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Abstract: Quantum physics is intrinsically probabilistic, where the Born rule yields the probabilities
associated with a state that deterministically evolves. The entropy of a quantum state quantifies the
amount of randomness (or information loss) of such a state. The degrees of freedom of a quantum
state are position and spin. We focus on the spin degree of freedom and elucidate the spin-entropy.
Then, we present some of its properties and show how entanglement increases spin-entropy. A
dynamic model for the time evolution of spin-entropy concludes the paper.
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1. Introduction

This paper addresses the problem of quantifying the randomness associated with a
spin-state. Our broader motivation is to study the role of randomness in quantum physics.
We follow the geometric quantization (GQ) method [1–5] and their references, which is
a formulation of quantum physics derived from classical physics in phase space. One
can then view quantum physics as an information theory that incorporates randomness
into the phase space of classical physics. Previous work addressed information theory
aspects of quantum physics; see [6–16] and their references. We point out the GK-Law [15],
a hypothesis stating that in a closed physical system information cannot be gained. This
law also suggests a mechanism in nature that prevents a state from having its entropy
decrease, which involves annihilating the state (and the particles associated with it) while
still satisfying the conservation laws by creating an appropriate new state with new particles
and higher entropy. Thus, the entropy of a quantum state could—and should—play a role
in helping us make predictions about particle physics.

The degrees of freedom (DOFs) of a quantum state are associated with the position
and spin values of a particle, i.e., all randomness of a quantum state is captured by Born’s
rule in phase space once the DOFs are specified. We point out that in quantum physics,
von Neumann entropy [6] quantifies only the lack of knowledge an observer has about a
quantum state, i.e., it quantifies only the randomness in specifying its DOFs. Thus, for all
pure states, the von Neumann entropy is zero, while our entropy formulation is focused
on pure states. We will also extend our formulation to mixed states and show that the von
Neumann entropy is a lower bound to our proposed entropy.

With respect to the position DOF, Geiger and Kedem [15] formulated the x-p phase
space quantum entropy. Here, we focus on the spin DOF.

Note that quantifying the randomness of the spin-state along the z-direction alone is
not sufficient, since the measurement of an eigenstate of Sz is certain to yield the eigenvalue
of this eigenstate. However, there is still randomness associated with any spin measurement
in the x-y plane as demonstrated by the Stern–Gerlach experiments [17]. It is in the spin
phase space where all the randomness of a spin-state is captured.

Historically, spin was first conceived as a quantum concept, but GQ derives it as
the quantization of the classical two-sphere, S2. In this Hilbert space, two independent
variables, e.g., the zenith and azimuth angles, θ and ϕ, respectively, are required to specify
a spin wave function ψ(θ, ϕ). These classical variables are associated with the polarization
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of spin particles. Not only does GQ provide a description of spin that originates from
classical ideas, but it also delineates the spin phase space where the wave function and all
its inherent randomness are defined.

The information, or lack thereof, associated with the phase space wave function ψ(θ, ϕ)
is captured by differential entropy [18], i.e.,

S(ψ) = −
∫ 2π

0

∫ π

0
|ψ(θ, ϕ)|2 ln |ψ(θ, ϕ)|2 sin θ dθ dϕ . (1)

We refer to (1) as spin-entropy. While many of the properties exhibited by the spin-entropy
also hold for the more general Rényi entropy of the order α given by

Sα(ψ) =
1

1 − α
log
(∫

|ψ(θ, ϕ)|2α sin θ dθ dϕ

)
, (2)

we focus on the spin-entropy in this paper.

1.1. Previous Work

Wehrl entropy [19] was introduced to approximate a classical entropy for a quantum
state, and Lieb studied spin-coherent states to evaluate Wehrl spin-entropy [20–22]. Like in
the case of spatial coherent states, spin coherent states constitute an overcomplete set of
states. Since Wehrl entropy is based on an overcomplete basis representation, projections
on this basis lead to quasi-probabilities that violate the Kolmogorov third axiom. The
overcomplete basis decomposition and the arbitrariness in the choice of the spin-coherent
state basis used to define the probability distribution prevent Wehrl entropy from accurately
quantifying the randomness associated with spin observables.

This work starts from a similar view as [23]; here, we steer it differently, correcting
their attempt to decompose the wave function in phase space.

1.2. Paper Organization

The paper is organized as follows: Section 2 provides a summary of GQ concepts
applied to the sphere and focuses on a derivation of the wave function in spin phase
space; it is based on [5]. Extensions to these GQ concepts are also in Appendix A and the
references. Section 3 derives the main spin-entropy properties, including a formula for all
the eigenstates of the z-direction for any spin, s. Section 4 extends the spin-entropy to mixed
states and shows that von Neumann entropy is a lower bound for it. Section 5 analyzes the
connection between phase space entanglement and spin-entropy. We show that the more
entanglement between two particles, the larger the spin-entropy. Section 6 illustrates how
a Hamiltonian model for a spin interaction causes the spin-entropy evolution to oscillate.
Section 7 concludes the paper.

2. Some Geometric Quantization Concepts

We first provide a summary of concepts used in this paper developed by the GQ of
the two-sphere S2 to describe spin operators and eigenfunctions in phase space. Some
extra material to complete the descriptions presented in this summary is presented in
the Appendix A.

2.1. Complex Plane and the Sphere

Consider the local variable z = x + iy to describe the complex plane CP1. The
stereographic projection of the 3D embedding of the sphere S2 of radius s via the south
pole Z = −1, to the plane Z = 0, is given as follows:

X = s sin θ cos ϕ = s
z + z∗

1 + zz∗
, Y = s sin θ sin ϕ = −is

z − z∗

1 + zz∗
, Z = s cos θ = s

1 − zz∗

1 + zz∗
(3)

where (θ, ϕ) ∈ [0, π)× [0, 2π) are the zenith and azimuth spherical angles, respectively.
The inverse mapping is then given by the following:
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z =
X + iY
1 + Z

= tan
θ

2
eiϕ → z∗ =

X − iY
1 + Z

= tan
θ

2
e−iϕ . (4)

and the mapping of the south pole Z = −1 to z requires the stereographic projection via
the north pole, i.e., z = X+iY

1−Z .

