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Abstract: The axiomatic structure of the κ-statistcal theory is proven. In addition to the first three
standard Khinchin–Shannon axioms of continuity, maximality, and expansibility, two further axioms
are identified, namely the self-duality axiom and the scaling axiom. It is shown that both the κ-entropy
and its special limiting case, the classical Boltzmann–Gibbs–Shannon entropy, follow unambiguously
from the above new set of five axioms. It has been emphasized that the statistical theory that can be
built from κ-entropy has a validity that goes beyond physics and can be used to treat physical, natural,
or artificial complex systems. The physical origin of the self-duality and scaling axioms has been
investigated and traced back to the first principles of relativistic physics, i.e., the Galileo relativity
principle and the Einstein principle of the constancy of the speed of light. It has been shown that
the κ-formalism, which emerges from the κ-entropy, can treat both simple (few-body) and complex
(statistical) systems in a unified way. Relativistic statistical mechanics based on κ-entropy is shown
that preserves the main features of classical statistical mechanics (kinetic theory, molecular chaos
hypothesis, maximum entropy principle, thermodynamic stability, H-theorem, and Lesche stability).
The answers that the κ-statistical theory gives to the more-than-a-century-old open problems of
relativistic physics, such as how thermodynamic quantities like temperature and entropy vary with
the speed of the reference frame, have been emphasized.

Keywords: relativistic statistical mechanics; power-law tailed distributions; κ-entropy; κ-distribution;
κ-statistics; κ-exponential; κ-logarithm; κ-mathematics; κ-deformation; temperature of a moving
body; relativistic temperature; relativistic thermodynamics

1. Introduction

The spread of the neologism κ-distribution within the astrophysical plasma community
began after the publication of the seminal paper of Vasyliunas’ [1,2] in 1968. The enormous
existing literature on so-called κ-plasmas shows the undisputed success of the Vasyliunas
κ-distribution, which still seems to be very relevant today. There have been a very high
number of attempts to justify it, which shows that none of the proposals put forward are
accepted by the whole community of physicists in the field and, therefore, the success
of this distribution is mainly of an empirical nature. Curiously, there are no advanced
proposals that consider the possibility of going beyond the Vasyliunas κ-distribution and
investigating new possible distributions that have other analytical forms but describe the
empirical data equally well.

This paper deals with the statistical theory [3,4] proposed in 2001, which goes beyond
the Vasyliunas distribution. The underlying new distribution is also called a κ-distribution,
which sometimes unintentionally causes some confusion for the reader. This choice was
made because κ-plasmas represent one of the most natural fields of applications of the
new κ-distribution. The promotion of the proposal of the new κ-distribution essentially
arises from the purely theoretical need to have a statistical distribution that possesses the
important property of self-duality, i.e., f (−E) f (E) = constant, as in the case of the Boltz-
mann exponential factor exp(−βE) exp(βE) = 1 of ordinary Boltzmann–Gibbs statistical
mechanics. This need was easily met thanks to the empirical evidence suggesting that the
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Pareto power law trend of the statistical distribution has purely asymptotic validity. The
new κ-distribution asymptotically exhibits a power-law tail but gradually transforms in
the intermediate range in its bulk range and takes on the features of the typical behavior
of the standard exponential Boltzmann factor. In the two papers published in 2002 [5]
and 2005 [6], it was shown that the new κ-distribution arises naturally in the context of
Einstein’s special relativity and generates a self-consistent κ-statistic, which turns out to be
a relativistic extension of classical Boltzmann–Gibbs statistical mechanics. The entirety of
κ-statistical mechanics can be traced back to κ-entropy

Sκ =
W

∑
i=1

f 1−κ
i − f 1+κ

i
2κ

(1)

where { fi} is the statistical distribution. Sκ entropy is the relativistic generalization of
classical Boltzmann–Gibbs–Shannon entropy, which recovers in the κ → 0 limit. The
corresponding κ-distribution behaves like the ordinary Boltzmann distribution at low
energies, while it presents a power-law tail at high energies.

One of the greatest successes of κ-statistics is undoubtedly the explanation of the
non-Boltzmannian spectrum of cosmic rays, which are relativistic particles. The persistent
power-law tails of this spectrum, spanning 13 decades in terms of energy and 33 decades
in terms of particle flux, turn out to be a purely relativistic effect correctly predicted by
κ-statistics.

