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Abstract: The integration of graph embedding technology and collaborative filtering algorithms
has shown promise in enhancing the performance of recommendation systems. However, existing
integrated recommendation algorithms often suffer from feature bias and lack effectiveness in per-
sonalized user recommendation. For instance, users’ historical interactions with a certain class of
items may inaccurately lead to recommendations of all items within that class, resulting in feature
bias. Moreover, accommodating changes in user interests over time poses a significant challenge.
This study introduces a novel recommendation model, RCKFM, which addresses these shortcomings
by leveraging the CoFM model, TransR graph embedding model, backdoor tuning of causal infer-
ence, KL divergence, and the factorization machine model. RCKFM focuses on improving graph
embedding technology, adjusting feature bias in embedding models, and achieving personalized
recommendations. Specifically, it employs the TransR graph embedding model to handle various
relationship types effectively, mitigates feature bias using causal inference techniques, and predicts
changes in user interests through KL divergence, thereby enhancing the accuracy of personalized
recommendations. Experimental evaluations conducted on publicly available datasets, including
“MovieLens-1M” and “Douban dataset” from Kaggle, demonstrate the superior performance of the
RCKFM model. The results indicate a significant improvement of between 3.17% and 6.81% in key
indicators such as precision, recall, normalized discount cumulative gain, and hit rate in the top-10
recommendation tasks. These findings underscore the efficacy and potential impact of the proposed
RCKFM model in advancing recommendation systems.

Keywords: recommendation system; knowledge graph embedding; joint training; collaborative
filtering; factorization machine; causal inference

1. Introduction

With the continuous development of information technology and the internet we
have transitioned from an era of information scarcity to an era of information overload. In
addressing this challenge, search engines and recommendation systems have emerged as
important technological representatives for mitigating information overload. Traditional
search engines primarily satisfy user needs by filtering and screening information, but
this approach lacks personalized service. In contrast, recommendation systems can better
accommodate user-specific needs, thus becoming a more effective way of information filter-
ing. As a subset of information filtering systems, recommendation systems aim to predict
user preferences for products based on their likes, habits, personalized requirements, and
product characteristics, thereby recommending the most suitable products to help users
make decisions quickly and enhance user satisfaction. However, with the advent of the big
data era, traditional recommendation systems face challenges in harnessing the value of
data, among which one of the most prominent issues is the cold-start problem caused by
data sparsity. To address this challenge, methods based on collaborative filtering are widely
considered one of the successful approaches in recommendation systems [1]. Additionally,
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new attempts have been proposed by some scholars, such as Jiang et al., who constructed a
time-aware collaborative filtering model in 2019 [2], and Wulam et al. in 2019 [3] as well as
Bai et al. in 2020 [4], who proposed new methods that integrate multiple recommendation
algorithms. Some scholars have also considered algorithmic energy efficiency. Effective
algorithms have the potential to reduce computational resources and energy consumption,
thereby decreasing the energy usage of data centers and devices. For instance, in 2021,
Gu et al. [5] explored edge computing, where computational resources are deployed at
the network’s edge, allowing efficient processing of computational tasks and data from
endpoints through edge nodes. Collaborative edge computing integrates the computational
resources of edge nodes to offer more efficient computational services to endpoints, taking
into account the computational resource limitations of edge nodes. In 2022, Lin et al. [6] in-
vestigated the computational offloading problem in collaborative edge computing networks
and optimized computational offloading and resource allocation through collaborative
methods. Karabetian et al. [7] also focused on optimizing computational offloading and
resource allocation by iteratively analyzing extensive datasets provided by end users us-
ing a cloud computing paradigm to enhance the knowledge graph and evaluate energy
efficiency and usability.

In the field of recommendation systems, the focus often lies on the connections be-
tween users and items, while the consideration of interactions between users and users,
as well as items and items, is often overlooked. The emergence of knowledge graphs
has provided an effective avenue for the design of recommendation systems in the era
of big data. Knowledge graph-based recommendation systems strengthen the semantic
information of data by interconnecting users to users, users to items, and items to items,
thus enhancing recommendation accuracy. This approach holds significant research sig-
nificance and practical value, gradually becoming one of the most active branches in the
field of recommendation systems. A knowledge graph essentially serves as a specialized
knowledge repository (as depicted by the dashed circle in Figure 1), where the entities
and relationships contained within it can be embedded to derive features using graph
embedding models, thereby enhancing the overall performance of the recommendation
system. The integration of recommendation models with knowledge graphs has seen rapid
development. For instance, in 2018, Wang et al. [8] introduced a knowledge graph from the
news domain into an online news recommendation system, demonstrating the beneficial
effects of incorporating knowledge graph embedding as an external knowledge base. The
CoFM model proposed by Piao et al. in 2018 [9] also integrates knowledge graph embed-
ding for effective recommendation. The CoFM model combines the TransE [10] graph
embedding model with the factorization machine (FM) model, but the TransE model cannot
effectively identify 1-N, N-1, and N-N relationships within the knowledge graph. In 2022,
Lu et al. [11] proposed the JFMH model, aiming to improve CoFM by integrating TransH
graph embedding and the factorization machine (FM) model for collaborative filtering
recommendations. However, the TransH model used for graph embedding presents the
same issue as the TransE model, wherein entity and relationship vectors are represented in
a singular vector space, thus limiting the extraction of entity features. In summary, most
existing knowledge graph-based recommender systems suffer from the following problems:

1. Existing graph embedding algorithms struggle with entity- and relation-space repre-
sentation, resulting in poor graph-embedded features.

2. The current research on knowledge graph-based recommender systems focuses on
using knowledge graphs to improve the search capability of recommender systems,
using knowledge graphs as a modality for capturing features to provide additional
value information [12], and some of the studies consider the complementation of
knowledge graphs, with few studies on dealing with the bias problem brought about
by graph embedding.

3. Current recommendation algorithms increasingly aim to uncover user interests and
provide personalized recommendations. Effectively identifying the volatility of user
interests remains a recent challenge in the field of recommendation research.
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Figure 1. User interaction with the knowledge graph.

In this paper, the TransR [13] model was selected for the knowledge graph embedding
module, which can better distinguish and express the objective 1-N, N-1, and N-N rela-
tionships in the graph network. Additionally, the logic of backdoor adjustment in causal
reasoning was employed to repetitively weight the embedded features, eliminating biases
introduced by using TransR feature embeddings. For the recommendation module, the
factorization machine (FM) model was chosen, which is more effective and accurate in
handling extremely sparse feature values compared to traditional collaborative filtering
models. Moreover, KL divergence was used in the recommendation module to calculate the
diversity of user interests, capturing users with changing interests, facilitating personalized
recommendations. Extensive experiments were conducted in this study, and the results
demonstrate that the graph representation learning model based on the TransR model can
better utilize heterogeneous relationship information in the graph network, that backdoor
adjustment logic based on causal reasoning can better eliminate biases introduced during
feature learning, and that time-based KL divergence calculation can capture user interaction
interests. These methods contribute to improving the performance of top-10 recommen-
dations. This paper integrates the graph embedding TransR model and the factorization
machine (FM) [14] model, introducing causal reasoning and KL divergence calculation, to
establish a graph representation model based on the TransR model for learning knowledge
graphs. Using graph embedding vector features to eliminate biases enhances the recom-
mendation effect of FM. Furthermore, experiments conducted on widely used academic
datasets, such as “MovieLens-1M” and “Douban dataset”, demonstrated the effectiveness
of our approach.