2.2. Symplectic Structure for the Sphere and Canonical Transformations

A symplectic structure for the sphere manifold is given by the following:

Ω = 2 i s
dz ∧ dz∗

(1 + zz∗)2 = s sin θ dθ ∧ dϕ (5)

where 2s is an integer. Canonical transformations preserve Ω. Consequently, for vec-
tor fields ξ = (ξz, ξz∗) to be generators of canonical transformations in the sphere, the
transformation z⃗ = (z, z∗) → z⃗ + ξ (⃗z) must satisfy the following:

0 = δξ Ω =
1
2

Ωµ,ν (⃗z + ξ)d(zµ + ξµ (⃗z)) ∧ d(zν + ξν (⃗z))− 1
2

Ωµ,ν dzµ ∧ dzν

=
1
2
[

∂zµ(ξαΩα,ν)− ∂zν(ξαΩα,µ)
]

dzµ ∧ dzν

= ∂(ξαΩα,ν dzν) . (6)

Thus, for every infinitesimal canonical transformation, we can associate a function J on
S2, such that −dJ = ξαΩα,ν dzν is a closed one-form. Also, by inverting Ω, we obtain
the following:

ξµΩµ,ν = − ∂zν J → ξµ = Ωµ,ν ∂zν J . (7)

Thus, conversely, given a classical observable, J, we can readily obtain the generators ξ of
the infinitesimal canonical transformation.

2.3. Spin Operator and Eigenfunctions

In order to derive the spin operators Sx, Sy, Sz, one must consider the classical functions
JX = X(z, z∗), JY = Y(z, z∗), JZ = Z(z, z∗) in the sphere, as described in (3). The generators
of the canonical transformations associated with these functions, derived from (7), are
isometries of the sphere. In Appendix A, we present a summary of the GQ steps to obtain
the quantum operator operators (A12) acting on the two-sphere S2 associated with these
functions JX , JY, JZ. These are the spin operators and can then be written as follows:

SX =
(1 − z2)

2
∂z + s

1
(1 + zz∗)

(
z +

(z∗ + z2z∗)
2

)
SY = i

(1 + z2)

2
∂z − is

1
(1 + zz∗)

(
z − (z∗ − z2z∗)

2

)
SZ = −z ∂z + s

1
(1 + zz∗)

(8)

The eigenfunctions of the operator SZ (due to the polarization condition, see Appendix A
(A10), (A11)), are of the following form:

⟨z, z∗|ξs,m⟩ = Ψs,m(z, z∗) =
1

(1 + zz∗)s fs,m(z) (9)

where |ξs,m⟩ is the spin eigenstate along the Z-axis. We can then derive the holomorphic
function fs,m(z) as follows:
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SZΨs,m(z, z∗) = sz
z∗

(1 + zz∗)1+s fs,m(z)−
z

(1 + zz∗)s ∂z fs,m(z) + s
1

(1 + zz∗)1+s fs,m(z)

=
1

(1 + zz∗)s (−z ∂z + s) fs,m(z)

= mΨs,m(z, z∗)

⇓ applying (9)

(−z ∂z + s) fs,m(z) = m fs,m(z) (10)

with solutions of the following form:

fs,m(z) =
1√
4π

√
(2s + 1)C2s

s+m zs−m , (11)

where Cn
p = n!

p! (n−p)! , and we note that, compared to the presentation in Nair [5], the func-

tions fs,m(z) have an extra factor 1√
4π

for normalization purposes. Using the representation
(4), the wave function (9) is written as follows:

Ψs,m(θ, ϕ) =

√
(2s + 1)

2s
√

4π

[
C2s

s+m

] 1
2
(1 + cos θ)

s+m
2 (1 − cos θ)

s−m
2 ei(s−m) ϕ . (12)

These wave functions form an orthonormal basis, i.e.,∫
S2

Ω

s
Ψs,m Ψ∗

s,m′ = i
∫
S2

dz ∧ dz∗

2π(1+ zz∗)2s+2 f ∗s,m(z) fs,m′(z)

=
1

22s+1

∫ 2π

0

dϕ

2π

∫ π

0
sin θ dθ (1+ cos θ)2s f ∗s,m(z(θ, ϕ)) fs,m′(z(θ, ϕ))

= δm,m′
(2s + 1)C2s

s+m
22s+1

∫ π

0
(1+ cos θ)s+m (1− cos θ)s−m sin θ dθ

= δm,m′ . (13)

Then, through the linear superposition of these eigenstates, all spin wave functions in phase
space are constructed.

Note that a wave function in the x-p phase space is decomposed as a product of a
wave function on x and a wave function on p, related to each other by the Fourier transform.
In contrast, a wave function in the spin phase space cannot be reduced, i.e., cannot be
decomposed as a product of wave functions where each contains just one variable of
phase space. Instead, a wave function over the entire spin phase space, the entire sphere,
is required.

3. Spin-Entropy in Phase Space

Lemma 1 (Space Homogeneity). Spin-entropy, given by (1), is invariant under rotations and
reflections of the coordinate system.

Proof. Given a function g : S2 → R, we define a functional on the sphere,

F(g) =
∫
S2

g(z, z∗) dσ(z, z∗) ,

where dσ(z, z∗) = 1
s Ω = 2i dz∧dz∗

(1+zz∗)2 .
The spin-entropy is one such functional F(g) for the following:

g(z, z∗) = −|ψ(z, z∗)|2 log |ψ(z, z∗)|2 . (14)
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Consider an isometry transformation ξ : S2 → S2, so ξ(z, z∗) =
(

ξz(z, z∗), ξz∗(z, z∗)
)

. Ap-
plying an isometry to the wave function ψ(z, z∗), i.e., applying it to g, leads to the following:

F(g ◦ ξ) =
∫
S2

g(ξ(z, z∗)) dσ(z, z∗)

changing coordinates dσ(z, z∗) = det J(ξ) dσ(ξ(z, z∗))

=
∫
S2

g
(

ξz(z, z∗), ξz∗(z, z∗)
)

det J(ξ) dσ
(

ξz(z, z∗), ξz∗(z, z∗)
)

ξ is a canonical transformation

=
∫
S2

g
(

ξz, ξz∗
)

dσ
(

ξz, ξz∗
)
= F(g) (15)

where we use the fact that isometries of the sphere are canonical transformations that
preserve the symplectic form, meaning the determinant of the Jacobian of canonical trans-
formations is 1, i.e., det J(ξ) = 1.

Thus, the spin-entropy is invariant under isometries. The isometries of the sphere are
the three reflections, and combinations of two reflections give the rotations.

One immediate conclusion is the homogeneity of the space due to the invariance of
the spin-entropy to rotations and reflections of the coordinate system. So, given a spin-state
associated with s = 1, such that for some choice of the z-coordinate, it has m = 1, this
state will have a spin-entropy value, regardless of whether one chooses this z-coordinate to
describe it.