Remarkably, although the statistical theory based on Sκ can be traced back to the first
principles of special relativity, it can also be introduced without reference to special relativ-
ity, as will be shown in Section II, since it also has applications outside relativistic physics.
For this reason, statistical theory [7–13] based on the κ-distribution has attracted the interest
of many researchers. In the last two decades, various authors have devoted themselves to
the study of both the theoretical foundations of the theory and its applications not only in
plasma physics but also in various other areas of the science of complex physical, natural,
or artificial statistical systems. Some of these works deal with the H-theorem and the molec-
ular chaos hypothesis [14,15], thermodynamic stability [16,17], Lesche stability [18–21], the
Legendre structure of the resulting thermodynamics [22,23], the thermodynamics of non-
equilibrium systems [24], quantum versions of the theory [25–28], the geometric structure
of the theory [29,30], various mathematical aspects of the theory [31–44], etc. On the other
hand, specific applications to physical systems have been considered, e.g., cosmic rays [5],
relativistic [45] and classical [46] plasmas in presence of external electromagnetic fields,
relaxation in relativistic plasmas under wave–particle interactions [47,48], electronic cool-
ing [49], dark energy models [50–70], quantum gravity [71–78], quantum cosmology [79–83],
gravitation and cosmology [84,85], anomalous diffusion [86,87], non-linear kinetics [88–94],
the kinetics of interacting atoms and photons [95], particle kinetics in the presence of
temperature gradients [96,97], particle systems in external conservative force fields [98],
stellar distributions in astrophysics [99–102], quark–gluon plasma formation [103], quan-
tum hadrodynamics models [104], fracture propagation [105], plasma physics [106–120],
seismology [121–124], seismic imaging [125–129], nuclear physics [130–134], and quan-
tum mechanics [135–137]. Other applications concern dynamical systems at the edge of
chaos [138–140], fractal systems [141], field theories [142], genomic analysis [143–145], ran-
dom matrix theory [146–148], robust statistical inference [149,150], error theory [151,152],
game theory [153], the theory of complex networks [154], information theory [155], etc.
Also, applications to economic systems have been considered, e.g., to study the personal
income distribution [156–162], to model deterministic heterogeneity in tastes and product
differentiation [163,164], in finance [165,166], in equity options [167], to construct taxation
and redistribution models [168], etc.

In this paper, we present some new aspects of κ-statistical theory. Section 2 focuses on
the axiomatic structure of the theory by proposing the five axioms from which the theory
can be deduced without referring to the principles of special relativity. Section 3 focuses on
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the relativistic origin of the theory. Some peculiar aspects of the physical–mathematical
formalism of the theory are emphasized and, in particular, it is shown how the axioms of
the theory emerge in relativistic physics. Finally, in Section 4, a synthetic overview of the
theory is given in the light of the results obtained in recent years.

2. An Axiomatic Approach to κ-Entropy

The concept of entropy was introduced in the second half of the nineteenth century in
the context of thermodynamics by Clausius, who also gave it its name, and immediately
afterward by Boltzmann in the context of statistical mechanics. This physical quantity,
which emerged within the framework of classical physics, has retained its original form over
time, even after the emergence of new branches of physics such as relativistic physics and
quantum physics. This entropy, which is still used in physics, was also introduced towards
the middle of the twentieth century in Shannon’s information theory and subsequently in
various fields of science to treat physical, natural, or artificial complex systems. Currently,
this entropy is called Boltzmann–Gibbs–Shannon (BGS) entropy [169,170] and is a special
case of the more general class of the trace form generalized entropic functional

S =
W

∑
i=1

σ( fi) = −
W

∑
i=1

fiΛ( fi) = − < Λ( fi) > (2)

where <> indicates the standard mean value, and in the distribution f = { f1, f2, . . . , fi, . . . , fW},
fi represents the probability that the system is in the microstate i with ∑W

1 fi = 1. The
standard BGS entropy is obtained by setting Λ( fi) = ln( fi). In expression (2) of the
generalized entropy [171,172], the function Λ( fi), called the generalized logarithm, is an
arbitrary strictly increasing function that is negative on the interval 0 < fi < 1. The function
σ( fi) = − fi Λ( fi) represents the contribution to entropy associated with the state i.

Some meaningful properties of the BGS entropy that are elevated to the rank of
axioms [169,170], i.e., the Khinchin–Shannon (KS) axioms I, II, and III, can also apply to
the generalized entropies. It is therefore assumed that the generalized entropy defined in
Equation (2) obeys the following three KS axioms:

I. Continuity axiom: The entropy depends continuously on all the variables fi. From
this axiom follows the continuity of the function Λ(pi).

II. Maximality axiom: The entropy is maximized by the uniform distribution fW = { f1 =
1

W , f2 = 1
W , . . . , fi =

1
W , . . . , fW = 1

W }, i.e., S[ f ] ≤ S[ fW ]. From this axiom follows the

concavity property d2 σ( fi)

d f 2
i

< 0.

III. Expansibility axiom: The (W + 1)-component distribution g obtained after the ex-
pansion of the W-component distribution f by adding a component with probability
equal to zero corresponds to the same entropy of the distribution g, i.e., S[g] = S[ f ].
From this axiom follows the property 0+Λ(0+) = 0. We also recall that the partic-
ular probability distribution f = {δia, 1 ≤ i ≤ W}, where a is a given integer with
1 ≤ a ≤ W, describes a state for which one has the maximum information. For this
state, S = 0 must be set. This condition in turn states that 0+Λ(0+) = 0 and also that
Λ(1) = 0. Equivalently, we can set up σ(0) = σ(1) = 1.