This paper is structured as follows: Section 1 presents the background of this research,
the addressed problem, and the definition of a knowledge graph; Section 2 introduces the
research progress in the related field; Section 3 focuses on explaining the RCKFM model
proposed in this paper, describing the structure of the model and how each component
is implemented; Section 4 describes the dataset used for the experiments in this paper,
the chosen baseline model, and the application of evaluation metrics; Section 5 designs
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replicated experiments to evaluate the superiority of the RCKFM model over multiple
baseline models and explores the impact of parameters, such as embedding dimension and
training batch size, on recommendation performance; in Section 6, the recommendation
model proposed in this paper is summarized and future research objectives are planned.

How to effectively improve the energy consumption of recommender systems is also
one of the research issues in this paper. Effective algorithms have the potential to reduce
computational resources and energy consumption, thereby decreasing the energy usage
of data centers and devices. Optimizing energy efficiency extends device lifespan, en-
hances operational efficiency, reduces energy costs, and promotes green computing. For
instance, in 2021, Gu et al. [5] explored edge computing, where computational resources
are deployed at the network’s edge, allowing efficient processing of computational tasks
and data from endpoints through edge nodes. Collaborative edge computing integrates
the computational resources of edge nodes to offer more efficient computational services
to endpoints, taking into account the computational resource limitations of edge nodes.
In 2022, Lin et al. [6] investigated the computational offloading problem in collaborative
edge computing networks and optimized computational offloading and resource allocation
through collaborative methods. Karabetian et al. [7] also focused on optimizing com-
putational offloading and resource allocation by iteratively analyzing extensive datasets
provided by end users using a cloud computing paradigm to enhance the knowledge graph
and evaluate energy efficiency and usability.

2. Related Work

In this section, we will discuss two aspects relevant to our research: collaborative filtering-
based recommendation systems and knowledge graph-based recommendation systems.

2.1. Collaborative Filtering-Based Recommendation Systems

Currently, one of the most widely used and mature recommendation algorithms is
collaborative filtering (CF). The basic idea of collaborative filtering is to recommend items
to users based on their past preferences and the choices of other users with similar interests
(as shown in Figure 2).

Figure 2. Basic idea of collaborative filtering using similarity calculation.

As shown in Figure 2, in collaborative filtering, we use an m×n matrix to express the
user’s preference for projects. Generally, the score indicates the user’s preference for the
project; the higher the score, the more the user likes the project. A score of 0 indicates that
the user has not purchased the project. Each row in the graph represents a user, each column
represents a project, and the specific content filled in each cell of the rating table is the
user’s rating for the project. The collaborative filtering process involves two steps: one is
the prediction process, which predicts the possible rating values of users for non-purchased
projects; the other is the recommendation process, which is to recommend the N projects
that users are most likely to like based on the results of the prediction stage.

The collaborative filtering recommendation algorithm is mainly based on two conclu-
sions: one is that similar users may have similar preferences for projects; the other is that
similarity exists between projects. Specifically, the method based on collaborative filtering
mainly mines the similarities between users and users and between projects and projects
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from the historical interaction data of users and projects, and makes recommendations
based on these similarities. The Pearson correlation coefficient formula used during this
period is shown in Formula (1) :

Pearsonx,y =
cov(x, y)

σxσy
=

∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2
(1)

where cov is the calculated covariance, cov(x, y) = 1
n−1 ∑n

i=1(xi − x̄)(yi − ȳ), σx is the
calculated standard deviation of x, σ2

x = 1
n−1 ∑n

i=1(xi − x̄)2, and x̄ is the mean value of x,
x̄ = 1

n ∑n
i=1 xi.

In recent years, many improvements have been made to collaborative filtering rec-
ommendation algorithms. In 2010, Rendle et al. [14] proposed the factor decomposer FM
model, which is based on logistic regression and adds a second-order feature crossover
part to the model, which is able to better mine the correlation between data features under
highly sparse conditions, especially for the crossover data that did not appear in the train-
ing samples. Meanwhile, FM can be used in computing the objective function, and doing
optimization learning in stochastic gradient descent can be done in linear time. In 2015,
Sedhain et al. [15] proposed to take the rating records of each item from all users as inputs
and learn the latent representations of the items in order to reconstruct the predicted prefer-
ences of each item from all users. In 2016, Blondel et al. [16] proposed that higher-order
FM could be used as a model to reconstruct the predicted preferences of each item from all
users by direct extension of second-order interactions with all feature interactions, but the
modeling was still affected by noisy feature interactions. In 2018, Piao et al. [9] proposed the
CoFM model, fusing the TransE model and the factorizer FM model for recommendation.
In 2022, Lu et al. [11] proposed JFMH, fusing graph embedding TransH and collaborative
filtering for recommendation.

2.2. Recommendation System Based on Knowledge Graph

Knowledge graphs can be seen as heterogeneous networks, including various entities
and relationships, which are interconnected to build a network that displays comprehensive
knowledge information in a certain field. For example, in Figure 1, the characters and
movies circled in dotted lines are different types of entity nodes (such as actors and movies,
or types and movies). The dashed lines in the figure without nodes represent various
relationships between these entities (for example, “its actors” indicates the relationship
between actors and movies, and “its type” indicates the relationship between type and
movie). For the relationships in Figure 1, we define them in the form of triplets: (Leonardo
DiCaprio, its actor, The Basketball Diaries), (Love, its type, Love at First Sight). The
recommendation system can use the external supplement library composed of entities and
relationships in the knowledge graph to mine the possible relationships between users
and projects [17,18]. Specifically, for User A in Figure 1, we know he likes the movie
“The Basketball Diaries” starring Leonardo DiCaprio. Based on the two relationships in
Figure 1, namely, (Leonardo DiCaprio, its actor, The Basketball Diaries) and (Leonardo
DiCaprio, its actor, Titanic), we can infer that User A might also like the movie “Titanic”.
Therefore, we can recommend the movie “Titanic”, which was not originally included
in the historical interaction data, to User A. In the same way, we can also recommend
“The Basketball Diaries” and “Love at First Sight” to User B, making the recommendation
process more flexible.

