t + δt]. The
signal sample qi(t) evolves and oscillates, yielding a local maximum. For sufficiently
small δt, it follows that the first derivative at time q′i(t) > 0 and q′i(t + δt) < 0, ensuring
−q′′i (t)δt > q′i(t) > 0. The joint probability P(q′i, q′′i ) serves to compute the average maxi-
mum density, denoted as ⟨ρi⟩. Therefore, the likelihood of finding a maximum within the
interval [t, t + δt] is directly proportional to the integral function that covers the specified
interval, given by

⟨ρi⟩ ≡ 1
δt

∫ 0

−∞
dq′′i

∫ −q′′i δt

0
dq′iP(q

′
i, q′′i )

=
∫ 0

−∞
dq′′i q′′i P(0, q′′i ) (1)

The mean values of the terms q′i and q′′i tend to be zero due to the statistical properties
of the mean number of maxima, which are invariant under time translation. Through the
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smallest instances of q′i and q′′i , the properties of P(q′i, q′′i ) can be achieved, and its variances
are directly related to the correlation function:

Ci(δt) = ⟨qi(t + δt)qi(t)⟩ (2)

Deriving Ci(δt), we obtain

〈
q′i

2
〉

= −d2Ci(δt)
d(δt)2

∣∣∣∣
δt=0〈

q′′i
2
〉

=
d4Ci(δt)
d(δt)4

∣∣∣∣
δt=0

(3)

The joint probability distribution can be constructed using the maximum entropy
principle for qi and its derivatives presented in the previous equations. After implementing
algebraic calculations, the integration of qi leads to P(q′i, q′′i )’, shown as follows:

P(0, q′′i ) =
1

2π

1√
⟨q′2i ⟩⟨q′′2i ⟩

exp

(
−1

2
q′′2i
⟨q′′2i ⟩

)
(4)

The expression depicted in Equation (4) provides a means to ascertain the density of
maxima with the autocorrelation function. Equations (1)–(4) can be employed to derive ρi,
after some algebraic manipulation, as follows:

⟨ρi⟩ =
1

2π

√
⟨q′′2i ⟩
⟨q′2i ⟩

=
1

2π

√√√√√ d4Ci
d(δt)4 (0)

− d2Ci
d(δt)2 (0)

(5)

As conventionally recognized, the correlation length τ is deduced from the correlation
function, typically interpreted as the width at half maximum. Employing the fitting function
C(t) = cos(κt), we establish κτ = π/3. Consequently, from Equations (3) and (5), one
deduces the conclusion that ⟨ρi⟩ = κ/(2π). This establishes a relationship between the
density of maxima and the correlation length, expressed as τ = 1/(6⟨ρi⟩). Thus, we can
readily infer the correlation length utilizing a simple measure provided by SAC-DM.

This framework offers a new quantity that appears from the chaotic behavior present
in a stochastic system. Having proven the chaotic behavior of a mechanical system through
the analysis of a signal emitted by it, Equation (6) can be inferred from time windows ∆t,
as has been proven in previous work [12]:

⟨ρi⟩ = ⟨SAC − DM⟩ = Number of Peaks
∆t

(6)

Starting from this section, the experimental chaotic component will be known as
SAC-DM. This relation offers a simple way of estimating the speed of the studied system
since it is verified through the results that, for each value of the TIM operation speed,
there is a distinct range of values of the SAC-DM. In this way, it is possible to link the
shaft rotation speed with the value obtained through the SAC-DM chaotic variable of
the armature current signal of an induction motor, allowing for the rotation speed to be
estimated in real time through the SAC-DM value. To achieve this, it is necessary to confirm
the chaotic/deterministic behavior of the armature current signal, whose theoretical basis
used for this purpose will be the symbol tree test and the 0-1 test for chaos, presented in
the following sections.

4. Symbol Tree Test

Since the discovery of chaotic time series, researchers have been dedicated to discern-
ing whether the signal acquired in an experiment exhibits chaotic or random characteristics.
As previously mentioned, chaotic signals possess distinct features required for accurate
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classification. The approach outlined by [24] involves symbolic techniques to test for
determinism in time series.

At a specific level within the symbolic tree, the behavior of the symbolic spectrum
differs significantly between deterministic and stochastic time series. In the case of deter-
ministic time series, the repeatability of the symbolic spectrum yields positive results, in
contrast to what is observed in stochastic time series. These applications were carried out
on simulated chaotic time series, such as the logistic map and the Henon map, as well as
on stochastic time series, including Gaussian white noise.