It is noteworthy that although the above three KS axioms impose some properties on
the function Λ( fi) and then on σ( fi), they do not uniquely determine its form. In the case of
BGS entropy, the form of the function Λ( fi) is determined by the fourth KS axiom, i.e., the
separability or strong additivity axiom, which implies the property Λ( fi gj) = Λ( fi) + Λ(gj),
from which Λ( fi) = ln( fi) follows. To go beyond the logarithmic BGS entropy and introduce
new entropic functionals, it is necessary to abandon the fourth KS axiom, provided that the
first three KS axioms are still equally valid. The fourth KS axiom is replaced by two meaningful
properties of the BGS entropy that can equally define the BGS entropy form without invoking
the additivity property of the ordinary logarithm function. These two properties are elevated
to the status of new axioms and must also apply to the case of generalized entropies. The
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problem is, therefore, reduced to the search for new generalized entropies that, in addition to
the ordinary BGS entropy, also obey the two new axioms.

Starting from the generalized logarithm Λ( fi), we introduce the function Λ(1/ fi),
which we will call generalized surprise or generalized unexpectedness in analogy to the
terms surprise [173] or unexpectedness [174] used in the literature when the generalized
logarithm is reduced to the ordinary logarithm. The generalized surprise/unexpectedness
is a continuous, decreasing function that admits a unique zero at fi = 1. The opposite of
the generalized surprise/unexpectedness Λ∗( fi) = −Λ(1/ fi) is a continuous, increasing
function and is referred to below as the dual generalized logarithm. The two generalized
logarithms Λ( fi) and Λ∗( fi), are the duals of each other and are both increasing functions
on the interval 0 < fi < +∞ with a zero at fi = 1. The two functions σ( fi) = − fi Λ( fi) and
σ∗( fi) = − fi Λ∗( fi) can be employed to construct the two entropic functionals S = ∑i σ( fi)
and S∗ = ∑i σ∗( fi), respectively, both of which fulfill the first three KS axioms. In general,
S∗ ̸= S holds, and this leads to a theoretical dichotomy, since the two entropies S and
S∗ define two different statistical theories and, most worryingly, there is no criterion for
choosing one of the two entropies. This dilemma does not exist in the case of ordinary BGS
entropy, because the property ln(1/ fi) = − ln( fi) implies the self-duality of the logarithm
ln∗( fi) = ln( fi) and then the self-duality of the entropy, i.e., S∗ = S. To guarantee the
uniqueness of the entropy form when considering a generalized statistical theory, we must
force the generalized logarithm to be self-dual, just as in the case of ordinary statistical
theory. Then, we can introduce the following axiom:

IV. Self-duality axiom: The entropy defined in Equation (2) must be considered both as
the standard mean value of the opposite of the generalized logarithm −Λ( fi) and as
the standard mean value of the generalized surprise/unexpectedness Λ(1/ fi), i.e.,

S = − < Λ( fi) > = < Λ(1/ fi) > (3)

or, equivalently, the generalized logarithm must possess the self-duality property

Λ(1/ fi) = −Λ( fi) (4)

It is noteworthy that axioms I, III, and IV concern some properties of the function σ( fi)

or equivalently of Λ( fi), while axiom II concerns a precise property of the function d2σ( fi)

d f 2
i

.

In the following, we will focus on a property of the function λ( fi) = − dσ( fi)
d fi

= d
d fi

fiΛ( fi).

First, recall that σ( fi) is a continuous and concave function with d2σ( fi)

d f 2
i

< 0, which has two

zeros σ(0) = σ(1) = 0. Then, σ( fi) presents its maximum value at fi = 1/ϵ with ϵ > 1.
This means that λ( fi) is a monotonically increasing function that has a zero at fi = 1/ϵ.
These general features of the function λ( fi) are typical of a generalized logarithm, with
the exception that the generalized logarithm has its zero at fi = 1. Recall that in the case
of the ordinary logarithm, the associated function λ( fi) is simply the ordinary logarithm
after it has been properly scaled, i.e., λ( fi) = 1

γ ln(ϵ fi), with γ = 1 and ϵ = e (e is the
Napier number). This scaling property of the ordinary logarithm must also apply to the
generalized logarithm Λ( fi), so that the relationship λ( fi) =

1
γ Λ(ϵ fi) must hold, with γ

and ϵ being two scaling parameters that are connected by the Boltzmann limit limγ→1 ϵ = e.
The above scaling property of Λ( fi) is elevated to the status of the following axiom:

V. Scaling axiom: The generalized logarithm which appears in the definition of entropy
(2) has the following property of scaling:

d
d fi

(
fiΛ( fi)

