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Abstract: We study epidemic spreading in complex networks by a multiple random walker approach.
Each walker performs an independent simple Markovian random walk on a complex undirected
(ergodic) random graph where we focus on the Barabási–Albert (BA), Erdös–Rényi (ER), and Watts–
Strogatz (WS) types. Both walkers and nodes can be either susceptible (S) or infected and infectious
(I), representing their state of health. Susceptible nodes may be infected by visits of infected walkers,
and susceptible walkers may be infected by visiting infected nodes. No direct transmission of the
disease among walkers (or among nodes) is possible. This model mimics a large class of diseases
such as Dengue and Malaria with the transmission of the disease via vectors (mosquitoes). Infected
walkers may die during the time span of their infection, introducing an additional compartment D
of dead walkers. Contrary to the walkers, there is no mortality of infected nodes. Infected nodes
always recover from their infection after a random finite time span. This assumption is based on
the observation that infectious vectors (mosquitoes) are not ill and do not die from the infection.
The infectious time spans of nodes and walkers, and the survival times of infected walkers, are
represented by independent random variables. We derive stochastic evolution equations for the
mean-field compartmental populations with the mortality of walkers and delayed transitions among
the compartments. From linear stability analysis, we derive the basic reproduction numbers RM, R0

with and without mortality, respectively, and prove that RM < R0. For RM, R0 > 1, the healthy
state is unstable, whereas for zero mortality, a stable endemic equilibrium exists (independent of
the initial conditions), which we obtained explicitly. We observed that the solutions of the random
walk simulations in the considered networks agree well with the mean-field solutions for strongly
connected graph topologies, whereas less well for weakly connected structures and for diseases with
high mortality. Our model has applications beyond epidemic dynamics, for instance in the kinetics of
chemical reactions, the propagation of contaminants, wood fires, and others.

Keywords: epidemic spreading; compartment model with mortality; memory effects; random walks;
random graphs

1. Introduction

The sudden or recurrent emergence of epidemics has been an everlasting threat to
humanity. Highly infectious and fatal diseases such as pestilence, typhus, cholera, and
leprosy were among the main causes of death in medieval times in Europe and, until the
20th century, a major scourge of humanity [1]. This permanent challenge has naturally
driven interest in protective measures and predictive models.

The systematic mathematical study of epidemic spreading began only a century ago
with the seminal work of Kermack and McKendrick [2]. They were the first to introduce
what we call currently a “compartment model”. In their so-called SIR model, the individuals
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are categorized into the compartments susceptible (S), infected (I), and recovered (immune)
(R), characterizing the states of their health. While standard SIR-type models are able to
capture the main features of a certain class of infectious diseases such as mumps, measles,
and rubella, they fail to describe persistent oscillatory behaviors and spontaneous outbursts,
which are observed in many epidemics.

A large amount of work still is devoted to compartmental models [3,4], where an
impressive field has emerged [5,6], and the interest was again considerably enhanced by the
context of the COVID-19 pandemic [7]. In addition to purely macroscopic models, the study
of epidemic dynamics in complex networks has attracted considerable attention [8–10]. In
these works, the importance of the graph topology for spreading phenomena has been
highlighted. In particular, Pastor-Satorras and Vespignani showed that, for a wide range of
scale-free networks, no critical threshold for epidemic spreading exists [9]. The topological
features crucial for epidemic spreading include the small world property (short average
network distances (the network “distance” of two nodes is the number of edges of the
shortest path connecting them) and a high clustering coefficient, measuring the existence of
redundant paths between pairs of nodes [11,12].

Further interesting directions are represented by combinations of network science
and stochastic compartmental models [13–17]. Such models include Markovian and non-
Markovian approaches [18–22], where non-Markovianity is introduced by non-exponentially
distributed sojourn times in the compartments [23,24]. In these works, explicit formulae
for the endemic equilibrium in terms of mean compartmental sojourn times and the basic
reproduction number are derived and numerically validated in random walk simulations.
A further non-Markovian model appeared recently [25], where non-Markovianity comes
into play by introducing an “age of infection”, allowing individuals to recover when
their infection period exceeds a certain threshold, generalizing the initial idea of Kermack
and McKendrick.

Other works emphasize the importance of the spatial heterogeneity effects of infection
patterns in epidemic spreading phenomena [26]. The role of local clusters in generating
periodic epidemic outbursts has been highlighted in the references [27,28]. A cluster model
to explain periodic behavior was introduced a long time ago [29]. The role of the complex
interplay of retardation (delayed compartmental transitions) and fluctuations for oscillatory
behavior has been investigated in one of our recent works [22].

The aim of the present paper is to study the spreading of a certain class of vector-
transmitted diseases in a population of individuals (random walkers) moving on complex
graphs aiming to mimic human mobility patterns in complex environments such as cities,
streets, and transportation networks. Essential elements in our model are the accounting
of the mortality of infected individuals (random walkers) and an indirect transmission
pathway via vectors (nodes of the network). The random walkers are mimicking individuals
that are navigating on the network. The nodes of the network are assumed to mimic the
vectors (for instance, the mosquitoes in the case of Malaria). The reason why we chose the
nodes of the network to mimic the vectors is based on the observation that, in real-world
situations, the vectors live in stationary well-defined areas such as swamps and others. The
nodes are immortal, since we assume that the vectors (mosquitoes) are not falling ill during
their infection time span.

The present paper is organized as follows. In Section 2, we establish a stochastic
mean-field model for the evolution of the compartmental populations. The special case
of zero mortality is considered in Section 3, where we obtain an explicit formula for the
endemic equilibrium (stationary constant compartmental populations for infinite time). In
this way, we identify a crucial parameter controlling the stability of the healthy state having
the interpretation of the basic reproduction number R0 (Section 4), where the healthy state
is stable for R0 < 1 and unstable for R0 > 1. A detailed proof of the stability of the endemic
state for R0 > 1 is provided in Appendix A.2. In Section 5, we analyze the stability of
the healthy state with mortality, derive the basic reproduction number RM, and prove
that RM < R0, i.e., mortality reduces the basic reproduction number. In Section 6, we
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test the robustness of our mean-field model under “complex real-world conditions” by
implementing its assumptions in multiple random random walker simulations on Barabási–
Albert (BA)-, Erdös–Rényi (ER)-, and Watts–Strogatz (WS)-type graphs (see [14,15,30] and
Appendix A.4). These graph types have different complexity and connectivity features
with an impact on the spreading.

2. Compartmental Model with Mortality

The goal of this section is to develop a mean-field model for a certain class of diseases
with indirect infection transmission via vectors, which includes Dengue, Malaria (trans-
mission by mosquitoes), pestilence (transmission by fleas), and others [8,31]. To that end,
we consider a population of Z random walkers navigating independently on a connected
(ergodic) graph. Each walker performs independent steps from one to another connected
node on the network (specified subsequently). We assume that walkers and nodes are in
one of the compartments, S (susceptible) and I (infected). In addition, walkers can be in
compartment D (dead), whereas nodes never die.

Let ZS(t), ZI(t) (NS(t), NI(t)) be the number of walkers (nodes) in compartments S
and I and ZD(t) the non-decreasing number of walkers (in compartment D) that died from
the disease up to time t. We consider Z = ZI(t) + ZS(t) + ZD(t) walkers (Z independent of
time) and a constant number of nodes N = NI(t) + NS(t). We assume at instant t = 0 the
first spontaneous occurrence of the disease of a few infected walkers ZI(0) ≪ Z or nodes
NI(0) ≪ N (and no dead walkers ZD(0) = 0). We introduce the compartmental fractions
Sw(t) =

ZS(t)
Z , Jw(t) =

ZI(t)
Z , dw(t) =

ZD(t)
Z for the walkers (normalized with respect to Z)

with Sw(t) + Jw(t) + dw(t) = 1 and Sn(t) =
NS(t)

N , Jn(t) =
NI(t)

N with Sn(t) + Jn(t) = 1. To
limit the complexity of our model, we do not consider the demographic evolution, i.e., there
are no natural birth and death processes. We denote with Aw(t),An(t) the infection rates
(rates of transitions S → I) of walkers and nodes, respectively. We assume the following
simple bi-linear forms:

Aw(t) = Aw[Sw(t), Jn(t)] = βwSw(t)Jn(t)

An(t) = An[Sn(t), Jw(t)] = βnSn(t)Jw(t)
(1)

with constant rate parameters βw, βn > 0 (independent of time). Aw(t) indicates the
infection rate of walkers, where its dependence on Sw, Jn is telling us that susceptible
walkers can be infected only by (visiting) infected nodes. An(t) stands for the infection rate
of nodes depending on Sn(t), Jw(t) indicating that susceptible nodes can only be infected
by (visits of) infected walkers. There are no direct transmissions among walkers and among
nodes. Infections of walkers (nodes) take place with specific transmission probabilities
in the contact of a node and a walker, which are captured by (yet not identical to) the
transmission rate constants βw,n.