Let us consider the eigenstates along the z-direction, described by (12). The spin-
entropy (1) associated with these eigenfunctions is as follows:

S(ψs,m) = −
∫ 2π

0

∫ π

0

(
(1 + cos θ)s+m(1 − cos θ)s−m

2π Z(s, m)

)
ln

(
(1 + cos θ)s+m(1 − cos θ)s−m

2π Z(s, m)

)
sin θ dθ dϕ

= ln(2π Z(s, m))− 1
Z(s, m)

∫ 1

−1
(1 + u)s+m(1 − u)s−m ln

[
(1 + u)s+m(1 − u)s−m

]
du , (16)

where the probability normalization constant is given by the following: 2π Z(s, m) =

2π 22s+1

(2s+1)C2s
s+m

and u = cos θ.

For the rest of this section, and manipulation purposes, let us define the integer vari-
ables p = s + m and q = s − m, and since −s ≤ m ≤ s, we have p, q ∈ [0, 1, . . . , 2s − 1, 2s].
We may refer to p, q, s, m as it is more convenient during manipulations.

Lemma 2 (Spin-entropy formula for z-eigenstates). The spin-entropy in phase space for the
z-eigenstates ψs,m is invariant under the reflection m → −m and can be written as follows:

S(ψs,m) = ln(4π)− ln C2s
s+m +

s−m+1

∑
j=1

s + m
(s + m + j)

+
s+m+1

∑
j=1

s − m
(s − m + j)

(17)

where θ(.) is the Heaviside function, i.e., for x ≥ 0, θ(x) = 1 and for x < 0, θ(x) = 0.

Proof. Following on (16), let us first proceed to evaluate the spin-entropy. We will refer
to Sp,q as the spin-entropy of the eigenstate S(ψs,m), and Zp,q =

[
2s+1

2s+1
p! q!
2s!

]
refers to the

normalization Z(s, m). We then write (16) as follows:

Sp,q = ln
(
2πZp,q

)
− 1

Zp,q

∫ 1

−1
(1 + u)p (1 − u)q ln((1 + u)p (1 − u)q) du

= ln
(
2πZp,q

)
− 1

Zp,q
[pIp,q + qIq,p] (18)
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where

Ip,q =
∫ 1

−1
(1 + u)p (1 − u)q ln(1 + u) du

⇓

Iq,p =
∫ 1

−1
(1 + u)q (1 − u)p ln(1 + u) du =

∫ 1

−1
(1 − u′)q (1 + u′)p ln

(
1 − u′) du′ . (19)

and in the last step, we apply the transformation u → u′ = −u.
Noting that Zp,q =

[
2s+1

2s+1
p! q!
2s!

]
= Zq,p, it is then clear that the spin-entropy (18) has the

property Sp,q = Sq,p. And since the transformation m → −m is equivalent to p ↔ q, we
obtain S(ψs,−m) = S(ψs,m), concluding the first statement of the lemma.

In order to evaluate Ip,q, we define the following:{
U = (1 − u)q

V = (1+u)p+1

(p+1) [ln(1 + u)− 1
(p+1) ]

⇒
{

dU = q(1 − u)q−1 du
dV = (1 + u)p ln(1 + u) du

(20)

Thus,

Ip,q =
∫ 1

−1
(1 + u)p (1 − u)q ln(1 + u) du

=
(1 − u)q (1 + u)p+1

p + 1

[
ln(1 + u)− 1

p + 1

] ∣∣∣1
−1

− q
p + 1

∫ 1

−1
(1 − u)q−1(1 + u)p+1

[
ln(1 + u)− 1

p + 1

]
du

=


(1+u)2s+1

(2s+1)

[
ln(1 + u)− 1

(2s+1)

] ∣∣∣1
−1

= Z2s,0

[
ln 2 − 1

(2s+1)

]
p = 2s , q = 0

− q
p+1

(
Ip+1,q−1 − 1

p+1 Zp+1,q−1

)
0 ≤ p < 2s , 0 < q ≤ 2s

(21)

Consider an ansatz, where Ip,q = Zp,qFp,q. Then, the case p = 2s, q = 0 is already solved in

(21), i.e., I2s,0 = Z2s,0F2s,0 = Z2s,0

[
ln 2− 1

(2s+1)

]
. We can then advance (21) for 0 ≤ p < 2s,

0 < q ≤ 2s by a recursive method, as follows:

Ip,q = Zp,qFp,q = − q
(p + 1)

Zp+1,q−1

(
Fp+1,q−1 −

1
(p + 1)

)
⇓ solving for Fp,q

Fp,q = − q
p + 1

Zp+1,q−1

Zp,q

(
Fp+1,q−1 −

1
p + 1

)
= Fp+1,q−1 −

1
(p + 1)

= Fp+2,q−2 −
1

p + 2
− 1

p + 1
= . . .

= Fp+q,0 −
n

∑
j=1

1
(p + j)

, 0 ≤ p < 2s , 0 < q ≤ 2s

inserting the case Fp+q,0 = F2s,0 =

[
ln 2 − 1

(2s + 1)

]
=

[
ln 2 − 1

(2s + 1)

]
−

n

∑
j=1

1
(p + j)

, 0 ≤ p, q ≤ 2s

= ln 2 −
n+1

∑
j=1

1
(p + j)

, 0 ≤ p, q ≤ 2s (22)

We can then apply (22) to (18), while using Zp,q = Zq,p, to obtain the following:

Sp,q = ln
(

2π
q!p!
(2s)!

2s+1

2s + 1

)
− [pFp,q + qFq,p]

= ln(4π)− ln
(
(2s + 1)!

q!p!

)
+

q+1

∑
j=1

p
(p + j)

+
p+1

∑
j=1

q
(q + j)

. (23)
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Replacing p = s + m and q = s − m into (23) concludes the lemma.

The entropies for the special cases s = 0, 1
2 , 1 and m = −s,−s + 1, . . . , s are readily

derived as follows:

Ss=0,m=0 = ln(4π) ≈ 2.5310 .

Ss= 1
2 ,m=± 1

2
=

1
2
+ ln(2π) ≈ 2.3379 .

Ss=1,m=±1 =
2
3
+ ln

(
4
3

π

)
≈ 2.0991 .

Ss=1,m=0 =
5
3
+ ln

(
2
3

π

)
≈ 2.4059 . (24)

Lemma 3 (Spin-Entropy Variation Across z-Eigenstates). Let ψs,m be the z-eigenstates of
spin, s. Let m+ represent m restricted to the range 2m + 1 ∈ Z+, i.e., mod(s, 1) ≤ m+ ≤ s,
where mod(s, n) is the remainder after dividing s by n. The spin-entropy S(ψs,m+) decreases
as m+ increases. Moreover, the decrease in S(ψs,m+), varying from m+ to 1 + m+, is given by
the following:

S(ψs,1+m+)− S(ψs,m+) = ln
(

s + 1 + m+

s − m+

)
−

s+m+

∑
j=s−m+

1
j

, m+ < s

=
∫ s+1+m+

s−m+

1
x

dx −
s+m+

∑
j=s−m+

1
j

< 0

Proof. Adopting the notation p = s + m, q = s − m, we can rewrite the last two terms in
(17) as follows:

q+1

∑
j=1

p
(p + j)

+
p+1

∑
j=1

q
(q + j)

=
2s+1

∑
j=p+1

2s
j
+ θ(p − q − 1)

p

∑
j=q+1

q
j

(25)

where θ(x) is the Heaviside function, i.e., θ(x) = 1 for x ≥ 0 and θ(x) = 0, otherwise.
Consider the difference of consecutive values of the spin-entropy described by (17) for
m ∈ m+, i.e.,

S(ψs,m+1)− S(ψs,m) = ln
(
(p + 1)!(q − 1)!

p!q!