The conversion of a time series (xi) of length N into a symbolic sequence (Si) is
accomplished by subjecting it to a threshold function as follows:

{xi} → {Si}, i = 1, 2, . . . , N (7)

Here, Si ∈ (0, 1). Therefore, the threshold function is defined as follows:

If xi < median({xi}),Si ≡ 0 (8)

If xi > median({xi}),Si ≡ 1 (9)

The symbol tree is constructed from the sequence of symbols Si, as presented in Figure 1.

P00

P0

P01

P000 P001 P010 P011

P10

P1

P11

P100 P101 P110 P111

... ... ... .........
Figure 1. Symbol tree. Adapted from [24].

The symbol tree is structured so that each term symbolizes the probability of a particu-
lar sequence, as denoted by its corresponding subscripts, within the symbolic sequence. For
example, P010 is the probability of observing the sequence 010 in the sequence of symbols.
Each row of the symbol tree corresponds to a level, with the first row denoted as L = 1, the
second as L = 2, and so on. In a binary system, each row presents probabilities equal to 2L,
implying that, at a certain level, for example, L = 2, there will be four different types of
probabilities. These rows are defined as the symbol spectrum of level L [24].

In [25], the authors suggest that the symbol tree test begins by dividing a binary series
of length N into subsets of length l. This division can be performed in two ways: first, by
distributing into disjoint subsets of l and, second, by randomly selecting subsets of l.

The next step is the level L selection of the symbol tree. For each division of a binary
series of length l, there will be l − (L − l) types of probabilities (referred to as “words”
in the cited work). Therefore, the second element of one word will be the first element
of the next word. It is recommended that each word be converted into decimal form to
expedite the symbol spectrum test calculations. As an example of the steps for conducting
the symbol spectrum test, consider a time series divided such that l = 6. In this case, one of
the divisions might be {0, 1, 0, 0, 1, 0}, and if L = 2 is chosen, the divisions would become
{01, 10, 00, 01, 10}, which, in decimal form, would be {1, 2, 0, 1, 2}.

Deterministic series should exhibit a significant overlap in their spectra, unlike random
series, where this characteristic will be sparse between one spectrum and the next [26].
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5. The 0-1 Test for Chaos

The 0-1 chaos test, an algorithm designed to determine whether time series data
exhibit chaotic behavior, was developed specifically for deterministic series, as outlined
in [27]. The theoretical foundation of the 0-1 test is provided in [28], with a practical
application guide offered in [29]. Opposite to the method for calculating the maximum
Lyapunov exponent, this test can be directly applied to time series data without the need
for phase-space reconstruction. This algorithm processes time series data as its input and
yields a binary outcome, signifying whether the underlying dynamical system exhibits
chaotic behavior. This test can be applied to any deterministic dynamical system, including
ordinary and partial differential equations, and maps [27].

The 0-1 chaos test is performed as follows: consider a time series ϕ(j), for j = 1, ..., N.
For c ∈ (0, π), the conversion variables are calculated as shown below:

pc(n) =
n

∑
j=1

ϕ(j) cos(jc) (10)

qc(n) =
n

∑
j=1

ϕ(j) sin(jc), (11)

where n = 1, 2, ..., N.
The diffusive or non-diffusive behavior of the conversion variables pc and qc can

be investigated by analyzing the mean square displacement defined by Mc(n). The tests
performed in the study in [27] ensure that, if the dynamics are regular, this implies that the
mean square displacement will be a limiting function of time, whereas if the dynamics are
chaotic, Mc(n) will grow linearly in time. Equation (12) shows the expression for the mean
square displacement in terms of the conversion variables:

Mc(n) = lim
N→∞

1
N

N

∑
j=1

{
[pc(j + n)− pc(j)]2 + [qc(j + n)− qc(j)]2

}
(12)

The above equation requires the condition n ≪ N to be true, and this condition is
guaranteed by calculating Mc(n) only for n ≤ ncut, where ncut = N/10 yields practical
results [29].

Furthermore, the authors suggest that the chaos test is based on the growth of
the value of Mc(n) as a function of n. For each value of c ∈ (0, π), Mc(n) takes the
form of Equation (13), where V(c) is the slope adjustment term, and Vosc(c, n) is the
oscillatory term.