)
=

1
γ

Λ(ϵ fi) (5)

where γ and ϵ are the scaling parameters.
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The question naturally arises as to whether the BGS entropy is the only existing entropy
that obeys the two axioms of self-duality and scaling or whether there is another generalized
entropy that equally fulfills the two axioms mentioned. To answer this question, we start
from Equation (5), which expresses the scaling axiom and is to be regarded as a differential–
functional equation. We seek its general solution after we have correctly determined the
free scaling parameters γ and ϵ. Equation (5) was solved in [5,32], and it was shown that
besides the BGS entropy, there is a large class of entropies obeying the scaling axiom, some
of which are already known in the literature [5,32]. This class of generalized entropies is
drastically reduced if the generalized entropy must simultaneously satisfy the scaling and
self-duality axioms. In this case, the above class of generalized entropies is reduced to only
two entropies. Only the standard BGS entropy corresponding to Λ( fi) = ln( fi) and the
so-called κ-entropy Sκ corresponding to the κ-logarithm Λ( fi) = lnκ( fi) remain to obey the
two scaling and self-duality axioms simultaneously. The κ-logarithm is defined by

lnκ( fi) =
f κ
i − f−κ

i
2κ

=
1
κ

sinh(κ ln( fi)) (6)

The free parameter that appears in the expression of the κ-logarithm varies in the range of
0 < κ < 1 and in the κ → 0 limit, the κ-logarithm lnκ( fi) is reduced to the ordinary loga-
rithm ln( fi). The function lnκ( fi) can then be regarded as a one-parameter generalization
of the ordinary logarithm. Remarkably, the meaning of the parameter κ emerges when the
asymptotic behaviour of the κ-logarithm is considered. The asymptotic behaviour of the
κ-logarithm results from Equation (6), i.e., for fi → 0+, it obtains lnκ( fi) ∝ − f−κ

i , while for
fi → +∞, according to self-duality axiom, it results in lnκ( fi) ∝ f κ

i . The parameter κ turns
out to be the Pareto index, which characterizes the power-law asymptotic behavior of the
κ-logarithm. Finally, the constants γ and ϵ = expκ(γ) are given by

γ =
1√

1 − κ2
, ϵ =

(
1 + κ

1 − κ

) 1
2κ

(7)

and in the κ → 0 limit, they reduce to unity and Napier number e, respectively, reproducing
the results of the standard logarithmic entropy. The connection between the parameters γ
and ϵ follows directly from their expressions and is given by γ = lnκ(ϵ).

Besides the BGS entropy, the κ-entropy is the only one that simultaneously fulfills all
five axioms presented above. Thanks to the self-duality property of the κ-logarithm, i.e.,
lnκ(1/ fi) = − lnκ( fi), κ-entropy can be written as follows:

Sκ =
W

∑
i

σκ( fi) = −
W

∑
i

fi lnκ( fi) =
W

∑
i

fi lnκ(1/ fi) (8)

and can be regarded as the standard mean of both the opposite of the κ-logarithm and its
self-dual κ-surprise/unexpectedness i.e. Sκ = − < lnκ( fi) > = < lnκ(1/ fi) >.

This axiomatic approach to the introduction of κ-entropy is typical of information
theory. Remarkably, the two self-duality and scaling axioms that give rise to κ-entropy
are also valid in the framework of BGS entropy, although they do not have the rank of
axioms but rather express two important properties of standard entropy. The method of
replacing the strong additivity axiom of BGS entropy with the new self-duality and scaling
axioms that do not contradict any of the standard properties of BGS entropy, including
its additivity, clearly leads to a new generalized entropy, namely κ-entropy, which can be
employed to analyze physical or non-physical complex systems.

In the reference [175], about sixty different entropies are given, and the corresponding
list is not complete. For each of these generalized entropies, it is in principle possible to
identify the founding axioms that follow the standard lines of information theory [171].
In any case, it is important to emphasize that entropy is a physical concept that was first
introduced in the context of classical thermodynamics and statistical physics. This means
that a generalized entropy that claims to be physically meaningful should not only be
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introduced by postulating some mathematical axioms, as we have done here, but also that
these founding axioms should emerge within the framework of a physical theory, starting
from its first principles.

The task of the next section will be to show that the two axioms of self-duality and
scaling, as well as the κ-logarithm form, follow naturally from the first principles of
special relativity.

3. Special Relativity
3.1. Energy–Momentum Lorentz Transformations

Let us consider two identical particles A and B with rest mass m in the one-dimensional in-
ertial frame S, whose velocities, momenta, and total energies are given by vA, pA = mvAγ(vA),
and EA = mc2γ(vA) and vA, pB = mvBγ(vB), and EB = mc2γ(vB), respectively, where
γ(v) = (1− v2/c2)−1/2 is the Lorentz factor, and c is the light speed.