The infection time spans tw,n
I > 0 without mortality (waiting times in compartment

I) of walkers and nodes are assumed to be independent random variables drawn from
specific distributions specified hereafter. As the only admitted death process, we assume
that infected walkers may die within the time span of their infection. To capture this kind
of mortality caused by the disease, we introduce a further independent random variable
tM > 0, which indicates the life span of an infected walker. Both the infection and life spans
tw

I , tM are counted from the time instant of the infection. A walker survives the disease if
tM > tw

I and dies from it for tM < tw
I . With these assumptions, we first give a stochastic

formulation of the evolution equations:
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d
dt

Sw(t) = −Aw(t) + ⟨Aw(t − tw
I )Θ(tM − tw

I )⟩+ Jw(0)⟨δ(t − tw
I )Θ(tM − tw

I )⟩

d
dt

Jw(t) = Aw(t)− ⟨Aw(t − tw
I )Θ(tM − tw

I ) ⟩ − Jw(0)⟨ δ(t − tw
I )Θ(tM − tw

I ) ⟩ −
d
dt

dw(t)

d
dt

dw(t) = ⟨ Aw(t − tM)Θ(tw
I − tM) ⟩+ Jw(0)⟨δ(t − tM)Θ(tw

I − tM)⟩

d
dt

Sn(t) = −An(t) + ⟨An(t − tn
I )⟩+ Jn(0)⟨δ(t − tn

I )⟩

d
dt

Jn(t) = − d
dt

Sn(t)

(2)

where d
dt dw(t) indicates the (non-negative) mortality rate of walkers. We indicate with ⟨..⟩

the average over the contained (set of independent) random variables tw
I , tn

I , tM outlined
hereafter and in Appendix A.1. Θ(..) stands for the Heaviside function (A2), and δ(..)
for Dirac’s δ-distribution. An epidemic always starts from “natural” initial conditions
Sw(0) = 1, Sn(0) = 1 (globally healthy state), where, at t = 0, the first infections occur
spontaneously and can be “generated” by adding the source terms Jw,n(0)δ(t) to the
infection rates of walkers and nodes, respectively. Equivalently, we introduce initial
conditions Sw,n(0) = 1 − Jw,n(0) (dw(0) = 0) with Jw,n(0) > 0 consisting typically of a few
infected walkers and/or nodes in a large susceptible population without dead walkers
dw(0) = 0.

The interpretation of the system (2) is as follows. The instantaneous infection rate
Aw(t) governs the transitions S → I of walkers (due to the visits of infected nodes). The term〈
Aw(t − tw

I )Θ(tM − tw
I )
〉

describes the rate of walkers recovering at time t and infected at
t − tw

I , i.e., their infection time span has elapsed and they survived as tM > tw
I (indicated

by Θ(tM − tw
I ) = 1). Then,

〈
Aw(t − tM)Θ(tw

I − tM)
〉

captures the rate of walkers infected
at t − tM dying at time t during the infection time span (indicated by Θ(tw

I − tM) = 1 for
tw

I > tM).

Remark 1. The infection time span of a walker (sojourn time in compartment I) is min(tw
I , tM),

i.e., tw
I if tM > tw

I (where the walker survives the disease), and is tM if the walker dies within the
infectious time span (tM < tw

I ). tw
I is the walker’s infection time span without mortality (retrieved

for tM → ∞). The probability of the persistence of a walker’s infection at time t, given the infection
starts at time 0, is ⟨Θ(tw

I − t)Θ(tM − t) ⟩ (see (7)). Note that Θ(tw
I − t)Θ(tM − t) = 1 only if

t < min(tw
I , tM), i.e., when the walker is in compartment I. As a crucial element of our model, we

will analyze the statistics of the walker’s infection time span min(tw
I , tM).

The initially infected walkers and nodes are as well subjected to the transition path-
ways, i.e., walkers either recover (alive) with rate Jw(0)⟨δ(t − tw

I )Θ(tM − tw
I )⟩ or they die

with rate Jw(0)⟨δ(t − tM)Θ(tw
I − tM)⟩, and nodes always recover with rate Jn(0)⟨δ(t − tn

I )⟩.
For t → ∞, these terms are evanescent; thus, the initial conditions do not affect large time
limits (endemic state for zero mortality). The importance of these terms can be seen by
setting βw,n = 0 (no infections). Without these terms, the initially infected walkers and
nodes would stay infected forever, inconsistent with our assumptions.

The rate equations for the nodes can be interpreted in the same way as the interplay
of instantaneous infections and delayed recovery without mortality. We emphasize that
the evolution equations of the nodes and walkers are non-linearly coupled by the implicit
dependencies of the infection rates (1). In order to derive an explicit representation of the
system (2), we need to take a closer look at the averaging procedures and the involved
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distributions related to the independent random variables T = {tw
I , tn

I , tM} > 0 drawn
from specific probability density functions (PDFs), which we define by

Prob[T ∈ [τ, τ + dτ] = K(τ)dτ, (3)

with their respective PDFs (kernels) K(τ) = {Kw,n
I (τ), KM(τ)}, which are normalized

Prob[T > 0] =
∫ ∞

0 K(τ)dτ = 1. Then, recall the averaging rule for the (suitable) functions
f (T) of the random variable T, which we use throughout the paper:

⟨ f (T)⟩ =
∫ ∞

0
K(τ) f (τ)dτ; (4)

see also Appendix A.1. An important case is ⟨δ(t − T)⟩ = K(t). Then, by applying (4), we
introduce the persistence probabilities of the walker’s (node’s) infection (without mortality):

Φw,n
I (t) = Prob(tw,n

I > t) = ⟨Θ(tw,n
I − t)⟩ =

∫ ∞

t
Kw,n

I (τ)dτ (5)

and the probability of the walker’s survival up to time t (given tw
I = ∞):

ΦM(t) = Prob(tM > t) = ⟨Θ(tM − t)⟩ =
∫ ∞

t
KM(τ)dτ. (6)

The persistence probabilities fulfill the initial condition ΦM(0) = Φw,n
I (0) = 1 correspond-

ing to the normalization of the waiting time PDFs K(τ) = {Kw,n
I (τ), KM(τ)} and are

vanishing at infinity ΦM(∞) = Φw,n
I (∞) = 0. To evaluate the averages in (2), we will use

the following quantities:

⟨δ(t − T)⟩ = K(t), T = {tw
I , tn

I , tM}

⟨Θ(tM − t)Θ(tw
I − t)⟩ = ⟨Θ(tM − t)⟩⟨Θ(tw

I − t)⟩ = Φw
I (t)ΦM(t)

bd(t) = ⟨δ(t − tM)Θ(tw
I − tM)⟩ = ⟨δ(t − tM)⟩⟨Θ(tw

I − t)⟩ = KM(t)Φw
I (t)

br(t) = ⟨δ(t − tw
I )Θ(tM − tw

I )⟩ = ⟨δ(t − tw
I )⟩⟨Θ(tM − t)⟩ = Kw

I (t)ΦM(t)

bd(t) + br(t) = Kw
I,M(t) = − d

dt
[⟨Θ(tM − t)⟩⟨Θ(tw

I − t)⟩] = − d
dt
[Φw

I (t)ΦM(t)]

∫ ∞

0
Kw

I,M(t)dt = 1

R(t) = ⟨Θ(t − tw
I )Θ(tM − tw

I )⟩ =
∫ t

0
br(τ)dτ =

∫ t

0
Kw

I (τ)ΦM(τ)dτ

D(t) = ⟨Θ(t − tM)Θ(tw
I − tM)⟩ =

∫ t

0
bd(τ)dτ =

∫ t

0
KM(τ)Φw

I (τ)dτ

R(t) +D(t) =
∫ t

0
Kw

I,M(τ)dτ =
∫ t

0
[bd(τ) + br(τ)]dτ = 1 − Φw

I (t)ΦM(t)

D(∞) +R(∞) = 1

⟨A(t − tI)Θ(tM − tI)⟩ = ⟨A(t − tI)ΦM(tI)⟩ =
∫ t

0
A(t − τ)ΦM(τ)KI(τ)dτ

⟨A(t − tM)Θ(tw
I − tM)⟩ = ⟨A(t − tM)Φw

I (tM)⟩ =
∫ t

0
A(t − τ)Φw

I (τ)KM(τ)dτ

(7)
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In these averages, we make use of the independence of the waiting times tM, tw,n
I , and

of the causality of A(τ) and the kernels K(τ) (i.e., A(τ), K(τ) = 0 for τ < 0). Of ut-
most importance are the “defective” PDFs (DPDFs) bd,r(t) of death and recovery. “De-
fective” means that bd,r(t) are not proper PDFs since they are not normalized to one, but
rather to D(∞),R(∞) < 1, respectively. Consult [32] for a recent account of defective
distributions and related stochastic processes. They have the following interpretation.
bd(t)dt = KM(t)Φw

I (t)dt is the probability of transition I → D within [t, t + dt] of an in-
fected walker (infected at t′ = 0). br(t)dt = Kw

I (t)ΦM(t)dt is the probability of transition I
→ S within [t, t + dt] of a walker infected at t′ = 0. Therefore,

Kw
I,M(t) = br(t) + bd(t) = − d

dt
⟨Θ(tM − t)Θ(tw

I − t)⟩ = − d
dt
[Φw

I (t)ΦM(t)] (8)

is non-negative (as are Kw
I = − d

dt Φw
I ≥ 0, KM = − d

dt ΦM ≥ 0) and is a proper well-
normalized PDF of all exits of walkers from compartment I (i.e., I → S + I → D). Without
mortality (ΦM(t) = 1), this PDF retrieves Kw

I,M(t) = Kw
I (t).

The quantities R(t),D(t) introduced in (7) have the following interpretation. R(t)
is the probability that a walker infected at instant 0 is at time t in compartment S (i.e.,
recovered prior or up to time t). D(t) is the probability that a walker infected at instant 0 is
at time t in compartment D (i.e., died prior and up to time t). The infinite time limits are
important: R(∞) has the interpretation of the overall probability that an infected walker
survives the infection, and D(∞) is the overall probability for an infected walker to die
from the disease. We refer to D(∞) also as “overall mortality”. It must not be confused
with the infinite time limit of the dead walker’s fraction dw(∞), which is different from
D(∞), as we will see in detail subsequently. A small value D(∞) may cause a high value of
dw(∞), for instance, for short infectious periods where walkers may be repeatedly infected.

In most cases, not all infected walkers die from their disease (in an infinite observation
time); hence, D(∞) < 1 (as bd is defective). D(∞) → 1 represents the limit of a fatal
disease and D(∞) → 0 a disease without mortality. R(∞) < 1 (as br is defective) is the
complementary probability with D(∞) +R(∞) = 1.