In the recommendation system based on the knowledge graph, the feature learning of
the knowledge graph is mainly to obtain a low-dimensional vector through learning entities
and relationships. Feature learning of knowledge graphs includes two types of models:
one is a distance-based model and the other is a semantic matching model. The focus of
this article is on distance-based models. Recently, knowledge graph-based recommender
systems have been developing rapidly. In 2018, Wang et al. [8] proposed the DKN model
for online news recommender systems. In 2018, Piao et al. [9] proposed the CoFM model to
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capture knowledge graph features using TransE-assisted recommender systems. In 2020,
Wang et al. [19] proposed the CKAN model by exploring the message-passing mechanism
on knowledge graphs that exploit higher-order connectivity in an end-to-end manner.
Meanwhile, in 2023, our team [20] proposed a deep hash-embedded recommendation
based on a knowledge graph, and the model had very good results.

The study of graph embedding algorithms originated from an in-depth analysis and
understanding of word vectors, as shown in Formula (2):

Vec(King)− Vec(Man) = Vec(Queen)− Vec(Woman) (2)

Word vectors have the ability to perform space translation. Therefore, graph embed-
ding of entities and relationships in a knowledge graph can effectively provide external
knowledge bases. The graph embedding methods based on the Trans series are very
important parts in the graph embedding algorithm, including basic models such as the
TransE model, TransH model, and TransR model (as shown in Figure 3). This method has
two main advantages: one is that it can directly embed entities and relationships into low
dimensions, and the other is that it can better discover hidden relationships in the graph.

Figure 3. Three commonly used distance-based translation models.

Figure 3a–c, respectively, correspond to three distance-based translation models. In
these models, the head node h, relationship r, and tail node t of the triple all have corre-
sponding vector representations, and our expectation is that h + r = t. The closer the result
of the vector h + r is to t, it indicates that these vectors can well represent the entities and
relationships in the knowledge graph. It can be seen that the improvement of the TransR
graph embedding model compared to TransE is that it projects the relationship r into a
dedicated relationship vector space, which is explained in detail in Section 3.1. TransE is
the basic starting algorithm in the Trans series of methods. Because its entities and relations
share the same space, it cannot handle types of problems, such as 1-N, N-1, and N-N. To il-
lustrate this problem, for example, in the knowledge graph of Figure 1, there are two triples:
(Leonardo DiCaprio, his profession is an actor, his movie is “The Basketball Diaries”) and
(Leonardo DiCaprio, his profession is an actor, his movie is “Titanic”). With the idea of
the TransE model, when we try to learn the node embedding of Leonardo DiCaprio, it is
found that the optimal vector representation of the head entity Leonardo DiCaprio cannot
be obtained; this is because the tail entities “The Basketball Diaries” and “Titanic” belong
to two different types of movies (one is crime genre, the other is romance–disaster film).
For instance, when using the triple (Leonardo DiCaprio, actor, The Basketball Diaries) for
training, we get a vector representation of the node Leonardo DiCaprio. However, when
(Leonardo DiCaprio, actor, Titanic) is used for testing, we find that the vector representation
of the Leonardo DiCaprio node has changed, so the model needs to be optimized in the
direction of (Leonardo DiCaprio, his profession is an actor, his movie is “Titanic”), thus
causing conflicts in the vector representation for the node of Leonardo DiCaprio. In this
case, we considered using the TransR graph embedding model to improve the complete
match matrix (CoFM).
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3. Personalized Collaborative Filtering Recommender System Based on Bipartite Graph
Embedding and Causal Inference

In this paper, we take the CoFM fusion model as a reference, which incorporates
the TransE graph embedding model and the factorizer FM model. Because of the TransE
embedding model, the model cannot solve the 1-N, N-1, and N-N problems well; at the
same time, there is the influence of feature bias in the training time, and the predicted
results cannot perform the adaptive recommendation to meet the user’s personalized needs.
In order to solve these problems effectively, we designed R the CKFM (recommendation
algorithms based on TransR, causal reasoning, KL scatter and factorization machine) model.
The core work that needs to be done is as follows:

1. Improve the ability of the CoFM model to recognize 1-N, N-1, and N-N relationships.
Specifically, we hope to improve the effectiveness of the CoFM model by solving the
problem that TransE cannot recognize 1-N, N-1, and N-N relations well. Here, we
use the TransR graph embedding model instead of the TransE model, which is able
to jump out of the single space when embedding and to deal with many-to-many
relations more effectively and accurately.

2. Reconstructing the user’s eigenvalues using backdoor adjustment of causal inference to
eliminate the biased effect of user–item-history interactions on the user’s eigenvalues.

3. Using symmetric KL scatter to fuse the traditional FM recommendation with the final pre-
dictive score of RCKFM to achieve an adaptive personalized user–item recommendation.

The flow of the RCKFM model recommendation is shown in Figure 4.

Figure 4. RCKFM modeling flows.

where the blue part represents the feature-learning section, and the green part denotes the
recommendation algorithm’s portion. Notably, the functionally concentrated steps in the
RCKFM model consist of TransR bipartite graph embedding, backdoor adjustment for bias
elimination, FM collaborative filtering, and symmetric KL scatter score aggregation. The
overall framework of the RCKFM model is shown in Figure 5:
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Figure 5. Framework of the RCKFM model.

The model structure is divided into four parts:

1. TransR dual graph embedding: we take the knowledge graph dataset and the user–
item-history interaction dataset as the input of the whole system. The graph embed-
ding uses the TransR model based on graph embedding to represent the structured
information in the knowledge graph. At the same time, to obtain the movie em-
bedding and user embedding, here we consider dual graph embedding for users
and projects. The specific operation steps are to constitute the graph embedding
of the attributes and types of the movie at the same time as constituting the graph
embedding of the user’s attributes and history interactions, etc., in order to obtain
the project feature representations and user characterization of the project features
and user features, respectively. The TransR graph embedding model is utilized to
jump out of the TransE graph embedding model single-space (entity and relationship
shared space) representation problem.

2. Causal inference backdoor adjustment: After obtaining the embedding results, we
adjust the representation of user-feature vectors by the causal inference backdoor
adjustment method to eliminate the bias influence of user-history interaction on
user-features representation.

3. FM collaborative filtering: collaborative filtering will be the user–item-history interac-
tion relationship of data collection after matching the embedding results as the input
of the FM model. Here, the collaborative filtering model FM should be trained both
before the backdoor adjustment of the parameters and after the backdoor adjustment
of the parameters to facilitate the personalized scoring fusion.

4. KL Scatter Score Aggregation: Using symmetric KL scatter, we calculate whether the
user’s interest is variable according to the timestamp, we fuse the predicted scores
before and after the backdoor recommendation, and, ultimately, we obtain the top-10
recommendation list according to the order of the predicted scores.
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3.1. TransR Dual Graph Embeddings

To solve the representation problem of TransE and TransH, Yankai proposed the
TransR [13] model (as shown in Figure 6), in 2015, for the representation of entities and
relations in different semantic spaces. It embeds entities and relations in different spaces
and solves the problem that they are difficult to represent in a common semantic space.
In contrast, TransE and TransH assume that entities and relations are embedded in the
same space, but in reality they are different objects that are not necessarily suitable for
representation in the same semantic space. Although TransH improves flexibility by
introducing relational hyperplanes, it does not completely break this assumption. To
overcome the problem of a single space, TransR provides different entity and relation
spaces and learns embeddings by translating in the relation space to better represent
associations between entities and relations.