In the rest frame S ′ of particle B, the above variables in the case of particle B assume
the values v′B = 0, p′B = 0, and E′

B = mc2, respectively, while the velocity v′A of particle A is
given by the Einstein relativistic velocity additivity law v′A = (vA − vB)/(1 − vAvB/c2). In
the same frame S ′, the momentum p′A and the energy E′

A of the particle A are given by the
dynamic Lorentz transformations

p′A = γ(vB)pA − c−2vBγ(vB)EA (9)

E′
A = γ(vB)EA − vBγ(vB)pA (10)

After introducing the momentum pB = mvBγ(vB) and the energy EB = mc2γ(vB) of the
particle B, the above transformations assume the form

p′A =
1

mc2 pAEB −
1

mc2 EA pB (11)

E′
A =

1
mc2 EAEB −

1
m

pA pB (12)

It will be more useful for our discussion hereafter to introduce the new dimensionless
variables (u, q, E) in place of the dimensional variables (v, p, E) through

v
u
=

p
mq

=

√
E

mE = κc = v∗ < c (13)

where v∗ is an arbitrary reference velocity. For a particle at rest, this results in E(0) = m c2

and then E(0) = 1/κ2 so that 1/κ2 is the dimensionless rest energy of the particle. Finally,
we note that the classical c → ∞ limit is replaced now by the κ → 0 limit.

The Lorentz transformations for the dimensionless momentum and energy variable q
and E assume the form

q′A = κ2qAEB − κ2qBEA (14)

E ′
A = κ2EAEB − qAqB (15)

3.2. Emergence of κ-Exponential Function in Special Relativity

By directly combining the Lorentz transformations, we obtain

κ2E ′
A ± κq′A =

(
κ2EB ∓ κqB

)(
κ2EA ± κqA

)
(16)

The variables κ2E ± κq ≥ 0 can be viewed as a dynamic light cone variable, and Equation (16)
can be written in the form(

κ2E ′
A ± κq′A

)1/κ
=

(
κ2EB ∓ κqB

)1/κ(
κ2EA ± κqA

)1/κ
(17)
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After taking into account that limκ→0
(
κ2E ± κq

)1/κ
= exp(±q), the latter relationship

reduces to exp(±q′A) = exp(∓qB) exp(±qA), which implies the Galilei transformations for
the momenta q′A = qA − qB. This result suggests the introduction of the new variable

expκ(q) =
(

κ2E + κ q
)1/κ

(18)

generalizing within the special relativity the ordinary exponential exp(q), which recovers
in the classical limit, i.e., lim κ→0 expκ(q) = exp(q). The Lorentz transformations, as given
by Equation (17), in terms of the κ-exponential function, assume the form

expκ(±q′A) = expκ(∓qB) expκ(±qA) (19)

Starting from the Lorentz transformations (14) and (15), the relationship expressing the
Lorentz invariance, i.e., κ4E ′2 − κ2q′2 = κ4E2 − κ2q2, can be obtained, and after identifying
S ′ as the particle rest frame where E(0) = 1/κ2, the energy–momentum dispersion relation

κ4E2 − κ2q2 = 1 (20)

follows. From the latter relationship, the expression of the dimensionless total energy E
can be obtained in terms of the dimensionless momentum q

E =
1
κ2

√
1 + κ2 q2 (21)

After inserting this expression of total energy in the definition (18) of the κ-exponential
function, the explicit form is obtained as follows:

expκ(q) =
(√

1 + κ2q2 + κq
)1/κ

= exp
(

1
κ

arcsinh(κq)
)

(22)

After the substitution of the expression of the dimensionless total energy given by
Equation (21) into the first of the Lorentz transformations given by Equation (14), the relativistic

additivity law of the dimensionless momenta assumes the form q′A = qA

κ
⊖ qB = qA

κ
⊕ (−qB),

where the κ-sum
κ
⊕ is defined as

qA

κ
⊕ qB = qA

√
1 + κ2 q2

B + qB

√
1 + κ2 q2

A (23)

The following property of the κ-exponential holds:

expκ(qA

κ
⊕ qB) = expκ(qA) expκ(qB) (24)

which is reminiscent of the analogous property of the classical exponential function
exp(qA + qA) = exp(qA) exp(qB).

3.3. Emergence of κ-Logarithm Function in Special Relativity

The function lnκ(w) is defined as the inverse function of expκ(w) through
lnκ(expκ w) = expκ(lnκ w) = w. Its explicit expression is

lnκ(w) =
wκ − w−κ

2κ
=

1
κ

sinh (κ ln w) (25)

and it reduces to the ordinary logarithm in the classical limit, i.e., limκ→0 lnκ(w) = ln(w).
The ordinary logarithm ln(w) is the only existing function unless a multiplicative con-

stant is used, which results in the solution to the function equation ln(w1w2) = ln(w1) +
ln(w2). Let us now consider the relativistic generalization of this equation, which we ob-
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tain from the Lorentz transformation given by Equation (24) after posing w = expκ(q), i.e.,

lnκ(w1w2) = lnκ(w1)
κ
⊕ lnκ(w2), which is written as

lnκ(w1w2) = lnκ(w1) γκ(lnκ(w2)) + lnκ(w2) γκ(lnκ(w1)) (26)

where γκ(lnκ(w)) =
√

1 + κ2 ln2
κ(w) is the Lorentz factor of argument lnκ(w). By the direct

substitution of the κ-logarithm in the expression of γκ(lnκ(w)), the further expression
γκ(lnκ(w)) = (wκ + w−κ)/2 is obtained. Starting from this latter relationship and after
some tedious but straightforward calculation, a third expression is obtained of the function
γκ(lnκ(w)), i.e.,