With these remarks, the system (2) reads

d
dt

Sw(t) = −Aw(t) +
∫ t

0
Aw(t − τ)Kw

I (τ)ΦM(τ)dτ + Jw(0)Kw
I (t)ΦM(t)

d
dt

Jw(t) =
d
dt

∫ t

0
Aw(τ)ΦM(t − τ)Φw

I (t − τ)dτ − Jw(0)[Kw
I (t)ΦM(t) + KM(t)Φw

I (t)]

d
dt

Sn(t) = −An(t) +
∫ t

0
An(t − τ)Kn

I (τ)dτ + Jn(0)Kn
I (t)

d
dt

Jn(t) = − d
dt

Sn(t).

(9)

The PDF (8) for which a walker leaves compartment I (either by recovery or by death)
allows rewriting the second equation of (9) as

d
dt

Jw(t) = Aw(t)−
∫ t

0
Aw(t − τ)Kw

I,M(τ)dτ − Jw(0)Kw
I,M(t). (10)

Worthy of closer consideration is the mortality rate of the infected walkers (representing
the total mortality; entry rate into the D compartment):
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d
dt

dw(t) = − d
dt
(Sw(t) + Jw(t)) = ⟨ Aw(t − tM)Θ(tw

I − tM) ⟩+ Jw(0)⟨δ(t − tM)Θ(tw
I − tM)⟩

=
∫ t

0
Aw(t − τ)KM(τ)Φw

I (τ)dτ + Jw(0)KM(t)Φw
I (t)

(11)

where, clearly, d
dt dw(t) ≥ 0. Integrating this relation yields the fraction dw(t) of dead

walkers:

dw(t) = 1 − Sw(t)− Jw(t)

=
∫ t

0
Aw(t − τ)⟨Θ(τ − tM)Θ(tw

I − tM)⟩dτ + Jw(0)⟨Θ(t − tM)Θ(tw
I − tM)⟩

=
∫ t

0
Aw(t − τ)D(τ)dτ + Jw(0)D(t).

(12)

An interesting quantity is the cumulative recovery rate of walkers (integrated entry rates of
walkers into the S compartment; see the first equation in (2)):

rw(t) =
∫ t

0
Aw(t − τ)⟨Θ(τ − tw

I )Θ(tM − tw
I )⟩dτ + Jw(0)⟨Θ(t − tw

I )Θ(tM − tw
I )⟩

=
∫ t

0
Aw(t − τ)R(τ)dτ + Jw(0)R(t).

(13)

The quantity rw(t) records all recovery events of walkers up to time t, where individual
walkers may suffer repeated infections and recoveries. We observe that (see (7))

rw(t) + dw(t) =
∫ t

0
Aw(t − τ)[1 − Φw

I (τ)ΦM(τ)]dτ + Jw(0)[1 − Φw
I (t)ΦM(t)]. (14)

Relation (12) records all death events of walkers up to time t. Since each walker may die
only once, it follows indeed that dw(t) ∈ [0, 1]. Contrarily, the quantity rw(t) is not restricted
to this interval as walkers may be repeatedly infected and recovered, but due to mortality,
eventually only a finite number of times (rw(∞) < ∞; see (18)). Mortality renders the chain
of infection and recovery events transient (due to the defective feature of br = Kw

I ΦM). To
shed more light on the behavior of rw(t), consider for a moment zero mortality (R(∞) = 1)
and t → ∞: we then have Aw(∞) = βwSe

w Je
n > 0 (shown in Section 3); thus, rw(∞) = ∞

coming along with an infinite chain of recurrent infection and recovery events (as br(t)
turns into the proper non-defective PDF br = Kw

I ).
Using (7), we can rewrite (2) in equivalent integral form:

Sw(t) = 1 − Jw(0)[ΦM(t)Φw
I (t) +D(t)]−

∫ t

0
Aw(τ)[ΦM(t − τ)Φw

I (t − τ) +D(t − τ)]dτ

Jw(t) = Jw(0)ΦM(t)Φw
I (t) +

∫ t

0
Aw(τ)ΦM(t − τ)Φw

I (t − τ)dτ

Sn(t) = 1 − Jn(t)

Jn(t) = Jn(0)Φn
I (t) +

∫ t

0
An(τ)Φn

I (t − τ)dτ

(15)

and with (redundant) Equation (12) for the fraction of dead walkers. (15) is a self-consistent
system since the infection rates are implicit functions of the unknown susceptible and
infected population fractions, i.e., Aw(t) = Aw[Sw(t), Jn(t)], An(t) = Aw[Sn(t), Jw(t)]
(see (1)). Explore now the infinite time limit of (15), where it is convenient to consider the
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Laplace-transformed equations. We introduce the Laplace transform (LT) (denoted with a
hat) of a function g(t) as

ĝ(λ) =
∫ ∞

0
g(t)e−λtdt

where λ denotes the (suitably chosen) Laplace variable. In order to retrieve infinite time
limits, we use the asymptotic feature:

g(∞) = lim
λ→0

λ ĝ(λ)
(
= lim

λ→0

∫ ∞

0
g(

τ

λ
)e−τdτ → g(∞)

∫ ∞

0
e−τdτ

)
. (16)

Observing that the LT of Φw
I (t)ΦM(t) is λ−1[1 − K̂I,M(λ)] and D̂(λ) = λ−1b̂d(λ), where

b̂d(0) = D(∞) (see (7)), we arrive at

Jw(∞) = lim
λ→0

λ Ĵw(λ) = [1 − K̂I,M(0)][Jw(0) + Âw(0)] = 0

Jn(∞) = lim
λ→0

λ Ĵn(λ) = [1 − K̂n(0)][Jn(0) + Ân(0)] = 0

dw(∞) = lim
λ→0

λd̂w(λ) = D(∞)[Jw(0) + Âw(0)], Âw(0) = βw
∫ ∞

0 Sw(τ)Jn(τ)dτ

Sw(∞) = 1 − dw(∞)

Sn(∞) = 1

(17)

where Âw,n(0) =
∫ ∞

0 Aw,n(t)dt < ∞. In the same way, one obtains

rw(∞) = R(∞)(Jw(0) + Âw(0)). (18)

Since D(∞) is non-zero, the asymptotic values Sw(∞), dw(∞) depend on the initial con-
dition Jw(0) and the infection (rate) history. This is no longer true for zero mortality
(D(∞) = 0) and considered in Section 3. We define the overall probability PD that a walker
dies from (PR survives) the disease:

PD =
dw(∞)

rw(∞) + dw(∞)
= D(∞), PR = 1 − PD =

rw(∞)

rw(∞) + dw(∞)
= R(∞) (19)

consistent with our previous interpretation of D(∞),R(∞), and the ratio:

dw(∞)

rw(∞)
=

D(∞)

R(∞)
. (20)

The quantities (19) and (20) depend only on the stochastic features of tw
I and tM. They are

independent of the infection rates and initial conditions and, therefore, of the topological
properties of the network. In addition, they also do not depend on the stochastic features
of the node’s infection time span tn

I .

2.1. Markovian (Memoryless) Case

Generally, the system (9) contains the history of the process (memory), which makes
the process non-Markovian. The only exception is when all waiting times are exponentially
distributed, namely Φw,n

I (t) = e−ξw,n
I t, ΦM(t) = e−ξMt, where ⟨tw,n

I ⟩ = (ξw,n
I )−1 and

⟨tM⟩ = (ξM)−1. Then, (9) takes with (15) the memoryless form:
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d
dt

Sw(t) = −βwSw(t)Jn(t) + ξw
I Jw(t)

d
dt

Jw(t) = βwSw(t)Jn(t)− (ξw
I + ξM)Jw(t)

d
dt

dw(t) = ξM Jw(t)

d
dt

Sn(t) = −βnSn(t)Jw(t) + ξn
I Jn(t)

d
dt

Jn(t) = βnSn(t)Jw(t)− ξn
I Jn(t).

(21)

Putting the left-hand sides to zero yields the stationary state:

Jw(∞) = Jn(∞) = Aw(∞) = An(∞) = 0

Sw(∞) = 1 − dw(∞), dw(∞) = ξM

∫ ∞

0
Jw(τ)dτ

Sn(∞) = 1.

(22)

Let us check whether this result is consistent with (17). To this end, we integrate the second
equation in (21) knowing that Jw(∞) = 0, leading to

0 = Jw(0) +
∫ ∞

0
Aw(t)dt − (ξw

I + ξM)
∫ ∞

0
Jw(t)dt; (23)

thus,
∫ ∞

0 Jw(t)dt = 1
ξM+ξw

I
(Jw(0) + Âw(0)). Plugging this relation into (22) and accounting

for D(∞) = ξM
ξw

I +ξM
, we recover indeed the representation of the expression (17).

For zero mortality ξM = 0, one can straightforwardly obtain the constant endemic
equilibrium values Je

w, Je
n by setting the left-hand side of (21) to zero, leading to the subse-

quent Equation (32) derived in Section 3 for general waiting time distributions with finite
means.

2.2. A Few More Words on Waiting Time Distributions

In our simulations, we assumed that the time spans tw
I , tn

I , tM are independent random
variables drawn from specific Gamma distributions. The advantage of using Gamma
distributions is that they may realize a large variety of shapes; see Figure 1 for a few
examples. To generate Gamma-distributed random numbers, we employed the Python
3.10.8 random number generator (library numpy.random). Recall the Gamma distribution:

Kα,ξ(t) =
ξαtα−1

Γ(α)
e−ξt, ξ, α > 0 (24)

where α is the so-called “shape parameter” and ξ the rate parameter (often, the term “scale
parameter” is used, θ = ξ−1) and Γ(α) stands for the Gamma function. It is worthy of
mention that the Gamma distribution for α ∈ N (also referred to as the Erlang distribution)
is the PDF of the sum of independent and identically exponentially distributed random
variables. We also will subsequently use the LT of the Gamma PDF:

K̂α,ξ(λ) =
∫ ∞

0
Kα,ξ(t)e−λtdt =

ξα

(λ + ξ)α
(25)
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Figure 1. Left frame: Gamma distribution for four different cases: weakly singular (at t = 0)
[⟨t⟩ = 0.5, ξ = 0.7], exponential [⟨t⟩ = 2, ξ = 0.5], broad [⟨t⟩ = 1.5, ξ = 4], and narrow [⟨t⟩ = 1.5,
ξ = 30]. Right frame: Their persistence (survival) probability distributions of Equation (27), where
the same color code is used.