)
+

2s+1

∑
j=p+2

2s
j
−

2s+1

∑
j=p+1

2s
j
+

p+1

∑
j=q

q − 1
j

−
p

∑
j=q+1

q
j

= ln
(

p + 1
q

)
− 2s

p + 1
+ 1 +

q
p + 1

−
p+1

∑
j=q

1
j

= ln
(

p + 1
q

)
+

1
p + 1

−
p+1

∑
j=q

1
j

= ln
(

p + 1
q

)
−

p

∑
j=q

1
j

=
∫ p+1

q

1
x

dx −
p

∑
j=q

1
j

< 0 for p ≥ q ⇔ m+ set (26)

For the last step we used Lemma 8.

Figure 1 illustrates Lemma 3 for s = 50.
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Figure 1. Spin-entropy for s = 50 eigenstates along the z-direction. It is invariant by transforming
m → −m and it decreases as m increases for m ≥ 0 (see Lemma 3).

Lemma 4 (Negative Spin-Entropy across z-Eigenstates). Let ψs,m be the z-eigenstates of the
spin, s. For the spin-entropy of ψs,m to have a negative value, it is required that s ≥ 16 1

2 .

Proof. From Lemma 3, the lowest entropy of a spin, s, particle is attained for m = ±s.
Examining the spin-entropy formula (17) for such cases and requiring it to be negative, we
obtain the following:

S(ψs,m=±s) = ln(4π)− ln(2s + 1) +
2s

2s + 1
< 0 ⇔ ln

2s + 1
4π

>
2s

2s + 1
(27)

and since s must be a multiple of 1
2 , the minimum value of s for which this is possible is

smin = 16 1
2 .

Let us examine some properties of spin s = 1
2 and s = 1 for all spin states.

3.1. Spin One-Half

Lemma 5 (Spin 1
2 entropy). All s = 1

2 spin states have the same spin-entropy.

Proof. Let us refer to |ψ⟩ as an arbitrary s = 1
2 spin-state. All s = 1

2 spin states are reached
by the application of an element of the SU(2) to |ψ⟩.

There exists a two-to-one homomorphic mapping of the group SU(2) onto the group
SO(3). If A ∈ SU(2) maps onto R(A) ∈ SO(3), then R(A) = R(−A). This implies that the
representations of SO(3) are also representations of SU(2).

By Lemma 1, we conclude that all s = 1
2 spin-states will be reached by a canonical

transformation of any given |ψ⟩ s = 1
2 spin-state and, therefore, have the same spin-

entropy.

3.2. Spin One

The most general normalized s = 1 spin-state can be written as follows:

Ψs=1(θ, ϕ) = eiϕ1
(

cos θ0 eiϕ0 ψ1,0 + sin θ0 cos θ1ψ1,1 + sin θ0 sin θ1 eiϕ−1 ψ1,−1

)
(28)

where ψ1,−1, ψ1,0, ψ1,1 are derived from the following: (12) as follows:

ψ1,1(θ, ϕ) =

√
3

16π
(1 + cos θ), ψ1,0(θ, ϕ) =

√
3

4π
sin θ eiϕ, ψ1,−1(θ, ϕ) =

√
3

16π
(1 − cos θ) ei2ϕ (29)
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Lemma 6. The maximum value of the spin-entropy for s = 1 is S1
max = ln 2π

3 + 5
3 ≈ 2.4059, and

it is reached by the state ψ1,0(θ, ϕ) and all its canonical transformations (rotations and reflections).
The minimum value of the spin-entropy for s = 1 is S1

min = ln 4π
3 + 2

3 ≈ 2.0991 and it is
reached by the states ψ1,−1(θ, ϕ) and ψ1,1(θ, ϕ) and all their canonical transformations (rotations
and reflections).

Proof. The probability density does not depend on the global phase term eiϕ1 and, thus,
the spin-entropy varies according to the four parameters ϕ−1, ϕ0, θ0, θ1. Note that for a
given set of these parameters, all canonical transformations (rotations and reflections) of
this wave function will correspond to transformations in parameter space.

For example, for the canonical transformation of a rotation around the z-axis, we have
ϕ → ϕ + δ and the wave function (28) is then written as follows:

Ψs=1(θ, ϕ + δ; ϕ1, ϕ−1, ϕ0, θ0, θ1) =

√
3

16π
eiϕ1
(

2 cos θ0 eiϕ0 sin θ eiδeiϕ + sin θ0 cos θ1(1 + cos θ)

+ sin θ0 sin θ1 eiϕ−1(1 − cos θ) ei2δei2ϕ
)

=

√
3

16π
eiϕ1
(

2 cos θ0 ei(ϕ0+δ) sin θ eiϕ + sin θ0 cos θ1(1 + cos θ)

+ sin θ0 sin θ1 ei(ϕ−1+2δ)(1 − cos θ) ei2ϕ
)

= Ψs=1(θ, ϕ; ϕ1, ϕ−1 + 2δ, ϕ0 + δ, θ0, θ1) (30)

corresponding to a translation in the parameters (ϕ0, ϕ−1) → (ϕ0 + δ, ϕ−1 + 2δ).
The rotations have three degrees of freedom and, thus, the space of parameters that

cause the spin-entropy to vary is reduced to one. Thus, we examine the wave function
restricted to varying one parameter.