Mc(n) = V(c)n + Vosc(c, n) + e(c, n), (13)

where e(c, n) is the error term, and, if e(c, n) → 0 as n → ∞, it is given by

Vosc(c, n) = (Eϕ)2
(

1 − 1 − cos(nc)
1 − cos(c)

)
(14)

In Equation (15), E[ϕ] is the expected value of the time series, given by

E[ϕ] =
1
N

N

∑
j=1

ϕj (15)

Without the error term e(c, n), shown in Equation (5), Mc(n) takes the form of a cosine
curve with slope V(c). It is important to note that the term V(c) is constant for a given
value of c. According to [26], this slope characterizes the dynamics. To determine the
slope, the subtraction of the term Vosc from Mc(n) is performed, creating a modified mean
square displacement:
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Dc(n) = Mc(n)− Vosc(c, n) (16)

Finally, the calculation determines the asymptotic growth rate Kc of the modified mean
square displacement Dc. In [29], the authors present two methods for determining the
term Kc, namely, the regression method and the correlation method. This work uses the
correlation method presented in the cited work.

The asymptotic growth rate is the correlation coefficient of the following vectors:

ξ = (1, 2, . . . , ncut) (17)

∆ = (Dc(1), Dc(2), . . . , Dc(ncut)) (18)

Hence, given two vectors, x and y, of length q, the covariance and variance are
defined as

cov(x, y) =
1
q

q

∑
j=1

(xj − x̄)(yj − ȳ) (19)

x̄ =
1
q

q

∑
j=1

xj (20)

var(x) = cov(x, x) (21)

And then, for the correlation coefficient:

Kc = corr(ξ, ∆) =
cov(ξ, ∆)√

var(ξ)var(∆)
∈ [−1, 1] (22)

The term Kc measures the strength of the correlation of Dc with linear growth, and,
practically, the correlation method outperforms the regression method. Its values are Kc = 1
for chaotic dynamics and Kc = 0 for regular dynamics.

6. Multiresolution Analysis (MRA)

Multiresolution is an algorithm that applies the discrete wavelet transform using a
multistage filter bank, with the wavelet function Ψ(t) used as a low-pass filter and the dual
of this function used as a high-pass filter. In multiresolution theory, an original discrete
signal is decomposed into two components, A1 (signal approximation) and D1 (signal
detail), by a low-pass filter and a high-pass filter, respectively. For the second level, the
approximation A1 is decomposed into another approximation, A2, and a detail, D2; this
procedure is repeated for the third level, the fourth, and so on.

In this work, the signals resulting from the multiplication of the TIM armature current
signals are decomposed into one approximation and seven details, with each signal primar-
ily composing a specific frequency range, which depends on the acquisition rate used. In
this work, the acquisition rate was 30 thousand samples per second, and the distribution of
frequencies between the decomposed signals is shown in Table 2.

Table 2. Frequency window according to the MRA component.

MRA Component Frequency Window (Hz)

D1 15,000–7500
D2 7500–3750
D3 3750–1875
D4 1875–937.5
D5 937.5–468.7
D6 468.7–234.4
D7 234.4–117.2
A7 117.2–0
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To isolate the component of the signal that causes chaotic behavior, the oscillatory
component in the frequency range of 0 Hz to 117 Hz (represented by approximation A7 in
Figure 2) needs to be eliminated. After this step, the remaining details will only process the
desired component of the signal.

Time (s)

A
m

p
li

tu
d

e 
(A

.A
)

Multiplication of current signals ia x ib (0% Load)

Detail D1: Frequency band (15000 Hz — 7500 Hz )

Detail D6: Frequency band (469 Hz — 234 Hz )

Approx. A7: Frequency band (117 Hz — 0 Hz )

Figure 2. Decomposition by MRA.

After the MRA decomposition step of the resulting signal from the multiplication of
phases ia × ib, it is necessary to confirm whether the signal is chaotic. For this purpose,
determinism tests (symbol tree test) and chaos tests (0-1 test) were conducted. The test
results can be found in Section 8.

7. Methodology

A set of equipment that integrates the test bench allows for the application of controlled
loads on a TIM (shown in Figure 3), which makes it possible to reach a wide range of torque,
from rest to values above the nominal 20 N.m, according to the motor manufacturer.