The Gamma PDF has finite mean ⟨t⟩α,ξ =
∫ ∞

0 tKα,ξ(t)dt = α
ξ , and for α < 1, the

Gamma PDF is weakly singular at t = 0 and α = 1 recovers exponential PDFs. For α ≤ 1,
the Gamma PDF is completely monotonic (CM) (see Appendix, (A9), for a definition). For
the range α > 1, the Gamma PDF has a maximum at tmax = α−1

ξ and becomes narrower
the larger ξ (while keeping its mean α/ξ fixed); specifically, we can generate sharp waiting
times using the feature:

lim
ξ→∞

Kα=ξT0,ξ(t) = δ(t − T0). (26)

We also will subsequently use the persistence probability of the Gamma distribution (see
the right frame of Figure 1):

Φα,ξ(t) =
∫ ∞

t

ξαtα−1

Γ(α)
e−ξtdt =

Γ(α, ξt)
Γ(α)

(27)

where Γ(α, x) indicates the upper incomplete Gamma function with Γ(α, 0) = Γ(α). (27)
necessarily fulfills the initial condition Φα,ξ(0) = 1 and is vanishing at infinity Φα,ξ(∞) = 0.

3. Endemic Equilibrium for Zero Mortality

Here, we consider the large time asymptotics of the compartment populations without
mortality (Sw(t) + Jw(t) = 1), where the self-consistent system (15) reads

Jw(t) = Jw(0)Φw
I (t) +

∫ t

0
Aw(t − τ)Φw

I (τ)dτ

Jn(t) = Jn(0)Φn
I (t) +

∫ t

0
An(t − τ)Φn

I (τ)dτ

(28)

The endemic state emerging in the large time asymptotics does not depend on the initial
conditions Jw,n(0) as Φw,n

I (t) → 0. For what follows, it is convenient to consider the LTs
of (28), which read

Ĵw(λ) =
[

Jw(0) + Âw(λ)
]1 − K̂w

I (λ)

λ

Ĵn(λ) =
[

Jn(0) + Ân(λ)
]1 − K̂n

I (λ)

λ

(29)

where Φw,n
I (λ) =

1−K̂w,n
I (λ)
λ are the LTs of the persistence distributions and Ŝw,n(λ) +

Ĵw,n(λ) =
1
λ , reflecting constant populations of walkers and nodes. In order to determine
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the endemic equilibrium, we assume that the mean infection time spans for the nodes and
walkers exist:

⟨tw,n
I ⟩ = lim

λ→0

1 − K̂w,n
I (λ)

λ
= − d

dλ
K̂w,n

I (λ)

∣∣∣∣
λ=0

=
∫ ∞

0
Φw,n

I (t)dt =
∫ ∞

0
τKw,n

I (τ)dτ < ∞; (30)

thus, the admissible range of the Laplace variable is λ ≥ 0 (if chosen real). Now, using (16),
we obtain the endemic equilibrium from Jw,n(∞) = limλ→0 λ Ĵw,n(λ), where the initial

conditions are wiped out at infinity as K̂w,n(λ)

∣∣∣∣
λ=0

= 1. Assuming that the infection rates

are constant in the endemic equilibrium, we have Aw,n(λ) ∼ Aw,n(∞)/λ, (λ → 0) and
arrive at

Jw(∞) = Aw(∞)⟨tw
I ⟩, (Aw(∞) = βwSw(∞)Jn(∞))

Jn(∞) = An(∞)⟨tn
I ⟩, (An(∞) = βnSn(∞)Jw(∞));

(31)

thus,
Jw(∞)

1 − Jw(∞)
− βw⟨tw

I ⟩Jn(∞) = 0

Jn(∞)

1 − Jn(∞)
− βn⟨tn

I ⟩Jw(∞) = 0.

(32)

One can see that the globally healthy state Jw,n(0) = 0 is also a solution of this equation.
Besides that, only solutions Jn(∞), Jw(∞) ∈ (0, 1) correspond to an endemic equilibrium.
One obtains

Jw(∞) = Je
w =

βwβn⟨tw
I ⟩⟨tn

I ⟩ − 1
βn⟨tn

I ⟩[1 + βw⟨tw
I ⟩]

=
R0 − 1

R0

βw⟨tw
I ⟩

1 + βw⟨tw
I ⟩

Jn(∞) = Je
n =

βwβn⟨tw
I ⟩⟨tn

I ⟩ − 1
βw⟨tw

I ⟩[1 + βn⟨tn
I ⟩]

=
R0 − 1

R0

βn⟨tn
I ⟩

1 + βn⟨tn
I ⟩

(33)

for the endemic equilibrium, which is independent of the initial conditions Jw,n(0). It
depends only on the phenomenological rate constants βw,n and the mean infection time
spans ⟨tw,n

I ⟩. We point out that the endemic equilibrium (33) has exchange symmetry
w ↔ n between walkers and nodes, reflecting this feature in the system (2) of evolution
equations without mortality. The endemic values Je

w,n are within (0, 1), i.e., existing only
if R0 = βwβn⟨tw

I ⟩⟨tn
I ⟩ > 1. We further mention the useful relation R0Sw(∞)Sn(∞) = 1

following straightforwardly from (32), connecting R0 directly with the endemic state. We
interpret R0 as the basic reproduction number (average number of new infections at t = 0—
nodes or walkers—due to one infected node or walker at t = 0). That this is really the
appropriate interpretation can be seen by the following somewhat rough consideration of
the infection rates at t = 0. Assume we have initially one single infected node Jn(0) = 1/N
and no infected walkers Sw(0) = 1. The expected number of walkers infected by this first
infected node during its infectious period tn

I is

⟨ZI(tn
I )⟩ ∼ ZAw(0)⟨tn

I ⟩ = Z⟨tn
I ⟩βw/N ∼ Z⟨Jw(tw

I )⟩.

The number of nodes getting infected by these ⟨ZI(tn
I )⟩ infected walkers during their

infectious time tw
I is

NI(⟨tn
I ⟩+ ⟨tw

I ⟩) ∼ N⟨An(tn
I )⟩⟨tw

I ⟩ ∼ Nβn⟨Jw(tw
I )⟩ = βnβw⟨tn

I ⟩⟨tw
I ⟩ = R0.

Hence, R0 is the average number of infected nodes caused by the first infected node (with
zero initially infected walkers). Due to the exchange symmetry (nodes ↔ walkers) of the
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infection rates, this argumentation remains true when we start with one infected walker
and no infected nodes.

We infer that the globally healthy state is unstable for R0 > 1, where the endemic
equilibrium (33) is a unique stable fixed point and attractor for all initial conditions Jw,n(0).
We will confirm this in the next section by a linear stability analysis of the globally healthy
state. The stability of the endemic state is demonstrated in the next section together with
Appendix A.2.

The limit βw⟨tw
I ⟩ → ∞ (while βn⟨tn

I ⟩ are kept constant) is remarkable, where all

walkers become infected Je
w → 1, but not all nodes Je

n → βn⟨tn
I ⟩

1+βn⟨tn
I
< 1 and vice versa.

We plot the endemic state in Figure 2 versus R0, where positive values for Jw,n(∞)
occur only for R0 > 1, which correspond to endemic states. Next, we perform a linear
stability analysis of the endemic and healthy state, where we will indeed identify R0 as a
crucial control parameter.

Figure 2. Endemic states of infected walkers/nodes Jw,n(∞) = (R0 − 1)/(R0 + r) versus R0 for
various values of parameter r, which has to be read r = βn⟨tn

I ⟩ (r = βw⟨tw
I ⟩) for the walker’s (node’s)

endemic states.

4. Stability Analysis of Endemic and Healthy State without Mortality

Here, we are interested in the condition of spreading for zero mortality, or equivalently,
in the condition for which the globally healthy state (endemic state) is unstable (stable). To
check the stability of the endemic fixed point Se

w = 1 − Je
w, Jw

e , Se
n = 1 − Je

n, Je
n, we set

Sw(t) = Se
w + uweµt, Jw(t) = Je

w − uweµt

Sn(t) = Se
n + uneµt, Jn(t) = Je

n − uneµt
(34)

where uw, un are “small” constant amplitudes. This ansatz accounts for the constant
populations of nodes and walkers. Then, we have for the infection rates up to linear orders
in the amplitudes:

Aw(t) = βwSw(t)Jn(t) = βwSe
w Je

n + βw(uw Je
n − unSe

w)eµt

An(t) = βnSn(t)Jw(t) = βnSe
n Je

w + βn(un Je
w − uwSe

n)eµt
(35)

Plugging these relations in our evolution equations (2) without mortality, omitting two
redundant equations leads to the system: µ + βw Je

n[1 − K̂w
I (µ)]; −βwSe

w[1 − K̂w
I (µ)]

−βnSe
n[1 − K̂n

I (µ)]; µ + βn Je
w[1 − K̂n

I (µ)]

 ·

 uw

un

 =

 0

0

 (36)
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where we have used ⟨e−µtw,n
I ⟩ = K̂w,n

I (µ) and the cases of δ-distributed tw,n
I are contained

for K̂w,n
I (µ) = e−µtw,n

I . We point out that, in the ansatz (35), we relax causality, i.e., we admit
Aw,n(t − τ) ̸= 0 for t − τ < 0; thus,

⟨eµ(t−tw,n
I )⟩ = eµt⟨e−µtw,n

I ⟩ = eµtK̂w,n
I (µ). (37)

The solvability of this matrix equation requires the determinant to vanish, leading to a
transcendental characteristic equation for µ:

µ2 + µ
(

βw Je
n[1 − K̂w

I (µ)] + βn Je
w[1 − K̂n

I (µ)]
)
+ βwβn[1 − K̂w

I (µ)][1 − K̂n
I (µ)](Je

n Je
w − Se

nSe
w) = 0. (38)