Consider the spin-1 state (28) for the cases of ϕ−1 = ϕ0 = 0 and θ0 = π
2 , i.e.,

Ψs=1
θ1

(θ, ϕ) =

√
3

16π
eiϕ1
(

cos θ1(1 + cos θ) + sin θ1 (1 − cos θ) ei2ϕ
)

, (31)

where θ1 is the free parameter. All canonical transformations of such a state lead to the
same spin-entropy distribution. The probability is then as follows:

Ps=1
θ1

(u, ϕ) =
3

16π

(
cos2 θ1 (1 + u)2 + sin2 θ1(1 − u)2 + sin 2θ1 (1 − u2) cos(2ϕ)

)
=

3
16π

(
(1 + u2) + 2u cos(2θ1) + sin 2θ1 (1 − u2) cos(2ϕ)

)
(32)

where u = cos θ. The spin-entropy of this state is as follows:

Sθ1 = −
∫ 1

−1

∫ 2π

0
Ps=1

θ1
(u, ϕ) ln Ps=1

θ0
(u, ϕ) du dϕ . (33)

The extremes of the entropy occur when
∂Sθ1
∂θ1

= 0, i.e., when

0 =
∂Sθ1

∂θ1
= −

∫ 1

−1

∫ 2π

0

∂Ps=1
θ1

∂θ1
ln Ps=1

θ0
(u, ϕ) du dϕ (34)

= − 3
8π

∫ 1

−1

∫ 2π

0

(
−2u sin 2θ1 + cos 2θ1 (1 − u2) cos(2ϕ)

)
× ln

(
(1 + u2) + 2u cos(2θ1) + sin 2θ1 (1 − u2) cos(2ϕ)

)
.

They occur when the integral in ϕ vanishes due to an odd integrand function in ϕ ∈ [0, 2π],
i.e., for θ1 = 0, π

2 , integrand (1− u2) cos(2ϕ) ln
(
(1 + u2) + 2u

)
changes signs as ϕ → ϕ+ π

2 .
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They also occur when the integral in u vanishes for having an odd integrand, i.e., for
θ1 = π

4 , 3π
4 , integrand −2u ln

(
(1 + u2) + (1 − u2) cos(2ϕ)

)
changes signs as u → −u. By

investigation, cases θ1 = 0, π
2 are the z-eigenstates s = 1, m = ±1, and yield the minimum

spin-entropy. Cases θ1 = π
4 , 3π

4 are associated with the x-eigenstates and y-eigenstates,
s = 1, mx, my = 0, respectively, i.e., they are canonical transformations of the z-eigenstates,
s = 1, m = 0, and yield the maximum spin-entropy.

We show in Figure 2 a simulation for this spin-entropy as θ1 varies. Note that the state
ψs=1,m=0(θ, ϕ) has a higher spin-entropy than the two states ψs=1,m=±1(θ, ϕ), i.e., there is
more randomness and less information at the m = 0 state.

Figure 2. Spin-entropy (33) vs. θ1 ∈ [0, π) for the s = 1 state (31), a superposition of ψs=1,m=1(θ, ϕ),
and ψs=1,m=−1(θ, ϕ). The extremes occur for θ1 = 0, π

4 , π
2 , 3π

4 . At its maximum θ1 = π
4 , 3π

4 , the
superposition of states (31) is a canonical transformation of a state s = 1, m = 0, either to the
x-eigenstate s = 1, mx = 0 (θ1 = π

4 ) or to the y-eigenstate s = 1, my = 0 (θ1 = 3π
4 ).

3.3. Any Spin Value

Conjecture 1 (Min and Max). The spin-entropy associated with any spin-state of magnitude
s has (i) its maximum value for the states m = ±minm = ±mod(s, 1) and all its canonical
transformations, and (ii) its minimum value for the pair of states m = ±s and all its canonical
transformations.

We have proven this to be true for the cases of s = 1 and s = 1
2 and s = 0. Also,

by Lemma 3, the z-direction eigenstates, for any s value, will have lower spin-entropy as
m+ increases. All canonical transformations of a state will have the same spin-entropy.
It remains to be proven that any spin-state falls within the spectrum of these values, or
whether the extremes of spin-entropy correspond to spin-eigenstates.

4. Mixed States: Von Neumann Entropy vs. Spin-Entropy

Mixed states extend the Hilbert space of specified quantum states, or pure states,
to quantum states that are not fully specified, and instead are described by a classi-
cal probabilistic combination of pure states. Let a spin mixed state be defined via the
density matrix, as follows:

ρM
s =

P

∑
i=1

γi

∣∣∣ξ i
s

〉〈
ξ i

s

∣∣∣ , (35)

where γi ≥ 0, 1 = ∑P
i=1 γi, and

∣∣ξ i
s
〉
= ∑s

m=−s αi
s,m|ξs,m⟩, i = 1, . . . , P are pure states

decomposed in spin eigenstates of the operator SZ, satisfying 1 = ∑s
m=−s |αi

s,m|2. In order
to quantify the randomness associated with this density matrix, we first project it to the
spin phase space as follows
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P

∑
i=1

ρM
s (i, θ, ϕ) = ⟨z(θ, ϕ), z∗(θ, ϕ)|ρM

s |z(θ, ϕ), z∗(θ, ϕ)⟩

=
P

∑
i=1

γi

〈
z(θ, ϕ), z∗(θ, ϕ)

∣∣∣ξ i
s

〉〈
ξ i

s

∣∣∣z(θ, ϕ), z∗(θ, ϕ)
〉

=
P

∑
i=1

γi

s

∑
m=−s

αi
s,mψs,m(θ, ϕ)

s

∑
m′=−s

(αi
s,m′)∗ ψ∗

s,m′(θ, ϕ)

=
P

∑
i=1

γi

∣∣∣∣∣ s

∑
m=−s

αi
s,mψs,m(θ, ϕ)

∣∣∣∣∣
2

. (36)

The quantity ρM
s (i, θ, ϕ), with the normalization 1 = ∑P

i=1
∫ π

0

∫ 2π
0 ρM

s (i, θ, ϕ) dθ dϕ, is the
probability of the mixed state being in a pure state

∣∣ξ i
s
〉

with observables (θ, ϕ). Extending
the spin-entropy (1) to include mixed states, we define the following:

SM(ρM
s (i, θ, ϕ)) = −

P

∑
i=1

∫ π

0

∫ 2π

0
ρM

s (i, θ, ϕ) ln ρM
s (i, θ, ϕ) dθ dϕ

= SvN +
P

∑
i=1

γiSi
s(ρs(θ, ϕ|i)) , (37)

where von Neumann entropy is SvN = −∑P
i=1 γi ln γi, and the conditional entropy of

each pure state in the mixture is Si
s(θ, ϕ|i) = −

∫ π
0

∫ 2π
0 ρs(θ, ϕ|i) ln ρs(θ, ϕ|i) dθ dϕ, with

the conditional probability given by ρs(θ, ϕ|i) = ρM
s (i,θ,ϕ)

γi
=
∣∣∑s

m=−s αi
s,mψs,m(θ, ϕ)

∣∣2. The
spin-entropy is always larger than von Neumann entropy since we also add the expected
value of the spin-entropy of the P pure states, which are all positive for all known physical
particles (see Lemma (4)).