Figure 3 show the TIM test bench. It consists of a (1) DC motor/generator VARIMOT
BN 132S with rated power of 5.5 kW. The DC motor/generator simulates a load coupled
to the shaft of the three-phase induction motor; (2) HBM T40B-200 torque transducer that
can operate at speeds of up to 20,000 rpm, up to 200 N.m, accuracy of 0.1 N.m of full scale;
(3) bearing bracket used in the alignment of the shafts; (4) WEG W22 Plus three-phase
induction motor with a nominal power of 3.7 kW, 380 Vca supply voltage at 60 Hz, 4-pole,
and nominal rotation at 1725 rpm. Its function is supply torque to the set; (5) Variable
transformer is connected to a bridge rectifier to change the voltage field circuit of the
motor/generator. Therefore, DC motor/generator can simulate a variable load.

The TIM can be started by full voltage or through the VFD (model WEG CFW700).
With the VFD, it is possible to carry out experiments in different speed and torque ranges,
which allows for the control of the speed of the motor shaft through frequency modulation.
The test bench DC generator imparts the load to the TIM shaft by electromagnetic braking.
The applied torque is controlled by varying the field current. Additionally, the test bench
has the data acquisition board NI USB-6215, manufactured by National Instruments, with a
16-bit resolution and a maximum acquisition rate of 250,000 samples per second. Operating
speeds were measured using the Minipa digital tachometer, model MDT 2238b, with a
resolution of 1 rpm and read accuracy ± 0.05 + 1 digit. Current acquisition was performed
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using the hall-effect-based linear current sensor ACS712, with a nominal current of 20 A
and a total measurement error of approximately 1.5%.

1
2 3 4

5

Figure 3. Motor test bench used in experiments.

The steps of the algorithm are described as follows (Figure 4): (1) the DAQ NI-USB
6215 data acquisition system uses two phases of motor supply (current signals ia and ib) to
acquire data at a sampling rate of 30,000 samples per second; (2) then the current instanta-
neous signals are amplified by multiplication (ia × ib) to improve the SAC-DM’s sensitivity
under conditions of the motor operating at variable speed (empirically detected); (3) the
result signal (ia × ib) is processed by multiresolution analysis (Wavelet) to eliminate the
oscillatory signal component; (4) with the result signal without the oscillatory component,
the rate local maxima per second from the signal (SAC-DM) can be calculated; (5) then
returns the equation that relates the motor speed with the SAC-DM; (6) parallel to the main
signal processing the FFT is used for calibration.

Each phase of the original current signal has a frequency of around 60 Hz (full voltage–
utility frequency). However, this value is modified by multiplying these signals, which
results in an oscillatory component of approximately 120 Hz. A bank of filters described by
the multiresolution analysis (MRA) is used to eliminate the oscillatory signal component.

As will be seen later, through the processing of the TIM current signal, the SAC-DM
values vary linearly with the values of the operating speed. With this, the TIM operation
speed can be estimated from the chaotic variable, requiring only a short sampling of the
original signal. However, when the algorithm is applied to a TIM for the first time, it
will be necessary to carry out a calibration process. This process represented in step 5
in Figure 2 consists of a function based on the FFT of the signal, which will estimate the
speed for specific TIM operation conditions. In the calibration process, the TIM must have
its load slowly varied from a load close to zero to values above or close to the nominal
value (in this work, we use a load value 140% higher than the nominal value). During
this process, the FFT is calculated for different values and loads while the SAC-DM is
calculated. Through FFT, it is possible to obtain the rotation speed on the shaft, which is
correlated with the respective calculated SAC-DM value; the relationship between both
is linear. The equation of the straight line between the shaft speed value measured by the
FFT and the corresponding SAC-DM value provides the calibration function. After this
calibration process, the function provides the speed value based on the calculated value
from the SAC-DM. The Results Section explains in detail how the calibration process is
carried out.

The results obtained by the algorithm are presented in the next section, with the motor
operating by direct start and drive through a frequency inverter.
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Load

TIM

ia ibic

ia ia ibx

ib

DAQ

Computer

DAQ

USB - 6215

FFT

1

2

3

4 45

46

Figure 4. Representation of the proposed algorithm.

8. Results

It is not always possible to obtain a mathematical model or a graphical form from
signals obtained through experimental tests that indicate a deterministic series. Time series
obtained through the observation of systems can exhibit complex interactions between
deterministic and stochastic components [12].