Figure 6. TransR model.

The TransR model uses a different embedding method, but unlike TransE it does
not directly superimpose the head entity vectors on the relation vectors. Rather, for each
triangular group (h, r, t), TransR projects the head entity h in the entity space to the relation
space using the matrix Mr to obtain hr. Similarly, the tail entity t is projected to the relation
space by the matrix Mr to obtain tr. What is obtained is the embedding representation in
the relation-specific space, as shown in Equation (3). Based on this, the TransR model is
represented as hr + r ≈ tr by constraining hr, tr with the relation vector r. As with TransE,
the embedding vectors of entities and relations are learned by minimizing the loss function.
Here, h and t denote the embedding vectors of entities and r denotes the embedding vector
of relations:

hr = hMr, tr = tMr (3)

The projection specific to the relationship can cause the head/tail entities that hold
this relationship (represented as colored circles in Figure 6) to be close to each other, while
those entities that do not hold this relationship are far from each other (represented as
colored triangles in Figure 6). Also, the TransR model defines the loss function L, as shown
in Equation (5):

fr(h, t) =
∣∣∣∣∣∣hr + r − tr

∣∣∣∣∣∣2
2

(4)

L = ∑
(h,r,t)∈S

∑
(h′ ,r′ ,t′)∈S′

max(0, fr(h, t) + γ − fr(h′, t′)) (5)

where S′ represents the negative sample set, negative samples are constructed by randomly
replacing either the head entity or the tail entity in the original triplet, and γ is a constant
that represents the maximum distance between positive and negative samples.

In the preliminary of the RCKFM model, we constructed a user-attribute knowledge
graph and a movie-attribute knowledge graph based on the dataset. We need to obtain the
feature values of the corresponding users and movies in the dimensions, so we consider
using the graph-based translation distance model. The historical interactions of users
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are incorporated when constructing the user knowledge graph to embed users so as to
obtain more comprehensive user representation (as shown in Figure 7a), while the movie
knowledge graph is reconstructed to obtain accurate movie representation (as shown in
Figure 7b), and the user and movie graphs are embedded in a dual graph:

Figure 7. Bipartite graph construction.

Through the dual graph embedding of the TransR model, we can effectively extract
the multi-dimensional features of movies and users. The dimension is set in the {16, 32, 64,
128} range, which facilitates model training and also makes it convenient to calculate the
loss value of the embedding.

3.2. Backdoor Adjustment of Causal Inference

When entity feature vectors are derived through embedding from entities, attributes,
and historical interactions, these features often exhibit bias. To address these biases, we
propose the use of causal inference. The aim of causal reasoning is to uncover causal
relationships between events, variables, or factors, beyond merely their correlations. Back-
door adjustment, a significant concept in causal inference, can mitigate biases inherent in
feature embeddings. Given that feature embeddings might contain potentially confounding
variables impacting our understanding of causality, backdoor adjustment methods are
routinely used to tackle biases arising from unobserved variables, thereby improving the
accuracy of causal effect inference. Backdoor adjustment involves two primary steps: the
identification of the backdoor path and the control of confounding variables along this
path. Here, backdoor paths refer to all trajectories from the dependent variable towards the
effect variable.

In this study, we apply the backdoor adjustment of causal inference to a movie graph-
based recommendation system [21], focusing mainly on user features representation (U),
item features representation (I), user’s preference features for different item categories
(M), users’ historical interactions with items (D), and predicted score (Y). U, I, and M
are feature vectors, whereas D can be click-through rates or ratings, etc. In the TransR
embedding process, a user’s historical interactions D directly affect user features U and
user’s preference features M for different item categories, while user features U directly
affect user’s preference features M for different item categories. The ultimate predicted
score is directly determined by U, I, and M. According to this logic, there are two backdoor
paths U<-D->M and M<-U->Y. In this process, the main adjustment is embedding of user
features U, so the mediation of M does not need to be considered, only the path U<-D->M.
We could opt to block D->U or D->M, but since M is computed from a mix of user features
representation U and user’s historical interactions D, its value is difficult to estimate directly.
Thus, the most convenient backdoor path adjustment would be to block D->U, as shown in
Figure 8:
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Figure 8. Backdoor adjustment of causal inference.

For U, denoted as u = [u1, . . . , uK], it is a K-dimensional user-feature embedding vector
with uK as a specific feature embedding value. For I, denoted as i, it is similar to u and it
is also an item-feature embedding vector. For D, when the user is u, for the item group
{g1, . . . , gN}, du = [pu(g1), . . . , pu(gN)] it is a specific value of D, where pu(gN) represents
historical interactions with the item. For M, it is a vector that describes the user’s preference
levels for different types of items. When d and u are determined, M is also determined. We
express this using the function M(d,u). Many recommendation models can simulate M, as
they have explicitly or implicitly modeled the user’s preferences for item categories.

Due to the presence of confounding factors, the current recommendation models that
estimate the conditional probability P(Y|U,I) may face the issue of spurious correlation,
which can lead to amplified bias. Therefore, given U = u and I = i, we can derive the
conditional probability P according to the following Equations (6)–(9):

P(Y|U = u, I = i) = ∑d∈D ∑m∈M P(d)P(u|d)P(m|d,u)P(i)P(Y|u,i,m)
P(u)P(i) (6)

= ∑d∈D ∑m∈M P(d|u)P(m|d, u)P(Y|u, i, m) (7)

= ∑d∈D P(d|u)P(Y|u, i, M(d, u)) (8)

= P(du|u)P(Y|u, i, M(du, u)) (9)

where Equation (6) is introduced by the causal diagram (a) and Equation (7) is introduced
by Bayes’ theorem. When d and u are deterministic, m = M(d,u), and M denotes a function,
then P(M(d,u)|d,u) sums to 1, introducing Equation (8). When u is deterministic, d is
also deterministic, and du denotes the history of the interaction data corresponding to u,
introducing Equation (9). For the data that are not u, P(d|u) is naturally 0.

According to the backdoor adjustment theory, the target formula is P(Y|do(U = u),
I = i). Here, do(U = u) can be understood as cutting off the related edges in the causal graph,
thus preventing potential effects, as shown in Figure 8b. Its formula representation is

P(Y|do(U = u), I = i) = ∑d∈D P(d|do(U = u))P(Y|do(U = u), i, M(d, do(U = u))) (10)

= ∑d∈D P(d)P(Y|do(U = u), i, M(d, do(U = u))) (11)

= ∑d∈D P(d)P(Y| = u, i, M(d, u)) (12)

where Equation (10) is the same as Equation (8), Equation (11) is introduced by the insertion
and deletion of actions in the DO algorithmic rules, and Equation (12) is introduced by the
transformation of actions and observations in the DO algorithmic rules.