5. Phase Space Entanglement Increases Entropy

Consider two orthonormal spin eigenstates along the z-direction, ψs,m1(θ) ei (s−m1)ϕ,
and ψs,m2(θ) ei (s−m2)ϕ, where from (12), we have the following:

ψs,m1,2(θ) =
(2s + 1)

1
2

√
4π

[
C2s

s+m1,2

] 1
2
(

cos
θ

2

)s+m1,2
(

sin
θ

2

)s−m1,2

(38)

Following [7,8,24–26] and their references, let us define the entanglement of these two
orthonormal spin eigenstates as follows:

Ψs,m1,m2(θ, ϕ, θ′, ϕ′; θe) = cos θeψs,m1(θ)ψs,m2(θ
′) ei[(s−m1)ϕ+(s−m2)ϕ

′ ]

+ sin θeψs,m2(θ)ψs,m1(θ
′) ei[(s−m2)ϕ+(s−m1)ϕ

′ ] , (39)

where θe ∈ [0, π) periodically controls the amount of entanglement, with minimum (no)
entanglement occurring at θe = 0, π

2 and maximum entanglement occurring at θe = π
4 , 3π

4 .
By Born’s rule, this spin-state has a probability density, as follows:

Ps,m1,m2(θ, ϕ, θ′, ϕ′; θe) = |Ψs,m1,m2(θ, ϕ, θ′, ϕ′; θe)|2 , (40)

The spin-entropy of state (39) is as follows:

Ss,m1,m2 (θ
e) = −

∫ 1

−1

∫ 2π

0

∫ 1

−1

∫ 2π

0
Ps,m1,m2 (u, ϕ, u′, ϕ′; θe) ln Ps,m1,m2 (u, ϕ, u′, ϕ′; θe)du dϕ du′ dϕ′ .

(41)

The extremes of the entropy occur when
∂Ss,m1,m2 (θ

e)

∂θe = 0, i.e., when
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0 =
∂Ss,m1,m2(θ

e)

∂θe

= −
∫ 1

−1

∫ 2π

0

∫ 1

−1

∫ 2π

0

∂Ps,m1,m2(u, ϕ, u′, ϕ′; θe)

∂θe ln Ps,m1,m2(u, ϕ, u′, ϕ′; θe) du dϕ du′ dϕ′ . (42)

We conjecture that they occur for θe = 0, π
4 , π

2 , 3π
4 . By investigating these four cases, the

cases θe = 0, π
2 , associated with no entanglement, yield the minimum spin-entropy, which

is the sum of the spin-entropy of each state. We already calculated each state spin-entropy
in (17). The cases θe = π

4 , 3π
4 yield the maximum spin-entropy and are associated with

maximum entanglement.
We present “a sketch of a proof” by reasoning about randomness. Let us examine

the role of each of the wave functions, ψs,m1(θ) ei (s−m1)ϕ, and ψs,m2(θ
′) ei (s−m2)ϕ

′
, involved

in the entanglement (39). Each represents a distribution in a two-sphere S2, or let us
call it a “container”. The phase space of the entanglement is the product of these two
containers. For θe = 0, π

2 , when there is no entanglement, despite the phase space being
the product of two containers, each distribution occupies only one of the containers. Thus,
the entanglement spin-entropy is the sum of the spin-entropy of each container. For
θe = π

4 , 3π
4 , when there is maximum entanglement, the wave functions equally occupy

both containers, i.e., they are mixed in the containers. As a distribution spreads wider, its
entropy increases. The parameter θe controls the mixture and, hence, the more mixed the
distribution, the larger the spin-entropy. This reasoning is not specific about spin, it also
applies to position entanglement.

In Figure 3, we plot the spin-entropy (41) vs. θe for z eigenstates of s = 1
2 and for z

eigenstates of s = 1. Clearly, spin-entropy increases as the entanglement increases. More
analysis is offered in the figure’s caption.

(a) s = 1
2

(b) s = 1 (c) s = 1

Figure 3. Plots of spin-entropy of entanglement (41) vs. θe, a parameter that controls the amount of
the entanglement. When θe = 0, π

2 , there is no entanglement (product state), and when θe = π
4 , 3π

4 ,
there is maximum entanglement. In all graphs, the spin-entropy increases as the amount of the
entanglement increases. (a). The spin-entropy of the entanglement s = 1

2 , for any given θe, is larger
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than the spin-entropy of the entanglements shown in b. and c., for the same θe. (b). The entanglement
entropy shown for m1 = 0, m2 = 1 is the same as in the case m1 = 0, m2 = −1. This can be
inferred from the mapping, m1 = 0, m2 = 1 → m1 = 0, m2 = −1 being described by the mapping
(θ, θ′) → (π − θ, π − θ′) which leads to the same probabilities (40) and, thus, to the same spin-entropy
(41). (c). The minimum entanglement value is less than in b., after all in these cases the spin-entropy
is simply the sum of the spin-entropy of both states. The maximum entanglement value is more than
in b. We wonder if it may be related to the fact that the superposition of these two states is a canonical
transformation of the higher entropy state ψs=1,m=0; see Figure 2.

6. Spin Interaction and Oscillations of the Spin-Entropy

We investigate the evolution of the spin-entropy for a massive particle with spin s = 1
in an initial state ψn̂

s=1,m=1,ω0
(θ, ϕ, t0), where n̂, is a unit vector indicating an arbitrary 3D

direction. The state ψn̂
s=1,m=1,ω0

(θ, ϕ, t0) is not only a spin eigenstate along the direction
n̂ with m = 1, but also an eigenstate of the Hamiltonian H0 with the energy eigenvalue,
h̄ω0 = m0c2, where m0 is the rest mass.

Let us say that a magnetic field B = Bẑ interacts with this spin-state via an in-
teraction Hamiltonian HI = −γBSz with eigenvalues h̄ m ωγ, for the Z-axis eigenstates
ψs=1,m=0,±1(θ, ϕ), respectively, and where ωγ = γB

h̄

The Hamiltonians based on
{∣∣∣ψn̂

s=1,mk

〉
; k = 1, 2, 3

}
, with mk = 1, 0,−1 for k = 1, 2, 3,

are as follows:

H0 =

h̄ω0 0 0
0 h̄ω0 0
0 0 h̄ω0


(

HI
)

i,j
=
〈

ψn̂
s=1,mi

∣∣∣HI
∣∣∣ψn̂

s=1,mj

〉
= ∑

k,k′

〈
ψn̂

s=1,mi

∣∣∣ψs=1,mk

〉〈
ψs=1,mk

∣∣HI
∣∣∣ψs=1,m′

k

〉〈
ψs=1,m′

k

∣∣∣ψn̂
s=1,mj

〉

=

U(n̂)

−h̄ωγ 0 0
0 0 0
0 0 h̄ωγ

U†(n̂)


ij

(43)

where Uij(n̂) =
〈

ψn̂
s=1,mi

∣∣∣ψs=1,mj

〉
, mk = 1, 0,−1 for k = 1, 2, 3, and I3×3 = U(n̂)U†(n̂).