γκ(lnκ(w)) =
1
γ

lnκ(ϵw)− lnκ(w) (27)

where the constant ϵ = ((1 + κ)/(1 − κ))1/2κ represents the κ-generalization of the Napier
number e, while the constant γ = 1/

√
1 − κ2 is the Lorentz factor corresponding to the

reference velocity v = v∗. The two constants are linked through ϵ = expκ(γ). Equation (27)
expresses an important property of the κ-logarithm, which will be used in the following.

It is noteworthy that the introduction of the function lnκ(w) allows us to write the
additivity law of dimensionless relativistic moments defined in Equation (24) in the form

qA

κ
⊕ qB = lnκ

(
expκ(qA) expκ(qB)

)
(28)

3.4. Emergence of Self-Duality in Special Relativity

The dispersion relation (20) can be written in the factorized form
(
κ2E + κ q

)(
κ2E − κ q

)
= 1,

and after noticing that κ2E ± κ q ≥ 0, the dispersion relation can be rewritten as follows:(
κ2E + κ q

)1/κ(
κ2E − κ q

)1/κ
= 1 (29)

and finally, after involving the κ-exponential function, the relation can be rewritten as

expκ(q) expκ(−q) = 1 (30)

The latter relationship expresses an important property of the κ-exponential function, which,
in the classical limit, is reduced to the well-known property of the ordinary exponential
function exp(q) exp(−q) = 1. As in the case of the ordinary exponential function, the
values of the κ-exponential function for q < 0 are directly related to its values for q > 0,
resulting in expκ(−q) = 1/ expκ(q). This self-duality property in terms of the κ-logarithm
assumes the form

lnκ(1/w) = − lnκ(w) (31)

and means that the values of the κ-logarithm function on the interval w > 1 are related to
its values on the interval 0 < w < 1. An important consequence of the relationship (30) is
that the inverse transformations of the direct Lorentz transformations (19) assume the form

expκ(±qA) = expκ(±qB) expκ(±q′A) (32)

A comparison of the direct (19) and inverse (32) Lorentz transformations shows that the
inverse Lorentz transformations have the same structure as the direct transformations,
except for the substitutions q′A ↔ qA and qB → −qB. This symmetry expresses the Galilean
principle of relativity, which applies both in classical physics and in special relativity
and prescribes the equivalence of all inertial frames. From this, we can conclude that
the self-duality property exp(q) exp(−q) = 1 of the ordinary exponential function and
the analogous property of the κ-exponential function, which is given by Equation (30), is
enforced by the Galilean principle of relativity.
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3.5. κ-Mathematics

The additivity law of dimensionless relativistic moments defined in Equation (23)

with qA, qB ∈ R called κ-sum and denoted by
κ
⊕ is a generalized sum and can be viewed

as a one-parameter, continuous deformation of the ordinary sum, which recovers in the

classical limit κ → 0, i.e., qA
0
⊕ qB = qA + qB. The κ-sum has the following properties:

(1) it is associative, where (qA
κ
⊕ qB)

κ
⊕ qC = qA

κ
⊕ (qB

κ
⊕ qC); (2) it admits a neutral

element, where qA
κ
⊕ 0 = 0

κ
⊕ aA = qA; (3) it admits an opposite element, where

qA
κ
⊕ (−qA) = (−qA)

κ
⊕ qA = 0; (4) it is commutative, where qA

κ
⊕ qB = qB

κ
⊕ qA. Then,

the algebraic structure (R,
κ
⊕) forms an abelian group. The κ-difference

κ
⊖ is defined as

qA
κ
⊖ qB = qA

κ
⊕ (−qA).

Starting from the κ-sum, κ-mathematics can be introduced after defining the κ-exponential
function as the solution to the functional Equation (24). The introduction of κ-functions
can be performed starting from the κ-exponential and following the standard procedures
of ordinary mathematics. For instance, κ-trigonometry (ordinary or hyperbolic) can be
introduced by employing the κ-Euler formula, while the κ-inverse function follows after
the inversion of their direct functions [3]. Also, κ-differential calculus can be introduced
after defining the κ-derivative as the differential operator, which acts on the κ-exponential
function, which subsequently produces the κ-exponential function itself.