With the backdoor adjustment, it can be found that the original du becomes d, which
now relies on the prior distribution of d and no longer on the conditional distribution of
u. Therefore, the recommendation of i to user u is no longer affected by the higher-rated
item i of user u in du. This greatly alleviates the problems caused by data bias. Due to the
large range of D, for Equation (12) only the interacted D is considered, which is expressed
formulaically as
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P(Y|U = u, I = i) = ∑d∈D P(d)P(Y| = u, i, M(d, u)) (13)

≈ ∑d∈D P(d) f (u, i, M(d, u)) (14)

= f (u, i, M(∑d∈D P(d)d, u)) (15)

= f (u, i, M(d̄, u)) (16)

where f (·) represents the common recommendation model. Knowing M is enough to
implement backdoor adjustment. If the function M can be implemented, the current recom-
mendation model can use it as an additional input to accomplish backdoor adjustment. We
can use FM to solve for M, thereby obtaining Formula (17), which is formally represented as

M(d̄, u) = ∑N
a=1 ∑K

b=1 p(ga)va
⊗

xu,bub (17)

= ∑N+K
a=1 ∑N+K

b=1 waca
⊗

wbcb (18)

where the function M represents user representation with respect to categories, indicating
user preferences in different categories,

⊗
represents element-wise multiplication, and

w = [d̄, xu] = [p(g1), . . . , p(gN), xu,1, . . . , xu,K], c = [v, u] = [v1, . . . , vN , u1, . . . , uK]. Here, u
is the user representation, xu is the feature value, and v represents the item category.

Using causal inference to eliminate bias is actually about repeatedly weighting the
embedded entity features on the dimension of entity attributes, so as to discover better
entity features.

3.3. Factorization Machine (FM) and Collaborative Filtering

Collaborative filtering models often take the characteristics of users and projects, as
well as the results of interactions, as inputs to the model. Therefore, the RCKFM model
considers using the rating triplet of user–project historical interactions to achieve feature-
matching input and model training. The specific process is shown in Figure 9:

Figure 9. Characteristic matching of users and projects.

We use u in the historical rating triad to match the u feature vector obtained from the
TransR embedding, and i to match the i feature vector with i. A higher-level collaborative
filtering model is used to fit the user and the movie and predict the final rating. In this case,
a collaborative filtering-based factorizer FM model is used, assuming that the scenario is to
predict the user’s rating of the movie (as shown in Figure 10), and the user’s rating of the
movie is predicted, with each row representing a sample. The data can be divided into two
parts: user features and movie features. And the target value y denotes the rating. Usually
the rating triad constitutes a very sparse sample for training. The key of the FM model
is to solve the problem of learning the combined feature weights under sparse data, and
to be able to learn the weight information of a specific combination of features from the
user features and the movie features, so as to perform the prediction of movie ratings more
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accurately. Such combined feature weight learning can cope well with the sparsity of data
and improve the performance and accuracy of the recommender system.

Figure 10. Factor decomposer FM model.

Currently, each column represents one feature. Suppose we need to build a model
from x to y and need to use second-order polynomial features, i.e., we need to use pair
combinations of feature x. Therefore, the second-order definition of FM is shown in
Formula (19) [9]:

ŷFM(x) = w0 +
n

∑
i=1

wixi +
n−1

∑
i=1

n

∑
j=i+1

ŵijxixj (19)

where ŷFM(x) is the final prediction function of the FM algorithm idea. For each given
feature vector denoted by x, x ∈ Rn, ŷFM(x) can give a prediction score; w0 ∈ R is a
constant term, wi ∈ Rn denotes the weight parameter of the deviation term (i.e., the first-
order eigencoefficient), and ŵij is the second-order eigencoefficient, which is defined as
shown in Equation (20). FM learns a one-dimensional vector of size k for each feature,
and the weight value of the combination of the features of two features xi and xj can be
expressed by the inner product of the vectors vi and vj corresponding to the features. This
expression corresponds to a matrix decomposition,

ŵij = vT
i vj :=

k

∑
l=1

vilvjl (20)

where v is an n × k vector matrix, n is the number of features x, and k is a parameter to be
determined, vi = (vi1, vi2, · · · , vik)

T ∈ Rn×k, i = 1, 2, · · · , n, k ∈ N+. From Equation (20),
the weight parameters of the second-order terms in the FM model are obtained by mul-
tiplying the two matrices vi and vj . Therefore, FM can effectively deal with the highly
sparse feature data and still estimate the parameters for components that do not interact
in the sample. The loss function of the FM model, for which we refer to the work of
Noia et al. [22], is defined as shown in Equation (21):

Lp = ∑
a+∈y+

∑
a−∈y−

−log[δ(a+ − a−)] (21)

where δ is the sigmoid function. The sample sets are the positive sample set and the
constructed negative sample set.

The FM algorithm does not depend on whether a particular combination of features
has appeared or not, because it learns the embedding vectors of individual features. As long
as feature xi and any other feature combination have appeared, their embedding vectors
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can be learned. Therefore, even though the feature combination xi and xj has not appeared
in the training data, if this new feature combination is encountered during prediction the
weight of this new feature combination can be calculated by the inner product because both
xi and xj have corresponding embedding vectors. This feature makes the FM model highly
generalizable. It is able to predict unseen feature combinations by making inferences based
on already-learned feature vectors.

With the FM model, we obtain the user’s predicted ratings for the movie along with the
value of the loss resulting from collaborative filtering, and in the co-training of the model
we need to fuse this loss with the one obtained from the graph embedding in Section 3.1.

One issue with joint training is how to merge the losses of the model. According to the
two-task transfer learning in the CoFM model proposed by Piao et al. in 2018, one problem
with transfer learning between the two tasks is the different output scales of the two loss
functions (Equations (5) and (21)). Therefore, we modify the loss function of the knowledge
graph completion task (Equation (5)) to be as shown in Equation (22) in order to have the
same scale for the loss functions in both tasks:

L = ∑
(h,r,t)∈S

∑
(h′ ,r′ ,t′)∈S′

−log[δ(max(0, fr(h, t) + γ − fr(h′, t′)))] (22)

L = λLp + (1 − λ)Lk (23)

For both tasks Lp and Lk, the overall loss function of the RCKFM model is shown in
Equation (23), and the weights of the loss values of the two learning tasks are adjusted by
the parameter λ.