Writing the initial state evolution on the basis of
{∣∣∣ψn̂

s=1,mk

〉
; k = 1, 2, 3

}
,

 α1(t)
α0(t)

α−1(t)

 = exp
[
−iHTott

h̄

]1
0
0


= U(n̂)

e−i(ω0+ωγ)t 0 0
0 e−iω0t 0
0 0 e−i(ω0−ωγ)t

U†(n̂)

1
0
0


= e−iω0t U(n̂)

U∗
11(n̂) e−iωγt

U∗
12(n̂)

U∗
13(n̂) eiωγt


= e−iω0t

 1 + |U11(n̂)|2 (e−iωγt − 1) + |U13(n̂)|2 (eiωγt − 1)
U21(n̂)U∗

11(n̂) (e
−iωγt − 1) + U23(n̂)U∗

13(n̂) (e
iωγt − 1)

U31(n̂)U∗
11(n̂) (e

−iωγt − 1) + U33(n̂)U∗
13(n̂) (e

iωγt − 1)



= e−iω0t

 1 −
(
|U11(n̂)|2 + |U13(n̂)|2

)
sin ωγt

2 − i
(
|U11(n̂)|2 − |U13(n̂)|2

)
sin ωγt

−
(
U21(n̂)U∗

11(n̂) + U23(n̂)U∗
13(n̂)

)
sin ωγt

2 − i
(
U21(n̂)U∗

11(n̂)− U23(n̂)U∗
13(n̂)

)
sin ωγt

−
(
U31(n̂)U∗

11(n̂) + U33(n̂)U∗
13(n̂)

)
sin ωγt

2 − i
(
U31(n̂)U∗

11(n̂)− U33(n̂)U∗
13(n̂)

)
sin ωγt

 . (44)

The state of the particle at any time, t, described by a superposition of the three states,{∣∣∣ψn̂
s=1,mk

〉
; k = 1, 2, 3

}
, with superposition coefficients αmk (t), will oscillate over time with



Entropy 2024, 26, 372 14 of 18

a period of T = π
ωγ

. Therefore, the entropy of the superposition will also oscillate with the
same period.

These calculations are similar to the ones employed to calculate Fermi’s golden
rule [27,28]. However, here, H0 yields the same energy for all considered spin states.

7. Conclusions

This paper quantifies the randomness associated with a spin-state by defining the
spin-entropy in phase space.

At the formal level, we use differential entropy from information theory and the geo-
metric quantization method (GQ) to the two-sphere. GQ describes the spin originating from
classical ideas, and it also provides the spin phase space where the spin wave function and
its randomness are defined. Local canonical transformation in phase space preserves the
area element of the sphere and guarantees that the spin-entropy satisfies the homogeneity
hypothesis; thus, Lemma 1 shows that the spin-entropy of a spin-state is invariant under
3D rotations and reflections of the coordinate system. We extend the spin-entropy to mixed
states and show that von Neumann entropy is a lower bound for it.

Lemma 2 provides a spin-entropy formula for the z-direction spin-eigenstates.
Lemma 3 and a plot illustrating the spin-entropy of a given spin, s, versus different values
of m = −s,−s + 1, . . . , s − 1, s, see Figure 1, show that spin-entropy exhibits symmetry
with respect to m ↔ −m, and decreases as m increases for m ≥ 0. Thus, in particular, the
state ψs=1,m=0(θ, ϕ) has a higher spin-entropy than the spin states ψs=1,m=±1(θ, ϕ), i.e.,
there is more randomness and less information at the m = 0 state.

The phase space of the entanglement of two states is the product of two phase spaces.
We reasoned that entanglement corresponds to a distribution that mixes the two phase
spaces while the product of the states does not mix. The larger the entanglement, the
more the mixture, the more randomness, and the larger the entropy. We speculate that
the phenomena of decoherence [7,8,24,26,29] of a subsystem immersed in an environment
occur, so that parts of such a subsystem will entangle with the environment, and the total
entanglement increases. One interesting future direction could be to exploit a connection
between this work and the works on quantum thermalization [10,30–32], as well as their
references; these references suggest a procedure that—by tracing out the environment and
evaluating the reduced density matrix of a system of interest—may lead to the entropy of
classical physics.

We investigate a dynamic model of an interaction Hamiltonian of a constant magnetic
field with the spin, given an initial superposition of states. We show that the time evolution
of the spin-entropy oscillates. Investigations into the hypothesis proposed by Geiger and
Kedem [15] show that the quantum entropy of the closed physical system cannot decrease,
implying that information from a closed system cannot be gained, and will be left for
future work.
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Appendix A. Geometric Quantization Summary

Here, we cover some topics considered by geometric quantization when applied to
the two-sphere S2 to create the spin operators and wave functions. For a more in-depth
view of the method, see [3–5]

Appendix A.1. Symplectic Structure

Considering the symplectic structure as the oriented surface area element of a sphere,
scaled down by the radius s, it is written as follows:

Ω = s sin θ dϕ ∧ dθ = 2is
dz ∧ dz∗

(1 + zz∗)2 (A1)

This symplectic structure can be derived from a Kähler potential Ω = i ∂∂K where

K = 2s ln(1 + zz∗) , (A2)

and 2s is an integer associated with a spin magnitude, s. The symplectic potential A =

− i
2 ∂K = i s

[
zdz∗−z∗dz
(1+zz∗)

]
has components given by the following:

Az = − i
2

∂zK = −i s
z∗

(1 + zz∗)
and Az∗ =

i
2

∂z∗K = i s
z

(1 + zz∗)
, (A3)

Here, in the abuse of notation, where z, z∗, when used as superscripts or subscripts, this
actually represents the indices of vector components. A special case occurs for ∂ = ∂z ∧ ∂z∗ ,
which represents both the index of ∂ and the variable for which the partial derivative is
being taken. We may also switch to component notation zµ, µ = 1, 2 to indicate z = z1

and z∗ = z2, which will help with manipulation. In this case, we may represent the vector
potential by Aµ, µ = 1, 2. We will use both notations.