Next, we revisit the κ-derivative and discuss how it arises within the special relativity.
Let us consider two identical particles A and B in the one-dimension spatial frame S having
dimensionless momenta qA = q and qB = q̃, respectively. In the rest frame S ′ of particle
B, which is an inertial frame that moves with velocity vB with respect the inertial frame S ,
the dimensionless moment of particle B is q′B = q̃′ = 0, while the dimensionless moment

q′A = q′ of particle A is given by q′ = q
κ
⊖ q̃. We suppose that q̃ ≈ q and pose dq ≈ q − q̃

and dq′ ≈ q
κ
⊖ q̃. Starting from the limit

lim
q̃→q

q
κ
⊖ q̃

q − q̃
=

1
γκ(q)

(33)

with γκ(q) =
√

1 + κ2q2 being the Lorentz factor, the differential dq′ can be obtained as

dq′ =
dq

γκ(q)
(34)

The κ-differential dκq = dq′ has a very transparent physical meaning representing the
infinitesimal variation in the momentum of a given particle, observed in the frame S ′. It is
related to the infinitesimal variation in the momentum dq of the same particle, observed
in the inertial frame S through the Lorentz factor. A further interesting property of the
differentials dκq is given by dκq = d(ρκ(q)) or simply dκq = dρ, where ρ = ρκ(q) is the
κ-rapidity defined through

ρκ(q) =
1
κ

arcsinh(κ q) (35)

The variable ϕκ(u) = arctanh(v/c) = arctanh(κu) was introduced into special relativity
in 1910 by V. Varicak and E. T. Whittak and was named rapidity by A. Robb in 1911. The
old rapidity is related to the κ-rapidity ρκ(q) through ϕκ(u) = κ ρκ(q), which can be easily
verified after taking into account that u = q/γκ(q). The presence of the proportionality
factor κ in the relation linking ϕκ(u) and ρκ(q) is not trivial because, in the classical limit,
the κ-rapidity reduces to the dimensionless momentum, i.e., ρ0(q) = q, while in the same
limit, the old rapidity does not reduce to the dimensionless velocity holding ϕ0(u) = 0.
The relativistic composition law of κ-rapidity is given by
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ρκ(q′A) = ρκ(qA)− ρκ(qB) (36)

and becomes identical to the ordinary difference ρ′A = ρA − ρB. The expression of the
κ-exponential function in terms of ρκ(q) is given by

expκ(q) = exp(ρκ(q)) (37)

The κ-derivative of the scalar function f (q) is defined through

d f (q)
dκ q

= γκ(q)
d f (q)

d q
(38)

It is important to note that d f (q) is an ordinary differential, while dκ q is a κ-differential.
It follows that the κ-derivative is proportional through the Lorentz factor γκ(q) to the
ordinary derivative and then obeys Leibniz’s rules of the ordinary derivative.

3.6. The κ-Differential Equations

The dynamic variables of relativistic physics can be obtained as solutions of first-order
differential equations involving the κ-derivative d f (q)/dκq, which, in the classical limit,
reduces to the corresponding differential equations of classical physics.

The solution to

d
dκq

f (q) = 1 (39)

with the condition f (0) = 0 is the rapidity function f (q) = ρκ(q), i.e., f (q) = 1
κ arcsinh(κq).

The solution to

d
dκq

f (q) = q (40)

with the condition that f (0) = 1/κ2 is the total energy f (q) = Eκ(q), i.e., f (q) =
√

1+ κ2q2/κ2,
while the solution to the same equation with the condition f (0) = 0 is the relativistic kinetic
energy f (q) = Wκ(q) i.e., f (q) =

(√
1 + κ2q2 − 1

)
/κ2.

The solution to

d
dκq

f (q) = κ2q (41)

with the condition f (0) = 1 is the Lorentz factor f (q) = γκ(q), i.e., f (q) =
√

1 + κ2q2.
The solution to

d
dκq

f (q) = f (q) (42)

with the condition f (0) = 1 is the κ-exponential function f (q) =
(√

1 + κ2q2 + κq
)1/κ

.

Finally, the relativistic velocity uκ(q) = q/
√

1 + κ2q2 is the solution f (q) = uκ(q) of
the differential equation

d
dκq

f (q) =
(

f (q)
q

)2

(43)

with the condition f (±∞) = ±1/κ.
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3.7. The Scaling Property of κ-Logarithm

The differential equation√
1 + κ2q2 d expκ (q)

dq
= expκ(q) (44)

obeyed by the expκ(q) can be easily inverted, obtaining

d lnκ (w)

dw
=

γκ(lnκ(w))

w
(45)

and after taking into account Equation (27), it follows that the κ-logarithm function obeys
the first-order differential–functional equation

d
dw

[w lnκ (w) ] =
1
γ

lnκ(ϵw) (46)

expressing the so-called scaling property of the κ-logarithm. In the κ → 0 classical limit,
the latter equation continues to hold and reduces to a well-known property of the ordinary
logarithm, where scaling constants reduce to the values γ = 1 and ϵ = e.