The symbol tree test proposed in [25] was employed in this study to determine whether
a time series is deterministic. The symbol tree test involves analyzing a time series segment,
in this case, the electrical current signal. If the series is deterministic, the spectra of each
partition will cluster and overlap. If the signal is widely scattered and a pattern cannot be
observed, the series may be considered stochastic.

Choosing 20 overlapping spectra, as suggested by the previously mentioned authors,
tends to be sufficient for determining the similarity of the spectra. Therefore, N was chosen
to be 20,000, corresponding to just under one second, considering that a sampling frequency
of 30 kHz was used. The partition length was set to l = 1000, and the grouping of “words”
was defined as L = 6. With these parameters, the graph has 64 words with 20 overlapping
spectra, as observed in Figure 5.

The 0-1 test method proposed in [29] was applied to characterize the electrical current
signal from the TIM as chaotic, t. This interactive method provides a direct interpretation
of the result. When the data cluster around a value of 0, it suggests that the series does
not exhibit chaotic behavior. However, if the values concentrate around a value of 1, this
indicates the presence of chaos in the series.

The result of the 0-1 test applied to the TIM electrical current can be seen in Figure 6.
It can be seen that the data consistently cluster around a value of 1, with a median of
0.9934. Therefore, it is reasonable to conclude that the TIM electrical current signal can be
characterized as chaotic.
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Figure 6. The 0–1 test for TIM electrical current.

8.1. Full-Voltage Starting

The results presented in this section refer to the test carried out with the motor driven
by the mains voltage. The experiment parameters are shown in Table 3.

Table 3. Test configuration for full-voltage starting TIM for 840,001 samples at 30,000 samples
per second.

Torque (N.m) Load (%) Speed (rpm) Speed (Hz)

0 0 1797 29.95
4 20 1786 29.77
8 40 1776 29.60

12 60 1764 29.40
16 80 1752 29.20
20 100 1736 28.93
24 120 1722 28.70
28 140 1703 28.38

The speed values were measured using a digital tachometer, as shown in Table 3.
For the experiment, the speed and load range were defined previously. Additionally, the
current signals from the two phases of the TIM supply, phase ia and phase ib, were obtained.
In the first step of the algorithm (as shown in Figure 4), the current signals from the two
phases of the motor supply are acquired. For illustrative purposes, the torque range for
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0% of the rated load was selected; in Figure 7, item (a) depicts the step in which the two
current signals of the TIM are captured. In item (b), these signals are multiplied, and
it was empirically discovered that this process substantially amplifies the effect of the
chaotic signal. The load close to 0% of the nominal value was used as an example because
speed estimation in TIMs presents a challenge in this operating range, considering that the
amplitudes of the current signals related to the motor rotation are low.
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Figure 7. (a) Current signals of two phases of the TIM, (b) result of multiplied TIM phase current
signals.

These signals are multiplied to substantially amplify the chaotic signal effect. The
information remains in the multiplied signal, as will be exposed by the calibration block
and the MRA responses.

The density of maxima (SAC-DM) calculation is performed after the oscillatory compo-
nent is eliminated from the signal, as presented in Equation (6). Figure 8 shows the density
of maxima found in the current signal, with the motor operating at 0% of the rated load.
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Figure 8. The resulting signal from the MRA, with the peaks highlighted within the range. The total
number of peaks is 999.

We obtained the response of the chaotic component for each measured speed value
after running the presented analysis of the TIM. An interval of 28 s was taken from the



Entropy 2024, 26, 361 13 of 22

signal, counting the peaks every 0.2 s, following Equation (6), and the result can be seen in
Figure 9.

Figure 9. Response of SAC-DM values for different percentages of the rated load.

Note that the values obtained from the SAC-DM of the signal shown in Figure 9 have
a linear correlation with time. Furthermore, it is possible to observe that, even for little
variations in the speed range (in the experiment, the most negligible speed variation was
0.17 Hz), the chaotic component exhibits behavior directly proportional to the motor speed
values. The average values µ and the respective standard deviations σX of the SAC-DM
are shown in Table 4.

Table 4. Average and standard deviation of SAC-DM values for each speed.