The corresponding covariant derivatives are as follows:

Dz = ∂z − iAz =

(
∂z − s

z∗

(1 + zz∗)

)
, and Dz∗ = ∂z∗ − iAz∗ =

(
∂z∗ + s

z
(1 + zz∗)

)
. (A4)

Appendix A.2. From Canonical Transformations to Pre-Quantum Operators

Canonical transformations preserve Ω. Consequently, for the vector fields ξ = (ξz, ξz∗)
to be generators of canonical transformations on the sphere, written as z⃗ = (z, z∗) →
z⃗ + ξ (⃗z), they must satisfy δξ Ω = ∂(ξαΩα,ν dzν) = ∂(ξzΩz,z∗dz∗ + ξz∗Ωz∗ ,zdz) (derived in
(6)). Thus, for every infinitesimal canonical transformation, we can associate a function J
on S2, such that −dJ = ξzΩz,z∗dz∗ + ξz∗Ωz∗ ,zdz = 0 becomes a closed one-form.

The symplectic potential A change under a canonical transformation is given by the
following:
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δξA = Aµ (⃗z + ξ)d(zµ + ξµ (⃗z))−Aµ (⃗z)dzµ

=

[
ξα ∂zαAµ +Aα

∂ξα

∂zµ

]
dzµ

=
[
ξα
(

∂zαAµ − ∂zµAα

)
+ ∂zµ(ξαAα)

]
dzµ

=
[
ξαΩα,µ + ∂zµ(ξαAα)

]
dzµ

= ∂zµ(ξαAα − J)dzµ (A5)

Thus, under a canonical transformation, A → A + dΛ, where Λ = ξαAα − J, the
symplectic potential may be thought of as a U(1) gauge field, with the transformations A →
A+ dΛ. In order for Dψ(⃗z) to be a covariant derivative under canonical transformation,
the wave function must transform as follows: ψ(⃗z) → ψ′ (⃗z′) = eiΛψ(⃗z). This form of
the canonical transformation of ψ will lead to the unitary operators associated with the
observable J.

Consider a function, J(⃗z), in the phase space generating a canonical transformation,
z⃗ → z⃗ + ξ, and described by the change in the symplectic potential Λ = ξαAα − J. The
corresponding change in ψ is, thus, as follows:

δψ(⃗z) = ξµ ∂zµ ψ(⃗z)− i(ξαAα − J)ψ(⃗z)

= ξµ
(

∂zµ − iAµ

)
ψ(⃗z) + iJψ(⃗z)

=
(
ξµDµ + iJ

)
ψ(⃗z) (A6)

Thus, associated with the classical function J(⃗z), the GQ method creates the pre-quantum
operator for the classical observable J:

P(J) = −i(ξ · D + iJ) , (A7)

and, so, canonical transformations are implemented as quantum unitary transformations
of the wave function, ψ = eiP(J)ψ.

Appendix A.3. From 3D Embedding Functions to Quantum Spin Operators

Let us refer to the 3D embedding in the sphere, defined in (3), as the “classical spin
variables” from which the quantum spin operators will be derived. Using these variables,
we can evaluate the canonical transformations described in (7) for the symplectic structure
on the sphere (5) or its inverse; thus, we can obtain the coefficients of the Hamiltonian
vector field:

ξz = (ξz
X , ξz

Y, ξz
Z) = Ωz,z∗ ∂z∗(X(z, z∗), Y(z, z∗), Z(z, z∗)) =

i
2

(
(1 − z2), i(1 + z2),−2z

)
ξz∗ = (ξz∗

X , ξz∗
Y , ξz∗

Z ) = Ωz,z∗ ∂z(X(z, z∗), Y(z, z∗), Z(z, z∗)) = − i
2

(
(1 − (z∗)2),−i(1 + (z∗)2), 2z∗

)
Similar to the abuse of notation of z, z∗, the abuse of notation to the 3D variables X, Y, Z
occurs when using them as superscripts or subscripts; then, they represent an index to
a component of a vector. The vector field coefficients form the following Hamiltonian
vector fields:

ξX · ∇ =
i
2

(
∂z − ∂z∗ + (z∗)2 ∂z∗ − z2 ∂z

)
, ξY · ∇ = −1

2

(
∂z + ∂z∗ + (z∗)2 ∂z∗ + z2 ∂z

)
,

ξZ · ∇ = −i(z ∂z − z∗ ∂z∗) (A8)
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where ∇ = ( ∂z, ∂z∗), which are the standard isometries of the sphere. The Lie commutator
of these vector fields gives the SU(2) algebra. The pre-quantum spin operators (A7) for these
“classical spin variables” are then as follows:

P(J) = −i(ξ J · D + iJ) for J(z, z∗) = X(z, z∗), Y(z, z∗), Z(z, z∗).

= −i
(

ξz
J

(
∂z − s

z∗

(1 + zz∗)

)
+ ξz∗

J

(
∂z∗ + s

z
(1 + zz∗)

))
+ iJ(z, z∗) (A9)

where the covariant derivatives in the sphere are given by (A4). The polarization condition
is as follows:

Dz∗Ψ(z, z∗) =
(

∂z∗ +
1
2

∂z∗K
)

Ψ(z, z∗) =
(

∂z∗ + s
z

(1 + zz∗)

)
Ψ(z, z∗) = 0 (A10)

leads to an irreducible representation of the spin operators solved by the following:

Ψ(z, z∗) = e−
1
2 K f (z) =

1
(1 + zz∗)s f (z) (A11)

where Ψ(z, z∗) is the spin wave function and f (z) is a holomorphic function. Applying the
polarization condition (A10) to the pre-quantum operators (A9), we obtain the following
spin–quantum operators:

SJk = −iξz
Jk

(
∂z − s

z∗

(1 + zz∗)

)
+ iJk(z, z∗) for J1 = X, J2 = Y, J3 = Z. (A12)

Appendix B. Logarithm Properties

Below are well-known properties of the logarithm functions that we derive for the
completion of the presentation:

Lemma 7. For j ≥ 1

1
j + 1

<
∫ j+1

j

1
x

dx <
1
j

Proof. Due to the decreasing monotonicity of the function f (x) = 1
x , the area of the

rectangle with a base between j and j + 1 and a height of 1
j is always larger than the area of

the curve 1
x on the same base. Similarly, the area of the rectangle with the base between j

and j + 1 and a height of 1
j+1 < 1

x for j ≤ x < j + 1 is always smaller than the area of the

curve 1
x on the same base.

Lemma 8. For a, b ∈ Z, b ≥ a

b

∑
j=a+1

1
j
<
∫ b

a

1
x

dx <
b−1

∑
j=a

1
j

Proof. Summing the terms in Lemma 7 from a to b − 1, we obtain the following:

b−1

∑
j=a

1
j + 1

<
b−1

∑
j=a

∫ j+1

j

1
x

dx <
b−1

∑
j=a

1
j

The integral term follows straightforwardly, given that ∑b−1
j=a

∫ j+1
j

1
x dx =

∫ b
a

1
x dx

Replacing j → j′ − 1 in the first term leads to ∑
j′−1=b−1
j′−1=a

1
j′−1+1 = ∑b

j′=a+1
1
j′ .
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