Generally, a fixed point is unstable if solutions with the positive real part of µ exist. Consider
this first for the globally healthy state Jn = 0, Jw = 0 for which Equation (38) reads

G(µ) = 1 − βwβn
[1 − K̂w

I (µ)]

µ

[1 − K̂n
I (µ)]

µ
= 1 − βwβnΦ̂w

I (µ)Φ̂
n
I (µ) = 0 (39)

where we notice that [1−K̂w,n
I (µ)]
µ = Φ̂w,n

I (µ) are the LTs of the persistence probabilities of
the infection time spans. Consider this equation for µ → 0, and take into account (30); we
arrive at

G(0) = 1 − βwβn⟨tw
I ⟩⟨tn

I ⟩. (40)

We observe that G(0) < 0 for R0 = βnβw⟨tw
I ⟩⟨tn

I ⟩ > 1. On the other hand, we have for
µ → ∞ that Φ̂w,n

I (µ) → 0, and hence,

G(∞) = 1. (41)

One can, hence, infer from the complete monotony of Φ̂w,n
I (µ) and, therefore, of Φ̂w

I (µ)Φ̂
n
I (µ)

(see Appendix A.2, Equation (A9), for a precise definition) that d
dµ G(µ) > 0 (µ ≥ 0); thus,

G(µ) = 0 has one single positive zero only if G(0) < 0, i.e., for R0 > 1, which, therefore, is
the condition of the instability of the healthy state (spreading of the disease). Conversely,
for R0 < 1, the healthy state turns into a stable fixed point where there is no spreading
of the disease. In particular, the healthy state is always unstable (R0 = ∞) if at least one
of the mean infection time spans ⟨tw,n

I ⟩ = ∞. This is true for fat-tailed kernels scaling
as Kw,n

I (t) ∝ t−α−1 (α ∈ (0, 1)) for t → ∞. We consider such a distribution briefly in the
subsequent section. We plot function G(µ) versus µ for different R0 for Gamma-distributed
tw,n

I in Figure 3.

Figure 3. G(µ) of (39) for some Gamma-distributed tw,n
I . Positive zeros of G(µ) exist only for R0 > 1

(instability of globally healthy state).
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Now, we consider the stability of the endemic state with Ge(µ) = 0, where, from (38),
this function reads

Ge(µ) = 1 − βwβnΦ̂w
I (µ)Φ̂

n
I (µ) + βw Je

nΦ̂w
I (µ) + βn Je

wΦ̂n
I (µ) + βwβn(Je

w + Je
n)Φ̂

w
I (µ)Φ̂

n
I (µ) (42)

with
Ge(0) = 1 − R0 + βw⟨tw

I ⟩Je
n + βn⟨tn

I ⟩Je
w + (Je

w + Je
n)R0

= R0 − 1.
(43)

On the other hand, Ge(∞) = 1 (as Φ̂w,n
I (∞) = 0), and from the monotony of Ge(µ), it

follows that there is no positive solution of Ge(µ) = 0 for R0 > 1. We plot Ge(µ) in Figure 4
for different values of R0 and Gamma-distributed tw,n

I . In Appendix A.2, we complete the
analytical proof that Ge(µ) > 0 for R0 > 1.

Figure 4. Ge(µ) of (42) for different values of R0, where Ge(µ) > 0 for R0 > 1 (stability of the endemic
state).

5. Stability Analysis of the Healthy State with Mortality

An important question is how mortality modifies the instability of the healthy state
and the basic reproduction number. To shed light on this question, we perform a linear
stability analysis of the healthy state Sw,n = 1, where we set

Sw(t) = 1 + a eµt, Jw(t) = b eµt, dw(t) = −(a + b) eµt, Sn(t) = 1 − ceµt, Jn(t) = ceµt (44)

with Aw(t) = βwc eµt and An(t) = βnb eµt. Plugging this ansatz for µ ≥ 0 into the three
independent equations of (2), say the first, third, and fourth one, and performing the
averages (relaxing causality as previously), we arrive at

µ ; 0; βw[1 − b̂r(µ)]]

µ; µ ; βw b̂d(µ)

0 −βn[1 − K̄n
I (µ)] ; µ

 ·


a

b

c

 =


0

0

0

. (45)

Putting the determinant of the matrix to zero yields the condition:

µ2 − βnβw[1 − K̄n
I (µ)][1 − b̂r(µ)− b̂d(µ)] = 0 (46)

where the LTs b̂r(µ), b̂d(µ) of the DPDFs br,d(t) defined in (7) come into play. We are
interested in under which conditions there is a positive solution (instability of the healthy
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state) of (46). Since b̂r(0) = R(∞) and b̂d(0) = D(∞) with R(∞) +D(∞) = 1, we see that
µ = 0 is a solution of (46). Recall from (7) that bd(t) + br(t) = Kw

I,M(t) is the (properly
normalized) PDF (8). Condition (46) then reads

GM(µ) = 1 − βnβw
[1 − K̄n

I (µ)]

µ

[1 − K̂w
I,M(µ)]

µ
= 0 (47)

where
[1−K̂w

I,M(µ)]

µ is the LT of the persistence probability ΦM(t)Φw
I (t) of the walker’s

infection, i.e., the probability that t < min(tw
I , tM) (see Remark I). For zero mortality, we

have Kw
I,M = Kw

I , (br = Kw
I and bd = 0), retrieving the condition (39). The mean sojourn

time in compartment I with mortality yields

⟨min(tw
I , tM)⟩ = ⟨tw

IM⟩ =
[1 − K̂w

I,M(µ)]

µ

∣∣∣∣
µ=0

=
∫ ∞

0
tKw

I,M(t)dt =
∫ ∞

0
ΦM(t)Φw

I (t)dt ≤
∫ ∞

0
Φw

I (t)dt = ⟨tw
I ⟩ (48)

where we arrive at
GM(0) = 1 − βnβw⟨tn

I ⟩⟨tw
IM⟩. (49)

Relation (48) shows that ⟨tw
IM⟩ ≤ ⟨tw

I ⟩ (equality only for zero mortality). On the other hand,
we have GM(∞) = 1, so there is a positive solution of GM(µ) = 0 only if

RM = βnβw⟨tn
I ⟩⟨tw

IM⟩ > 1 (50)

where RM is the basic reproduction number modified by mortality with RM ≤ R0 (equality
only for zero mortality). To visualize the effect of mortality on the instability of the healthy
state, we plot GM(µ) for a few values of RM in Figure 5. Increasing mortality turns an
unstable healthy state into a stable one.

Figure 5. We depict function GM(µ) of Equation (47) for a few values of RM for exponentially
distributed tw,n

I , tM. The basic reproduction number RM is monotonously decreasing with increasing
mortality parameter ξM (see Figure 6). The parameters are βw,n = 1, αw

I = 1, ξw
I = 1, αn = 1,

ξn
I = 0.5 with R0 = 2, where, here, ⟨tI,M⟩ = R0/(1 + ξM).

In the random walk simulations, we deal with Gamma-distributed tw,n
I , tM, where the

persistence probabilities are then normalized incomplete Gamma functions (27). To explore
the effect of mortality for such cases, we determine RM by numerical integration of (48) as
a function of the mortality rate parameter ξM and plot the result in Figure 6, where one can
see that RM is monotonously decreasing with mortality rate ξM. We also include a case of a
fat-tailed (Mittag–Leffler)-distributed tw

I , which we discuss hereafter. The parameters in
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Figure 6 are such that the zero mortality case occurs with R0 = 1 as the upper bound for
the Gamma-distributed cases. The essential feature is that RM decays monotonically with
increasing mortality rate parameter ξM approaching zero for ξM → ∞. Diseases with high
mortality stabilize the healthy state even for ⟨tw

I ⟩ → ∞.

Figure 6. Basic reproduction number RM of Equation (52) versus mortality rate parameter ξM

for Gamma-distributed tw,n
I , tM for various αM, where we have set βn = βw = ⟨tw

I ⟩ = ⟨tn
I ⟩ = 1,

(αw
I = ξw

I = 0.3) and αM = 1, αw = ξw
I = 1 for the Markovian case, which is recovered by

Equation (53).

Consider briefly the case where tM is exponentially distributed (i.e., αM = 1 in the
Gamma distribution of tM) with ΦM(t) = e−ξMt. Then, we have ⟨tw

IM⟩ = Φ̂w
I (ξM); thus,

RM = βwβn⟨tn
I ⟩Φ̂w

I (ξM). (51)

The zero mortality case is recovered for ξM = 0 with Φ̂w
I (0) = ⟨tw

I ⟩. For Gamma-distributed
tw,n

I , this yields

RM = βwβn
αn

I
ξn

I ξM

(
1 −

(ξw
I )

αw
I

(ξM + ξw
I )

αw
I

)
, (52)

where αw,n
I , ξw,n

I are the parameters of the respective Gamma distributions of the infection
times of nodes and walkers. The Markovian case where all waiting times are exponentially
distributed is covered for αw,n

I = 1 and yields

RM =
βwβn

ξn
I (ξ

w
I + ξM)

(53)

containing the zero mortality case for ξM = 0.

Fat-Tailed-Distributed tw
I

Finally, an interesting case emerges if tw
I follows a fat-tailed distribution, i.e., Φw

I (t) ∝
t−α for t large (α ∈ (0, 1)) and ⟨tw

I ⟩ = ∞, R0 = ∞. Let us take a look at how mortality
is affecting this situation. Fat-tailed tw

I distributions describe diseases where the infec-
tious periods are very long and the healthy state without mortality is extremely unstable
(R0 = ∞). Infected walkers can infect many nodes during their long infection time spans.
An important case of this class is constituted by the Mittag–Leffler (ML) distribution
Φw

I (t) = Eα(−ξw
I tα), where Eα(τ) indicates the Mittag–Leffler function; see [33,34] and

the references therein for representations and connections with fractional calculus. The
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ML function recovers the exponential for α = 1 (E1(−τ) = e−τ). Assuming exponential
mortality ΦM(t) = e−ξMt, one obtains with (51)

RM = βwβn⟨tn
I ⟩

(ξM)α−1

ξw
I + (ξM)α

, α ∈ (0, 1) (54)

containing the LT of the ML persistence probability distribution Φ̂w
I (λ) = λα−1/(ξw

I + λα).
The essential feature here is that RM is weakly singular at ξM = 0 with a monotonously de-
creasing ξα−1

M scaling law, where the healthy state becomes stable for mortality parameters
larger as ξM ≈ 1. We depict this case in Figure 6 for α = ξ = 0.3 (violet curve).