Load (%) Speed (RPM) Speed (Hz) µ (SAC-DM) σX (SAC-DM)

0 1797 29.95 5033.801 131.4051
20 1786 29.77 4722.342 122.8576
40 1776 29.60 4293.133 115.2456
60 1764 29.40 4109.962 139.0379
80 1752 29.20 3805.229 125.9275
100 1736 28.93 3539.302 120.6895
120 1722 28.70 3316.498 119.6956
140 1703 28.38 3132.571 114.5949

The calibration function estimates the motor speed values for each percentage of the
nominal load. The values obtained through the FFT of the signal are shown in Figure 10.
It is interesting to observe that, in Figure 10, the energy of the frequency component
corresponding to the TIM rotation tends to increase when the rotation moves away from
the synchronous speed of the motor.
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Figure 10. Calibration function.

The high accuracy of the speed values obtained by the FFT of the signal is achieved at
the cost of a high time window. For example, the results presented in Figure 10 are achieved
by processing a 28 s time window of the signal. Despite this, this step is necessary to provide
the speed values associated with the SAC-DM. Table 5 presents a comparison between the
speeds obtained by the FFT and the speed values measured with the digital tachometer.

Table 5. Comparison of the speed values of the experiment and the values obtained by the signal FFT.

Speed (Hz) Speed FFT (Hz) Relative Error

29.95 29.92857 0.0715%
29.77 29.75000 0.0672%
29.60 29.57143 0.0965%
29.40 29.35714 0.1460%
29.20 29.17857 0.0734%
28.93 28.92857 0.0049%
28.70 28.67857 0.0747%
28.38 28.35714 0.0805%

The linear relation between the speed estimated from the FFT and the experimental
speed, with the respective correlation coefficient, can be observed in Figure 11.

Similarly, it is possible to see that there is a linear relation between the speed estimated
using the FFT and the one estimated using the SAC-DM (see Figure 12). From these results,
it is possible to extract Equation (23), which governs the behavior of the curve:

v = 0.00079 · S + 26 (23)
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In Equation (23), v is the estimation speed, and S is the chaotic component of the
SAC-DM.

.

Figure 11. Linear association between the motor speed and the speed obtained by the calibration function.

v = 0.00079 S + 26.

vs.

Figure 12. Linear association between the SAC-DM chaotic component and the estimated speed (FFT).

Figure 13 illustrates a comparative graph between the measured and estimated speeds,
through load/speed variation, with the engine operating with a direct start, which allows
for a visualization of the curves under dynamic load conditions.
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Figure 13. Comparative graph between estimated and measured speeds under variable load conditions.

8.2. Variable-Frequency Drive (VFD) Starting

Full-voltage starting motor applications become limited due to their narrow operating
range. However, Variable-Frequency Drive (VFD) substantially increases the operation
speed range of a TIM, allowing for a greater scope of its use in the industrial sector.

This section presents the results of the application of the SAC-DM technique for speed
estimation, with the TIM driven by a frequency inverter. The parameters selected for this
investigation are shown in Table 6.

Table 6. Test parameters (VFD) for 84,001 samples at 30,000 samples per second.

Speed (rpm) Speed (Hz)

1600 26.667
1500 25.000
1400 23.333
1300 21.667
1200 20.000
1100 18.333
1000 16.667

Unlike the starting voltage analysis, where the percentage of the rated load is obtained
from speed variation, the VFD allows for the modification of the speed by the modulation of
the signal. Thus, it is possible to submit each speed value shown in Table 6 to the percentage
of the rated load to increase our response dataset. The applied load percentages are 0%,
20%, 40%, 60%, and 80%. This section presents the application of the speed estimation
algorithm with the TIM operating at a 0% rated load.

Figure 14 displays the current signals of the TIM when activated by the Variable-
Frequency Drive (VFD). As experiments are conducted across various load ranges, the
signals are shown for illustrative purposes when the motor operates at 1600 rpm, with 0%
of the nominal load. In item (a), the current signals for two phases of the TIM supply, ia
and ib, are presented, both serving as the starting point for the algorithm. In item (b), the
resulting signal from the multiplication between phases ia and ib is displayed.
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Figure 14. (a) Current signals of two phases of the TIM (VFD), (b) signal multiplied ia x ib for 0%
rated load and 1600 rpm (VFD).

Similarly, as presented in the previous section, the current signals are multiplied, and
then the wavelet transform is applied to the resulting signal.