3.4. Aggregation of KL Divergence Ratings

After processing with the FM model, we can predict the ratings of each user for all
movies. If the features of the trained entity have already been adjusted through a backdoor,
then the features are debiased and users can get more recommendations. However, we
have to consider that not all users have variable interests: some users have very singular
interests and are often inclined towards one or two types of movies. In this case, we prefer
to use features that were trained before backdoor adjustment to predict ratings, so we use
the debiased before-and-after features to train the FM model to predict score results and
merge the two score results. We introduce the KL divergence specifically and judge whether
the user’s interests are varied according to the time dimension. If interests are varied, the
final merged score tends towards the score after debiasing; conversely, if interests are
concentrated, the score tends towards the score before debiasing. This ensures that the final
recommendations are more in line with the personalized needs of the users.

In a recommendation system, a user’s interest may drift over time, resulting in a
difference in interest towards projects at a specific time node compared to before. In such
cases, we need to measure whether the user’s interest distribution among project types is
prone to changes, using some indicator. This assists us in determining if recommendations
made for the user are influenced by bias.

We choose the symmetric KL scattering [21] with the user–item interaction time as the
axis, and the flow of using KL scattering for the RCKFM model is shown in Figure 11:

Figure 11. TRFM framework (flowchart of KL dispersion).

Specifically, we are dividing the historical interaction sequence into two symmetric
parts based on the timestamps of user–item interactions. For each part, we use an equation to
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calculate the historical distribution of the project categories, then we use the distance between
these two distributions to calculate the KL divergence, thus obtaining Formula (24),

ηu = KL(d1
u|d2

u) + KL(d2
u|d1

u) (24)

= ∑N
n=1 p1

u(gn)log p1
u(gn)

p2
u(gn)

+ ∑N
n=1 p2

u(gn)log p2
u(gn)

p1
u(gn)

(25)

where ηu denotes the final KL scatter value for that user, d1
u = [p1

u(g1), . . . , p1
u(gN)],

d2
u = [p2

u(g1), . . . , p2
u(gN)]. Larger values of symmetric KL scatter indicate that users

are more likely to change their interests and receive recommendations, i.e., backdoor
adjustments are needed, and vice versa, no backdoor adjustments are needed.

For the final ηu, we utilize the traditional FM model and the backdoor-adjustment-
based FM model to predict the final score, and we utilize the final scatter for the adaptive
fusion of scores. Specifically, it is necessary to train the recommender model to compute
P(Y|U = u, I = i) and P(Y|do(U = u), I = i), then automatically fuse their scores section, the
effect of the backdoor adjustment, to obtain Equation (26) as follows:

Yu,i = (1 − η̂u)× YFM
u,i + η̂u × YRCKFM

u,i (26)

where Yu,i is the predicted score of user u with item i, YFM
u,i and YRCKFM

u,i are the predicted
scores of the regular recommendation model and the joint training model of RCKFM, and
η̂u is computed as follows in Equation (27):

η̂u = (
ηu − ηmin

ηmax − ηmin
)a (27)

where the normalized η̂u ∈ [0, 1], ηmin and ηmax are the minimum and maximum symmetric
KL dispersion for all users, respectively, and a is a hyperparameter that can be used to
control the tendency of the model’s prediction by human intervention, where the smaller a
is, then the more the model’s prediction will tend to be the one that is backdoor-adjusted
by causal inference.

4. Experiments and Results

For this section, we conducted quantitative experiments on the top-10 recommenda-
tions. In this experiment, we used the publicly available MovieLens-1M dataset and the
Douban dataset from Kaggle for training. At the same time, we compared our model with
multiple baseline models.

4.1. Data Set

As we designed the RCKFM model as an enhanced version of the CoFM model, a more
reasonable and effective comparison between the two was pivotal. Therefore, we referred
to the CoFM model and used the widely acknowledged public film dataset MovieLens-1M.
Additionally, to broaden our comparison range, we also utilized another popular public
film dataset—the Douban dataset.

MovieLens-1M comprises three files—user, movie, and rating. Notably, the user
information encompasses aspects like the user ID, gender, age, profession, and zip code.
The movie information includes attributes such as the movie ID, movie name, and genre
while the rating information consists of the user ID, movie ID, rating, and timestamp.
Its simplistic data structure and comprehensive content make it extremely valuable for
research purposes in the realm of recommendation algorithms.

Similarly, the Douban dataset includes three files—user, movie, and rating. The user
information in this dataset has extended attribute dimensions, such as user ID, residential
area, time of joining, personality signature, and UID. The movie information includes the
movie ID, movie name, director, content, actor, country, release time, language, original
address, rating number, rating, genre tag, full name with the release year, category ID,
and MID. The rating information includes the UID, MID, rating, timestamp, tag, cate-
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gory ID, and rating number ID. Both in terms of data volume and the dimensions of the
data, the Douban dataset surpasses the MovieLens-1M, thereby enhancing its utilization
value significantly.

To utilize both datasets they needed a level of preprocessing. Firstly, we filtered and
cleaned the low-frequency items from the user–item interaction dataset, and we removed
users who had given an exceedingly low number of ratings, which leads to poor represen-
tation (i.e., uncommon entities in the corresponding knowledge graph). Simultaneously, to
enhance the data quality, we applied a 50-kernal filtration to the MovieLens-1M dataset—a
larger user base with fewer movies too, and a 20-kernal filtration to the Douban dataset,
which has fewer users but a larger collection of movies. It is important to note that the
user attributes and movie attributes of the Douban dataset contain many redundant fields.
These were filtered, eliminated, and replaced during data cleaning.

Secondly, we processed the historical interaction information in the dataset into a
sequence of triples. Through the embedding process, we constructed negative samples
from the existing positive samples by randomly replacing the items in the tuples. Then, it
became necessary to match the mapping relationship between user items and entities in
the knowledge graph, whereby, post-matching, the fused vectors were ingested into the
collaborative filtering model—vital for joint model training.

Finally, the historical user–item interaction information in the dataset was processed
on the time axis into a format that aided in calculating the KL divergence. This process
simplified subsequent calculations of scatter and the fusion of predictive scores.

Table 1 shows the basic statistical information in the processed dataset. Since the
sparsity of the user interaction items reached 94.64% and 98.55%, processing with the
factorizer FM model to solve the problem of data sparsity could achieve very good results.

Table 1. Basic data information.