6. Random Walk Simulations

The remainder of our paper is devoted to testing the mean-field model under “real-
world conditions”, which we mimic by Z = ZS(t) + ZI(t) + ZD(t) random walkers
navigating independently on an undirected connected (ergodic) graph. In our simula-
tions, we focused on Barabási–Albert (BA), Erdös–Rényi (ER), and Watts–Strogatz (WS)
graphs [16,17,35] (see Appendix A.4 for a brief recap) and implemented the compartments
and transmission pathway for walkers and nodes outlined in Section 2. A susceptible
walker gets infected with probability pw by visiting an infected node, and a susceptible
node gets infected with probability pn at a visit of an infectious walker. We assumed that
the infection probabilities pn,w are constant for all nodes and walkers, respectively. They are
related, yet not identical to the macroscopic rate constants βw,n. A critical issue is whether
the simple bi-linear forms for the mean-field infection rates (1) still capture the complexity
of the spreading in such “real world” networks well. One goal of the subsequent case study
is to explore this question.

We characterize the network topology by i = 1, . . . N nodes with the N × N adjacency
matrix (Aij), where Aij = 1 if the pair of nodes i, j is connected by an edge and Aij = 0 if
the pair is disconnected. Further, we assumed Aii = 0 to avoid self-connections of nodes.
We confined ourselves to undirected networks, where the edges have no direction and the
adjacency matrix is symmetric. The degree ki of a node i counts the number of neighbor
nodes (edges) of this node. Each walker z = 1, . . . , Z performs simultaneous independent
random steps at discrete time instants t = ∆t, 2∆t, . . . from one to another connected node.
The steps from a node i to one of the neighbor nodes are chosen with probability 1/ki,
following for all walkers the same transition matrix:

Π(i → j) =
Aij

ki
, z = 1, . . . , Z, i, j = 1, . . . , N, (55)

which is normalized ∑N
j=1 Π(i → j) = 1. This is a common way to connect the network

topology with simple Markovian random walks [30,35]. In the simulations, the departure
nodes at t = 0 of the walkers are randomly chosen. The path of each walker is independent
and not affected by contacts with other walkers or by transition events from one to another
compartment.

Case Study and Discussion

In order to compare the epidemic dynamics of the mean-field model and random walk
simulations, we integrated the stochastic evolution Equation (2) numerically as follows.
We averaged the increments of the compartmental fractions in a generalized Monte Carlo
sense converging towards the convolutions of the right-hand side of (9), where we use the
Monte Carlo convergence feature:

lim
n→∞

1
n

n

∑
k=1

A(t − Tk) =
∫ t

0
A(t − τ)K(τ)dτ (56)
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for random variables T drawn from PDFs K(τ). We performed this average for any time
increment dt with respect to all involved independent random time spans tw,n

I , tM (see
Appendix A.1) and integrated the averaged compartmental increments in a fourth-order
Runge–Kutta scheme (RK4). We used in the random walk simulations and the Monte Carlo
(mean-field) integration exactly the same (Gamma-distributed) random values (Python
3.10.8 seeds) for tw,n

I , tM. The values of the infection rate parameters βw,n used in the
mean-field integration were determined from Equation (32) by plugging in the large time
asymptotic values of the random walk simulation with identical parameters (without
mortality). The compartmental fractions in the random walk simulations were determined
by simply counting the compartmental populations at each time increment ∆t of the
walker’s steps. The so-determined rate parameters βw,n plugged into the mean-field
integration depend in a complex manner on the infection probabilities pw,n and topology
of the network. In this way, this information is also contained in the basic reproduction
numbers with and without mortality. Indeed, the importance of the structural features
(topology) of the network is crucial for the spreading of the disease. We refer to the
recent review article [36] exploring a large variety of these effects. In that work, a detailed
study was performed on the role of structural elements such as the average distance
of the nodes and the effective network size (among others) on the epidemic spreading.
Naturally, pure mean-field (compartment) approaches ignore the topological features of
the environments where the diseases are spreading. In our mean-field model, the structural
network properties are captured by the infection rate parameters βw,n as outlined above.

We explore now the spreading in random graphs of different complexity such as
represented in Figure 7. The BA graph is small-world with a power law-distributed degree
(Appendix A.4), which means that there are many nodes having a few connections and a
few (hub) nodes with a huge number of connections. The average distance between nodes
becomes small, as it is sufficient that almost every node is only a few links away from a hub
node. The ER graph is small-world due to a broad degree distribution. The WS graph with
the choice of connectivity parameter m = 2 in Figure 7 has long average distances and is
large-world. Intuitively, one infers that a small-world structure is favorable for spreading
processes, a feature that was already demonstrated in the literature [8,9]. In our simulations,
spreading in network architectures with increased connectivity comes along with increased
values of R0 and RM, respectively.

We identified the starting time instant (t = 0) of the evolution in the mean-field model
with the time instant of the first infection of a walker in the random walk simulations.
In all cases, we started with a small number of randomly chosen initially infected nodes
NI(0) = 10 ≪ N (NI(0) ≈ 10) and no infected or dead walkers. To reduce the number
of parameters and to concentrate on topological effects, we have put in all simulations
the transmission probabilities pw = pn = 1. We refer to [37] for the Python codes (free
to download and non-commercial use) and animated simulation videos related to the
present study.

In order to visualize a typical spreading process, we depict in Figure 8 a few snapshots
in a Watt–Strogatz graph with a rather high overall mortality probability of D(∞) ≈ 16%. In
this case, a single infection wave emerges where a large part of the walkers gets repeatedly
infected, increasing their probability to die. This leads to a very high fraction of eventually
dead walkers dw(∞) ≈ 99% and a small fraction Sw(∞) ≈ 1% of surviving walkers
corresponding to the stationary state (17), which is taken as soon as the disease becomes
extinct Jw = Jn = 0. Figure 8 shows that, first, the infection gains large parts of the network,
consistent with the large value of RM observed in this case. After the first wave, the
disease becomes extinct by the high mortality of the walkers. A disease with similar high
mortality characteristics is, for instance, pestilence. The process of Figure 8 is visualized in
an animated video https://drive.google.com/file/d/1-fhroAsoAVDKGR5H9yWtqjD7A1
ZU5pQt/view (accessed on 22 April 2024).

https://drive.google.com/file/d/1-fhroAsoAVDKGR5H9yWtqjD7A1ZU5pQt/view
https://drive.google.com/file/d/1-fhroAsoAVDKGR5H9yWtqjD7A1ZU5pQt/view
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Figure 7. Barabási–Albert, Erdös–Rényi, and Watts–Strogatz types with 300 nodes and connectivity
parameters used in some of the simulations. The WS graph for connectivity parameter m = 2 lacks
the small-world property, resembling a complex real-world structure. The ER network has a broad
degree distribution and the small-world property. The BA graph is for N → ∞ asymptotically
scale-free with a power law degree distribution and the small-world feature, where a large number of
nodes have small degrees and, a few (hub) nodes, very large degrees. Almost all nodes are only a few
links away from hub nodes.

Figures 9 and 10 show the evolution in the WS graphs with identical parameters and
Gamma distributions of tw,n

I , tM as in Figure 8, but with a different mortality rate parameter
ξM and a much smaller overall mortality D(∞) ≈ 1%. The different network connectivity
leads to different values of βw,n and mean-field solutions in Figures 9 and 10. In addition,
the networks of Figures 9 and 10 have different connectivity features. The WS graph
of Figure 9 is small-world (strongly connected), whereas the WS graph in 10 is weakly
connected and large-world. Comparing Figures 9 and 10 shows that the network with
higher connectivity of Figure 9 has higher values of R0 or RM, respectively. The graph
in Figure 9 is small-world with larger connectivity parameter m = ⟨k⟩ = 8 coinciding
with the average degree, i.e., has shorter average distances between nodes as the graph
of Figure 10, which has connectivity parameter m = ⟨k⟩ = 2 with clearly larger average
distances between the nodes. The graph of Figure 9 with higher connectivity has R0 ≈ 183.3
(RM ≈ 183.17), whereas the graph of Figure 10 with lower connectivity has much smaller
R0 ≈ 108 (RM ≈ 107.92). Hence, the spreading (at t = 0) in the graph with higher
connectivity is much stronger as in the less well-connected structure. The effect of the
smaller connectivity on the spreading can also be clearly seen by means of the delayed
increase of the infection numbers produced by the random walk simulations (red curves)
in Figure 10. One further observes in Figure 9 that the infection numbers exhibit strong and
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immediate increases followed by attenuated oscillations around the endemic equilibrium
(for zero mortality) with high values Je

w ≈ 0.9 and Je
n ≈ 0.95. The basic reproduction

numbers with mortality are in both graphs only slightly smaller as R0. This is due to a
rather small overall mortality of D(∞) ≈ 0.01. This effect can also be seen in the small
overlap of the Gamma distributions of tw

I and tM in the histogram. Recall that a small
value of D(∞) does not necessarily mean small dw(∞) since this quantity depends also on
the infection rates and network topology (see (17)) and is sensitive to repeated infections,
which may indeed play an important role here as ⟨tw

I ⟩ = 8 is rather small.