The window of 0.055 s shows the potential of speed estimation through this technique
(Figure 15). Remarkably, despite the significant reduction in the size of the signal data
packet to just 1650 samples, the SAC-DM value, which has a frequency of 8600 Hz, remains
consistent with the averages computed over larger time windows.

Figure 15. The MRA of the signal, with the peaks highlighted (0% load—1600 rpm).
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From the results of the SAC-DM of each speed value, it is possible to observe (Figure 16)
the distribution of the chaotic component as a function of time.

,

SAC–DM corresponding to the operating speed (0% Load)

Figure 16. SAC-DM values for each speed value associated with 0% rated load for variable-frequency
drive (VFD) application.

It is possible to observe again that the linear and constant correlations of the SAC-
DM are associated with each speed as a function of time, even for the significantly more
comprehensive speed range. Table 7 shows the average SAC-DM and the standard devia-
tion associated with the observed speed. The generated calibration function is shown in
Figure 17.

Table 7. Average and standard deviation of SAC-DM values for each speed (0% load) for
VFD application.

Speed (rpm) Speed (Hz) µ (SAC-DM) σX (SAC-DM)

1000 16.667 9852.926 41.776
1100 18.333 9751.972 58.458
1200 20.000 9600.342 48.456
1300 21.667 9382.681 57.294
1400 23.333 9145.814 65.509
1500 25.000 8876.758 67.068
1600 26.667 8452.009 67.292
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Figure 17. Calibration function for 0% of rated load.

The speed values measured with the tachometer and those estimated by the FFT are
shown in Table 8, and a graphical representation can be seen in Figure 18.

Table 8. Comparison of experimental speed values with those obtained by the signal FFT (0% load).

Speed [Tachometer] (Hz) Speed [FFT] (Hz) Relative Error (%)

16.667 16.679 −0.069
18.333 18.321 0.0631
20.000 20.000 0.000
21.667 21.643 0.1114
23.333 23.321 0.0496
25.000 25.000 0.000
26.667 26.643 0.0905

A graphical representation of Table 8 can be seen in Figure 18.

vs.

Figure 18. Linear association between the speed estimated by the calibration function and the speed
obtained by the digital tachometer (0% load).
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Finally, a trend curve is produced, depicting the distribution of the SAC-DM values
alongside their corresponding speeds, as illustrated in Figure 19.

,

v = - 0.007 S + 86.

SAC–DM vs. Speed (FFT) – (0% Load)

Figure 19. Linear association between the SAC-DM chaotic component and the estimated speed (FFT)
with 0% load.

The function that determines the variation in the SAC-DM as a function of speed for
this experiment is as follows:

v = −0.007 · S + 86 (24)

9. Conclusions

This paper presents the development of an algorithm as a method for estimating the
shaft speed of a three-phase induction motor (TIM), with a Signal Analysis based on Chaos
using Density of Maxima (SAC-DM). The algorithm brings the advantages presented in
the literature of a non-invasive technique, thus reducing the need for equipment for its
implementation. The results indicate the potential of the technique for estimating the
speed of a TIM, predominantly when the motor operates under a dynamic load, capable of
detecting a narrow range of speed variations of up to 0.167 Hz (10 rpm).

It should be noted that, while techniques based on the FFT of the signal for speed
estimation are highly accurate, they are also limited by the requirement for stationary
operation of the TIM and the associated high computational effort. In contrast, the SAC-
DM technique offers a much lower time window (0.2 s window—6000 samples) when
compared to estimates obtained through the FFT (28 s—840,000 samples). Additionally, for
TIMs starting via VFD, the speed estimation time can be further reduced to 0.055 s.
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Abbreviations
Description of symbols used in this paper.

Notation Description
ia, ib stator current
Ψt wavelet function
qi(t) signal sample
⟨ρi⟩ maximum theoretical average density
xi time series
Si symbolic series
τ correlation length coefficient
δt variation in time
Ci(δt) autocorrelation function
kc asymptotic growth rate
c random interval (0, π) of the variable translation
N length of the time series
L symbol spectrum level
l partition length
∅(j) observable function constructed from the time series
Mc(n) mean square displacement of the translation variables
Dc(n) modified mean square displacement
qc(n), pc(n) translation variables
D1 . . . Dn detail coefficients of wavelet decomposition (MRA)
A1 . . . An approximation coefficients of wavelet decomposition (MRA)
E[ϕ] time series expectation value function
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