MovieLens-1M Douban Dataset

User–Item Interaction

User 4297 2519
Item 3883 34,893

Relationship 6 17
Rating 893,578 1,276,928

Average of Ratings 210 507
Sparsity 94.64% 98.55%

4.2. Baseline

We chose some fusion models of graph embedding and collaborative filtering as
baseline models to compare with our proposed RCKFM model. It was necessary to use the
factorization machine (FM) [14] model as the baseline method for our model, as the FM
model is applied in the RCKFM model’s recommendation module. In 2018, Zhang et al. [23]
proposed an integrated method of graph embedding recommendation model that is a
typical fusion method. This method uses a heterogeneous graph as an external knowledge
base for recommendations, thus improving the performance of the recommendation system.
We chose the CoFM model based on the graph embedding recommendation algorithm as
one of the baselines. This model integrates the TransE graph embedding model and the
factorization machine (FM) model. For this paper, we also designed and implemented
the RFM model to compare the advantages of the RCKFM model. The RFM model is
a fusion model of the TransR graph embedding model and the factorization machine
(FM) model. The RCKFM model, compared to the RFM model, adds causal reasoning
backdoor adjustment and KL divergence personalized recommendation, so we could reflect
the advantages of our designed RCKFM model by comparing the two. Meanwhile, we
compared it to the current best model, FairCo [24], which introduces an error term to
control the fairness of risk exposure between project groups, with a ranked list sorted by
relevance to compute the error term.
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4.3. Evaluation Metrics

In order to demonstrate the performance of the recommendation algorithms, for this
chapter we used several relevant recommendation metrics as the main basis for evaluating
the results. For this chapter we used all the items in the test set for recommendation,
and these items were used as possible recommendation options to the user. The factor
decomposer recommended the top N items as the final top recommendation to the user (the
N value can be customized; the work in this paper focused on the top-10 recommendations
with N of 10).

• Precision@N: We defined precision as the ratio of the number of user-preferred items
in the top-10 recommendations to the total number of recommendations (N). For
the experimental results of multiple users in the test set, we calculated the average
precision of all users as the final definition of precision. The range of its value was 0–1,
and, usually, the higher the value, the better the performance. Precision@N is often
abbreviated to P@N, and the calculation formula is as shown in Formula (28):

Precision@N =
TP@N

TP@N + FP@N
(28)

where the meanings of TP and FP are as shown in Table 2. The following formula is
equivalent to this.

• Recall@N: We defined recall as the ratio of the number of user-preferred items in
the top-10 recommendations to the total number of user-preferred items (that is, the
percentage of successful recommendations of user-preferred items). Similarly, we
calculated the average recall of all users as the final definition of recall. The range
of its value was 0–1, and, usually, the higher the value, the better the performance.
Recall@N is often abbreviated to R@N, and the calculation formula is as shown in
Formula (29):

Recall@N =
TP@N

TP@N + FN@N
(29)

• NDCG@N: We defined normalized discounted cumulative gain as the cumulative
benefit calculated for the first N positions, which had been normalized considering
the position information. As before, we calculated the average normalized discounted
cumulative gain of all users as the final definition for it. The range of its value was
0–1, and, usually, the higher the value, the better the performance. NDCG@N is often
abbreviated to N@N, and the calculation formula is as shown in Formula (30):

NDCG@N =
1
M

M

∑
i=1

1
log2(pi + 1)

(30)

where M is the total number of users, p ∈ [1, N] denotes the computation of the first N
positions, pi is the position of the i-th user’s real access value in the recommendation
list, and pi tends to infinity if the value does not exist in the recommendation list.

• Hit Rate@N: We defined hit rate as the ratio of the number of users successfully
recommended to the total number of users (if the recommendation list contained a
user’s preferred item, then this user was defined as being successfully recommended).
We also calculated the average hit rate of all users as the final definition of hit rate.
The value range was 0–1, and, usually, the larger the value, the better the performance.
Hit Rate@N is often abbreviated as HR@N, and its calculation formula is as shown in
Formula (31):

HR@N =
USERrate

USERtest
(31)
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where USERrate denotes the number of users whose real recommended items in the
test set appeared in the result of the recommendation list, and USERtest denotes
the total number of users in the test set. That is to say, in the overall model finally
obtained, in the recommendation list top N, as long as the item is matched with the
recommendation of the test set, the user will be regarded as the successful user of the
recommendation.

Table 2. Experimental indicators.

System Recommendations System Not Recommended

Like True Positive Rate (TP) False Negative Rate (FN)

Dislike False Positive Rate (FP) True Negative Rate (TN)

5. Result

In order to explore the performance of the RCKFM model, its performance metrics with
respect to each baseline model were calculated. Based on the experimental results shown
in Table 3 (the best performance indicators of each model after repeated experiments), the
following conclusions can be drawn:

1. Compared with the benchmark model we adopted, the RCKFM model performs
better on the dataset, and the evaluation indicators surpass the benchmark model,
showing stronger competitiveness.

2. In terms of performance improvement, compared with the results of the basic model
CoFM, the improvement in various indicators of RCKFM on both datasets ranges
from 3.17% to 6.81%.

3. To compare the TransR method based on graph embedding, we compared the CoFM
model and the RFM model. Their essential difference lies in the Trans series graph
embedding method. After using the TransR model to embed relationships and entities
into different spaces, we found that the indices of the model improved.

4. RCKFM is the main model in this paper. By comparing with the RFM model, the
RCKFM model works better than the RFM model, indicating that the RCKFM model
incorporating TransR has a significant improvement in the performance of the model
by incorporating the computation of causal inference backdoor adjustment and
KL scatter.

In order to optimize the performance of the model, in terms of experimental parame-
ters, using RCKFM’s top-10 model as a benchmark, for this chapter we set up several sets
of controlled variable experiments, using the controlled variable method, based on which
the most optimal parameters were obtained.

The optimal parameters of the experiments in initial training were: entity relationship
embedding, 64 dimensions, and batch size, 512 times.

Firstly, for this chapter we conducted experiments on the dimension hyperparame-
ters of the embedding vectors trained in the model. In order to balance the relationship
between model performance and training time, the embedding dimension was set below
128 dimensions. For this chapter, the dimension vector sizes were set to 16, 32, 64, and 128,
and four sets of repeated experiments were set up on these two datasets. The results of the
repeated experiments were averaged to obtain the experimental results shown in Figure 12.
In this set of experiments, the batch size was fixed to 512.
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Table 3. Top-10 experiment results.

MovieLens-1M Douban Dataset

Method P@10 R@10 N@10 HR@10 P@10 R@10 N@10 HR@10

FM 0.1241 0.0682 0.0549 0.2084 0.0914 0.0418 0.0213 0.0853
CoFM 0.1272 0.0728 0.0568 0.2165 0.0925 0.0443 0.0221 0.0896
RFM 0.1297 0.0745 0.0576 0.2215 0.0955 0.0452 0.0225 0.0929

FairCo 0.1306 0.0754 0.0581 0.2243 0.0959 0.0457 0.0228 0.0935

RCKFM 0.1324 0.0763 0.0586 0.2281 0.0964 0.0467 0.0234 0.0957
Improve 4.09% 4.81% 3.17% 5.36% 4.22% 5.42% 5.88% 6.81%

Figure 12. Effect of different embedding vector dimensions on model performance.