 

Figure 8. Snapshots of spreading in a WS graph (Z = 2000 walkers, N = 2000 nodes, connectivity
parameter m = 2) and mortality parameter ξM = 0.4 with D(∞) ≈ 16%. The average degree
is ⟨k⟩ = ∑N

i=1 ki/N = 2, here coinciding with connectivity parameter m. Other parameters are
the same as in Figure 9. The upper frames show the evolution from the random walk data. One
observes dw(∞) ≈ 0.99 and Sw(∞) ≈ 1% with only about 20 surviving walkers after extinction
of the disease. S walkers are drawn in cyan color; I walkers are in red; D walkers are invisible;
nodes without walkers are represented in black. Consult here an animated video of this process
https://drive.google.com/file/d/1-fhroAsoAVDKGR5H9yWtqjD7A1ZU5pQt/view (accessed on
22 April 2024).

https://drive.google.com/file/d/1-fhroAsoAVDKGR5H9yWtqjD7A1ZU5pQt/view
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Figure 9. The plots show the evolution on the WS graph with Z = 1000 walkers for connec-
tivity parameter m = 8 (coinciding with the average degree) and rewiring probability p = 0.7
(nx.connected_watts_strogatz_graph(N = 1000, m = 8, p = 0.7)) without mortality (left frame) and
with mortality (right frame). tw,n

I , tM are Gamma-distributed with the parameters ⟨tM⟩ = 14, ξM = 2,
⟨tw

I ⟩ = 8, ξw
I = 10, and ⟨tn

I ⟩ = 15, ξn = 105; see the histogram. The overall mortality D(∞) ≈ 1% is
the same as in Fig. 10 and determined by the numerical integration of (7). The random walk data are
generated by averaging over 50 random walk realizations.

In Figure 10, the infections of the random walk simulations are increasing more slowly
(red curves) compared to Figure 9. The structure with higher connectivity in Figure 9 shows
excellent quantitative agreement of the random walk and mean-field solutions for the
walkers and nodes, well capturing the attenuated oscillations, especially for zero mortality.
In the network with smaller connectivity of Figure 10, the increase of the infections is
delayed compared to the mean field. On the other hand, for non-zero mortality, the mean-
field and random walk dynamics for the walkers diverge slightly with time. We infer that
mortality may deviate the infection rates from (1).

The comparison of the spreading in Figures 9 and 10 shows clearly the role of the
connectivity: the mean-field model better captures the spreading in networks with higher
connectivity (short average distances between nodes) and with low mortality. The following
cases give further evidence for these observations.

Next, we explore the spreading on an ER graph in Figure 11. The agreement of random
walk simulations and the mean-field model is impressive, where this holds for both with
and without mortality. One can see by means of the high average degree ⟨k⟩ = 100 and
the degree distribution in Figure 7 that, for these connectivity parameters, the graph is
well-connected and small-world, giving strong evidence that the mean-field approach is
here capturing the spreading dynamics well.
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Figure 10. Evolution on the WS graph with Z = 1000 walkers and N = 1000 nodes for the same
parameters as in Figure 9 averaged over 50 random walk realizations, but with reduced connectivity
parameter m = ⟨k⟩ = 2. The upper frame shows a snapshot (t = 15) of the spreading in one random
walk realization (susceptible walkers green, susceptible nodes black, infected nodes red).

Figure 11. Evolution on the ER graph (nx.erdos_renyi_graph(N = 1000, p = 0.1)) with Z = 1000 walk-
ers and small probability p = 0.1 (above the percolation limit pc = 0.01 to ensure a connected
structure). The parameters are ⟨tn

I ⟩ = 5, ξn
I = 10, ⟨tw

I ⟩ = 10, ξw
I = 0.05, ⟨tM⟩ = 65, ξM = 1. The

average degree of this ER graph is very large with ⟨k⟩ = pN = 100.
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Finally, we explore in Figure 12 the dynamics on a BA network. In the right frame, we
have high overall mortality of D(∞) ≈ 10% probability for a walker to die from an infection.
In this example, the disease is starting to spread as RM ≈ 3.46 > 1, where only a single
infection wave emerges, which is made extinct by the high mortality. Recall that RM > 1 is
only telling us that the healthy state is unstable, i.e., that the disease is starting to spread.
It does not contain the information about whether the spreading is persistent or whether
the disease is eventually made extinct. To explore the role of topological features such as
the average distances between nodes, we performed the same simulation experiment with
identical parameters and less (N = 2100) nodes, i.e., a higher density of walkers (Figure 13).

Figure 12. Evolution on Barabási–Albert graph with Z = 50 walkers and N = 5000 nodes
(nx.barabasi_albert_graph(N = 5000, m = 5) and the average degree ⟨k⟩ ≈ 10) with parameters
⟨tn

I ⟩ = 32, ξn
I = 104, ⟨tw

I ⟩ = 8, ξw
I = 104 (sharp tw,n

I ), tM = 500, ξM = 10−3. The basic reproduction
number RM is here only slightly smaller than R0 without mortality. The left upper frame shows the
initial condition. S walkers are represented in blue, I walkers in red, and nodes in black. The random
walk data are generated by averaging over 10 random walk realizations.

The accordance of the mean-field model and random walk simulation is indeed also,
as seen in Figure 13, excellent. We explain this by the fact that the BA network is a
strongly connected structure with a pronounced small-world property. The higher density
of walkers leads to increased RM and R0 compared to Figure 12. There is also only a single
infection wave occurring with a higher maximum value compared to Figure 12. In both
cases (Figures 12 and 13, right frames) the infection waves are made extinct by the high
mortality of walkers, where stationary states (17) with dw(∞) ≈ 80% of dead walkers are
taken. When we switch off mortality (left frames), stable endemic states emerge more
rapidly in Figure 13 (the case with a higher density of walkers).
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Figure 13. Evolution with the same parameters and number of walkers (Z = 50) as in Figure 12, but
fewer nodes (N = 2100) for one random walk realization and average degree ⟨k⟩ ≈ 9.98. We interpret
the increase of RM and R0 due to more frequent passages of susceptible walkers on infected nodes
(higher infection rates). Here, we performed only one random walk realization.

Further simulation experiments (not shown here) revealed that the mean-field model
and random walk simulations exhibited excellent accordance when we further increased
the attachment parameters m or the density of walkers with otherwise identical parameters.
For higher mortality, the agreement becomes less good and diverges with increasing
observation time. This observation suggests that mortality modifies the infection rates in
the network for larger observation times. We leave this issue for future research.

Our overall finding from this case study is that the mean-field approach (with infection
rates (1)) is particularly well suited to mimic spreading in strongly connected environments
with a pronounced small-world feature, but is less good for higher mortality.

7. Conclusions

We studied epidemic spreading in complex graphs, where we focused on the trans-
mission pathway via vectors mimicking the spreading of a certain class of diseases such as
Dengue, Malaria, Pestilence, and others. We developed a stochastic compartment model
for the walkers and nodes with mortality for the walkers. For zero mortality, we obtained
the endemic equilibrium in explicit form (Equation (33)). The stability analysis of the
endemic and healthy states revealed the crucial control parameter for spreading, the basic
reproduction number. We obtained the basic reproduction numbers RM and R0 with and
without mortality, respectively, where we proved that RM ≤ R0 (the relations (50) with (48)).
For RM, R0 > 1, the healthy state is an unstable fixed point where the endemic equilibrium
exists for zero mortality as a unique stable fixed point independent of the initial condi-
tions. The basic reproduction numbers depend on the means of the compartmental sojourn
times in compartment I of the nodes and walkers and on the topology of the network
captured by the mean-field rate constants βw,n. For future research, it would be desirable
to extend the mean-field model in such a way that it connects the rate parameters βw,n in
explicit form with the topological features of the network such as the mean distance of
the nodes, average connectivity, and others. We refer to [38] for a recent study connecting
the spreading of COVID-19 with such topological features, where it has to be emphasized
that COVID-19 is not a vector-transmitted disease and, hence, does not refer to the class of
diseases analyzed here.

Our model has applications beyond epidemic dynamics, for instance in chemical
reaction models [39], and can be extended in various directions. For instance, the inclusion
of additional compartments and natural birth and death processes based on real-world
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observations of Malaria transmission dynamics is of interest [40]. An interesting question
to explore in a follow-up project is whether our class of compartment models with indi-
rect transmission pathways may exhibit (for zero mortality) persistent oscillations (Hopf
instabilities). (See our brief discussion at the end of Appendix A.2.) An open problem also
remains how a large-world network topology may be included in such a mean-field model,
modifying the infection rates. Further promising directions include an accounting of im-
mune and incubation compartments, the effects of mitigation measures, and vaccinations,
among many others.
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Appendix A

Appendix A.1. Some Basic Notions

Here, we recall briefly some basic notions used in the paper. The infection rates are
causal functions:

A(t) = A(t)Θ(t) (A1)

where Θ(t) indicates the Heaviside step function defined by

Θ(ζ) =


1, ζ ≥ 0

0, ζ < 0
(A2)

with Θ(ζ) + Θ(−ζ) = 1, and in our definition, Θ(0) = 1. Its derivative yields the Dirac
δ-distribution d

dζ Θ(ζ) = δ(ζ). We use throughout the paper mutually independent strictly
positive random variables T1, . . . , Tn ∈ R+ The random variables Tj are assumed to follow
their specific PDFs:

Prob[Tj ∈ [u, u + du]] =
〈

δ(u − Tj)
〉
= Kj(u)du (A3)

where the PDFs Kj are causal functions as a consequence of the positiveness of the Tj. Then,
the averaging rule applies:

⟨ f (t; T1, T2, . . . , Tn) ⟩ =
∫ ∞

0
. . .
∫ ∞

0
dt1 . . . dtn f (t; t1, t2, . . . , tn)K1(t1) . . . Kn(tn) (A4)

for suitable functions f . For f (t; T1, T2, . . . , Tn) = g1(T1) . . . gn(Tn), using the independence
of the Tj, this yields

⟨ g1(T1) . . . gn(Tn) ⟩ = ⟨ g1(T1), ⟩ . . . ⟨ gn(Tn) ⟩.
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Important cases emerge by applying (A4) to the exponentials:〈
e−λ(T1+...+Tn)