By analyzing the experimental results in Figure 12, it can be concluded that when the
embedding dimension is 16 dimensions, the model does not fit the required features well,
the overall performance index of the model is the lowest, and the model training is not good;
when the vector dimension is 64, the model’s final top-10 recommendation index effect
reaches the best. This indicates that in the RCKFM model with less than 128-dimensional
embedding, the top-10 recommendation list obtained from the 64-dimensional embedded
feature vectors trained by the factor factorizer FM is the best recommendation effect.
Moreover, the low variation of the model’s hit rate indicates that the overall performance
of the model is better and the recommendation hit effect is more stable.

At the same time, on the basis of the experiments with fixed batch size and different
dimensions, the feature vectors obtained from different embedding dimensions were put
into FM training, the effects of the feature vectors obtained from different embedding
dimensions of the TransR graph embedding model on the training accuracy of the FM
model were analyzed, and the experimental results as shown in Figure 13 were obtained.

By analyzing the experimental results in Figure 13, it can be ascertained that when
the embedding dimension is 16 dimensions, the model does not capture the features of the
entity particularly well, and the model training accuracy is the lowest; when the embedding
dimension is 64 dimensions, the embedded feature vector results obtained from the TransR
model can be put into the FM model to obtain a higher training accuracy; the overall
fluctuation of the training accuracy is lower than 0.05, which indicates that the performance
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of the model is relatively stable, but 64-dimensional TransR embedding is recommended
for the best model results.

Figure 13. Effect of different embedding dimensions of TransR on FM training accuracy.

Secondly, for this chapter we investigated the effect of different batch sizes on the
model performance. According to the above experimental experience, in order to make the
model have better performance on item recommendation, we needed to fix the dimensions
of the TransR graph embedding training as 64 dimensions, take 128 as the minimum batch
size, set different batch sizes as 128, 256, 512, and 1024, respectively, and set four groups
of repetitive experiments on the dataset to take the average of the repetitive experimental
results, so as to obtain the experimental results shown in Figure 14:

Figure 14. Effect of different batch sizes on model performance.

By analyzing the experimental results in Figure 14, we could ascertain that the overall
performance of the model got better and better with the increase in batch size: when the
batch size was 512, the top-10 recommendation indicators obtained after model training
were basically at the highest value; when the batch size was 1024, the model only hit the
same rate, as the batch size is 512 on the Douban dataset. Meanwhile, comparing all the
indicators, we could ascertain that the difference between the maximum and minimum
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value of the indicator axis was very small, which indicates that the batch size had less
influence on the recommendation indicators and that the indicator change was more stable.
At the same time, comparing all the indicators, we could ascertain a small difference
between the maximum and minimum values of the indicator axes, which indicates that
the batch size had less influence on the recommendation indicators and that the indicator
change amplitude was more stable, which also indicates that the batch size was not a factor
that subjectively affected the recommendation effect.

Meanwhile, on the basis of the above experiments, for this chapter we fixed the
TransR graph embedding to the embedding dimension of 64 dimensions and the number
of embedding training rounds to one hundred rounds. The average time consumption
statistics of each round were carried out according to the different batch sizes of the
embedded graphs, and the experimental results shown in Figure 15 were obtained after
repeated experiments of many rounds:

Figure 15. Time consumption for different batch sizes.

By analyzing the experimental results in Figure 15, we could ascertain that the TransR
model was embedded when the batch size was 128, that if the batch size decreased then the
total number of batches would increase, that the result obtained after repeated experiments
was the maximum training time consumption, that when the batch size was 1024 the total
number of batches was small, and that the corresponding result was the lowest training
time consumption. In summary, the larger the training batch size, the shorter the time
required for model training. Of course, it is not a case of ’the larger the batch size the better’: if
the batch is too large, this may also affect the model performance. Therefore, when weighing
the training time and training metrics, the model works best with a batch size of 512.

In summary, the best training situation for the RCKFM joint training model is to
determine the embedding dimension to be 64 dimensions at the time of TransR embedding
and the training batch size to be 512. In this case, not only the training time can be greatly
reduced, but also the performance of the model can be greatly improved, which is a win–
win training parameter obtained from the repeated experiments with controlled variables
conducted in this chapter. Overall, the performance of the RCKFM model is mainly related
to the embedding dimension, the overall performance is relatively stable, the impact of
different batch sizes on the experimental performance indicators is relatively weak, and the
RCKFM model is highly competitive in terms of recommendation performance.

6. Conclusions

Based on the CoFM model, this paper implements optimization improvements, en-
hances model performance, and distinguishes it from the RFM model, a model improved
from CoFM. A new recommendation model acting upon TransR, backdoor adjustment
of causal inference, KL divergence, and fusion factor decomposition, termed RCKFM, is
proposed. The RCKFM model replaces the graph embedding-based TranE model with
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the TransR model, capable of addressing 1-N, N-1, and N-N problems, based on the
CoFM model. Concurrently, it uses the backdoor adjustment of causal inference to recon-
struct user features, eliminate the prejudice suffered by user-feature values from the users’
project history interaction, and integrates the traditional FM recommendation and the
final predicted score of RCKFM through symmetric KL divergence to realize an adaptive
personalized user–project recommendation. The research carried out experiments on the
public Movieslens-1M dataset and the Douban dataset on Kaggle’s official website using
the FM, CoFM, RFM, FairCo, Diversity, and RCKFM models. The better performance of
the RCKFM model shows that the TransR model can better identify the rich knowledge
provided by the knowledge graph and effectively extract feature relationships from the
data. It also indicates that after integrating causal inference backdoor adjustments and
KL divergence, the model is closer to personalized recommendations, providing better
effects. In terms of energy efficiency, our model utilizes bi-directional graph embedding
to obtain low-dimensional features, which avoids the time loss associated with secondary
user coding and reduces the time overhead of collaborative filtering training.

In the future, our focus will be on utilizing neural network structural models, such
as multi-layer perceptron (MLP) and graph convolutional networks (GCN), to effectively
fuse entities and neighborhoods. Additionally, we aim to integrate domain-specific and
item-specific information, such as movie entities, along with associated directors, actors,
countries, etc., to improve feature representation. Drawing from our research on large
language models (LLMs), our future endeavors will involve exploring the fusion of LLMs
with knowledge graphs and extracting entity features from them, with the goal of achieving
enhanced recommendations. Meanwhile, we plan to design timed experiments to compare
the energy efficiency of the model proposed in this paper with other models to demonstrate
the energy efficiency of the recommender system.

Our study aims to enhance the effectiveness of personalized collaborative filtering
recommendation systems, targeting primarily academic peers, industry practitioners, and
decision makers. To disseminate our research findings to these audiences, we will actively
participate in relevant academic conferences and share our research discoveries through
academic forums and social media platforms. We believe that through these efforts, our
research outcomes will positively impact both academia and industry, fostering progress
and advancement in the field of recommendation systems. In case our initial dissemination
measures fail to reach the intended target audiences, we have prepared a contingency plan.
This plan includes exploring additional dissemination channels, such as industry-specific
events and professional networks, as well as collaborating with key stakeholders to ensure
wider reach and uptake of our research findings.
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