〉
=
∫ ∞

0
e−λt⟨δ(t − T1 − . . . − Tn)⟩dt = K̂1(λ) . . . K̂n(λ), ℜ{λ} ≥ 0

(A5)
In this relation, the LTs of the PDFs come into play:

K̂j(λ) =
∫ ∞

0
e−λtKj(t)dt (A6)

where K̂j(λ)

∣∣∣∣
λ=0

= 1 reflects the normalization of PDFs (A3). A further observation is

⟨δ(t − T1 − . . . − Tn)⟩ = (K1 ⋆ . . . ⋆ Kn)(t) (A7)

where ⋆ stands for the convolution (K1 ⋆ K2)(t) =
∫ t

0 K1(τ)K2(t − τ)dτ of the causal PDFs.

Appendix A.2. Proof of Stability of the Endemic Equilibrium

Here, we develop the rest of the proof of the stability of the endemic equilibrium,
i.e., we show that the function (42) is strictly positive for µ ≥ 0 with R0 − 1 > 0. First,
we observe that Φ̂w,n

I (µ) ≤ ⟨tw,n
I ⟩ with Φ̂w,n

I (0) = ⟨tw,n
I ⟩ and Φ̂w,n

I (∞) = 0. For our
convenience, we introduce the functions

λw,n(µ) =
Φ̂w,n

I (µ)

⟨tw,n
I ⟩

∈ (0, 1] (A8)

which are the LTs of the normalized functions Φw,n
I (t)/⟨tw,n

I ⟩ and which are, by virtue of
Bernstein’s theorem [41], completely monotonic (CM) with respect to µ, i.e.,

(−1)n dn

dµn λw,n(µ) ≥ 0, µ ∈ (0, ∞) (A9)

inheriting this feature from the exponential e−µτ (t > 0). Therefore,

d
dµ

λw,n(µ) = − 1
⟨tw,n

I ⟩

∫ ∞

0
e−µttΦw,n

I (t)dt < 0

(as Φn,w
I (t) ∈ (0, 1]) exists; thus, λw,n(µ) is monotonously decreasing with µ with λw,n(0) =

1 ≥ λw,n(µ) > 0. Further, we observe in Equation (33) that Je
nβw⟨tw

I ⟩ =
R0−1

1+βn⟨tn
I ⟩

, Je
wβn⟨tn

I ⟩ =
R0−1

1+βw⟨tw
I ⟩

; thus,

R0(Je
n + Je

w) = (R0 − 1)
(

βn⟨tn
I ⟩

1 + βn⟨tn
I ⟩

+
βw⟨tw

I ⟩
1 + βw⟨tw

I ⟩

)
.

Then, Ge(µ) reads

Ge(µ) = 1 + λw(µ)λn(µ)

{
−R0 + (R0 − 1)

(
βn⟨tn

I ⟩
1 + βn⟨tn

I ⟩
+

βw⟨tw
I ⟩

1 + βw⟨tw
I ⟩

)}

+(R0 − 1)
(

λw(µ)

1 + βn⟨tn
I ⟩

+
λn(µ)

1 + βw⟨tw
I ⟩

)
.

(A10)

Now, we observe that λw(µ)λn(µ) ≤ λw,n(µ); thus, a lower bound function H(µ) ≤ Ge(µ)
is generated by replacing λw,n(µ) → λw(µ)λn(µ) in the second line. Now, it is sufficient to
prove that 0 < H(µ). We, hence, obtain for this lower bound function:
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H(µ) = 1 + λw(µ)λn(µ)
{
−R0 + (R0 − 1)

(
βn⟨tn

I ⟩
1+βn⟨tn

I ⟩
+

βw⟨tw
I ⟩

1+βw⟨tw
I ⟩

)
+ (R0 − 1)

(
1

1+βn⟨tn
I ⟩
+ 1

1+βw⟨tw
I ⟩

)}
= 1 + λw(µ)λn(µ)(R0 − 2)

= 1 − λw(µ)λn(µ) + (R0 − 1)λw(µ)λn(µ)

(A11)

and with 1 − λw(µ)λn(µ) ≥ 0 and (R0 − 1)λw(µ)λn(µ) > 0, it follows that 0 < H(µ) ≤
Ge(µ), concluding the proof of the stability of the endemic equilibrium.

Appendix A.3. A Few Remarks on the Possibility of Oscillatory (Hopf) Instabilities of the
Endemic Equilibrium

Let us briefly explore whether an oscillatory (Hopf) instability of the endemic equilib-
rium is possible. To that end, we write Ge(µ) as

Ge(µ) = 1 + σĝ(µ) ≥ 1 − ĝ(µ) (A12)

where σ = ±1 and ĝ(µ) is a non-negative CM function (see Figure 4) with the maximum
value ĝ(0) = |R0 − 2|. Then, the following two cases may occur.
Case (i) σ = −1; 0 < Ge(0) = R0 − 1 < 1 (1 < R0 < 2):
Then, ĝ(µ) can be represented as the LT of a non-negative function g(t), and consider, now,
µ = µ1 + iµ2 with µ1 ≥ 0; thus, the real part of ĝ(µ1 + iµ2) can be written as

ℜg(µ1 + iµ2) =
∫ ∞

0
g(t)e−µ1t cos(µ2t)dt, µ1 ≥ 0 (A13)

with ĝ(0) = 2 − R0 and, clearly, −ĝ(µ1) ≤ ℜg(µ1 + iµ2) ≤ ĝ(µ1). Therefore,

ℜGe(µ1 + iµ2) = 1 −ℜg(µ1 + iµ2) ≥ 1 − ĝ(µ1) ≥ 1 − ĝ(0) = R0 − 1 > 0. (A14)

Hence, in the range of case (i) 1 < R0 < 2, there is no oscillatory (Hopf) instability of the
endemic state possible (a similar consideration of function G(µ) of (39) shows as well that
the healthy state for R0 < 1 does not exhibit an oscillatory instability):
Case (ii) σ = +1; R0 − 1 > 1:
Here, we have two pertinent ranges of R0. The first is the range (a) ĝ(0) = R0 − 2 < 1 (i.e.,
R0 < 3), and the second one (b) is ĝ(0) = R0 − 2 > 1. Clearly, in the range (a), (A14) remains
true and ℜGe(µ1 + iµ2) strictly positive. Hence, for 1 < R0 < 3, no Hopf instability is
possible.
This changes in the range (b), since ĝ(0) = R0 − 2 > 1; thus, ℜGe(µ1 + iµ2) = 1 +ℜg(µ1 +
iµ2) may become negative. Therefore, for R0 > 3, a Hopf instability of the endemic state
becomes possible. However, the possibility that ℜGe(µ1 + iµ2) = 0 is only necessary, but
not sufficient for a Hopf instability. One also needs simultaneously that the imaginary part
ℑGe(µ1 + iµ2) = 0 is vanishing for the same µ = µ1 + iµ2. In the simulations performed
for this paper, we did not observe persistent oscillations. We leave the exploration of this
issue for future research in a follow-up project.

Appendix A.4. A Very Brief Recap of Random Graphs

Here, we recall briefly some essential features of the three classes of random graphs,
which we use in the random walk simulations. For an extended outline, consult, e.g., [42].
The three classes of random graph models depicted hereafter are motivated by the observa-
tion that complex random network structures are encountered ubiquitously and crucially
determine human and animal mobility patterns, including epidemic propagation.

(i) Erdös and Rényi (ER) graph

The ER graph is one of the most basic variants of a random graph, which was intro-
duced in 1959 by Erdös and Rényi [43]. We use the so-called G(N, p) variant of the random
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ER graph model, which is actually due to Gilbert [44], and generated as follows [11,14].
Given are N labeled nodes. Any pair of nodes is connected independently by an edge with
uniform probability p. The probability PN(k) that a node has 0 ≤ k ≤ N − 1 connections is
given by a binomial distribution:

PN(k) =
(

N − 1
k

)
pk(1 − p)N−1−k → ⟨k⟩k

k!
e−⟨k⟩

where ⟨k⟩ = (N − 1)p ∼ Np denotes the average degree. For N → ∞ (while Np is kept
constant), the degree distribution PN(k) converges to a Poisson distribution representing
the infinite graph limit of the ER G(N, p) model. Therefore, PN(k) is rapidly decaying with
degree k, so the number of nodes with a high number of connections is very small. In order
to obtain in the G(N, p) model a connected graph, it is necessary that p > pc = logN

N be
above the percolation limit [30,43]:

(ii) Watts–Strogatz (WS) network:

The WS graph model [11,45,46] starts with a ring of N nodes, where each node is
connected symmetrically with a number m << N to the left and right neighbor nodes by
an edge such that each node has 2m connections. In the second step, each of the connections
i, j of node i is replaced with probability p by a randomly chosen connection i, k uniformly
among other nodes avoiding self-connections and link duplication, so that each connection
i, k is chosen only once. There are two noteworthy limits for a WS graph. For p = 0 (no
rewiring of links), we have a regular ring with constant degree 2m for all nodes. In the limit
p = 1, an ER graph is emerging with probability 2m/(N − 1) for a link. The WS graph
has the small-world property (short average distances between pairs of nodes) and a high
tendency to develop clusters of nodes [46].

(iii) Barabási–Albert (BA) graph:

The BA graph is generated by a preferential attachment mechanism for newly added
nodes [14,15,42,47]. One starts with m0 nodes and adds new nodes. Any newly added node
is connected with m ≤ m0 existing nodes (m is referred to as the attachment parameter),
most likely with nodes of high degrees. In this way, nodes with a high degree receive
further links. This leads to an asymptotically scale-free network with a power law degree
distribution:

P(k) ∝ k−2−µ, µ ≈ 1.

As the decrease in this power law is relatively slow, there might exist quite a few nodes
with many links (hub nodes) and many nodes with few links. BA graphs are believed to
mimic a large class of real-world networks including the World Wide Web and citation,
social, and metabolic networks.

Realizations of these three types of random graphs are used in our multiple random
walker simulations and shown in Figure 7.
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