The two last equations, if combined, lead to the further property of κ-logarithm

d2

dw2 [w lnκ (w)] =
1

γ w
γκ(lnκ(ϵw)) ≥ 0 (47)

4. κ-Statistical Physics
4.1. Maximum Entropy Principle and κ-Entropy

In proposing a relativistic statistical theory, the only guiding principle available is
the metaphor of classical statistical physics, and the entropy form plays an important role
in this context. The standard relativistic statistical theory is based on an entropic form
identical to that of classical statistical physics, the BGS entropy. This is due to the great
success of BGS entropy in classical many-body physics. In Einstein’s special relativity, all
microscopic physical quantities such as particle momentum or particle energy are properly
generalized. Regarding macroscopic quantities such as temperature or pressure, there is
still a debate about how they should be defined in a relativistic context. It is, therefore,
an evident dichotomy that on one side, there is the BGS entropy, which dominates both
classical and relativistic physics, and on the other side, there are all the other physical
quantities, both microscopic and macroscopic, which are or could be modified in special
relativity. We note that the BGS entropy in the relativistic context conducts to the Juttner
distribution, which, when considered as a function of the relativistic particle energy, is
exactly the Boltzmann exponential factor of classical physics. It has long been known that
the Boltzmann factor does not correctly describe the spectrum of cosmic rays, which are
relativistic particles.

In the following, we will present the relativistic statistical theory based on the κ-entropy
Sκ, which is defined as the standard mean of the opposite of the κ-logarithm emerging in
special relativity. The paradigm of classical statistical physics will be constantly present in our
discussion, and the starting point will be the maximum entropy principle, the cornerstone of
statistical theory. Let us consider the constrained entropy Φ( f ) = Sκ( f ) + C( f ), where the
constraints functional C( f ) is given in its simplest form by

C( f ) = a1

[
∑

i
fi − 1

]
+ a2

[
I − ∑

i
Ii fi

]
(48)

where a1 and a2 are the Lagrange multipliers, while {Ii} is the generator function of
the moment I = ∑i Ii fi. The variational equation δΦ( f )

δ fi
= 0 implies the maximiza-
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tion of Sκ under the constraints imposing the conservation of the norm of fi and the
a priori knowledge of the values of the moment I = ∑i Ii fi generated by the generator
function {Ii}. The solution to the above variational problem conducts to the equation

d
d fi

( fi lnκ( fi)) = a1 − a2 Ii, which, after taking into account the scaling axiom, assumes
the form

1
γ

lnκ(ϵ fi) = a1 − a2 Ii (49)

In the case of a classical particle gas, the above equation reduces to ln(e fi) = a1 − a2 Ii,
where the microscopic collisional invariant Ii is the classical particle energy in the state i,
while Lagrange multipliers are related to the gas temperature T and chemical potential µ
according to a2 = 1/kBT and a1 = µ/kBT. The same parameters T and µ will also occur in
the case of a relativistic gas, while Ii will be the microscopic relativistic collisional invariant.
Equation (49), after inversion, takes the form

fi =
1
ϵ

expκ

(
− Ii − µ

kBTκ

)
(50)

with Tκ = T/γ.
Remarkably, thanks to the scaling property of the κ-logarithm, the expressions of the

κ-entropy and the κ-distribution fi are given in terms of the same function, which appears
in its direct (κ-logarithm) or inverse (κ-exponential) form, just as in the classical case.

Let us pose wi = (Ii − µ)/kBTκ . When wi → +∞, the asymptotic behavior of the
function expκ(−wi) is given by expκ(−wi) ≈ (2κwi)

−1/κ . Consequently, the tail of the
distribution (50) is described by a Pareto power law function, i.e., fi ≈ ϵ−1(2κwi)

−1/κ , in-
stead of the exponential tails of the Juttner distribution fi = e−1 exp(−wi), originating from
the BGS entropy. The power-law tail of the distribution (50) is one of its most interesting
features and is consistent with the experimental evidence in relativistic particle physics, i.e.,
cosmic rays and the so-called κ-plasmas observed in laboratory or in astrophysics.

Let us introduce the κ-entropy Sκ(g) = ∑i σ(gi), which refers to the arbitrary distribu-
tion g = {gi} and is subjected to the constraints described by the functional
C(g) = −∑i (a2 Ii − a1) gi − a1 + a2 I. Let us further denote by f = { fi} the optimal
distribution defined according to the maximum entropy principle, defined in Equation (49),
which takes the form a2 Ii − a1 = d σ( fi)

d fi
, so that the constraints functional can be written

as follows:

C(g) = −a1 + a2 I − ∑
i

d σ( fi)

d fi
gi (51)

The difference in the constrained entropy Φ(g) from its maximum value Φ( f ), i.e.,
Φ( f )− Φ(g) = Sκ( f )− Sκ(g) + C( f )− C(g), finally assumes the form

Φ( f )−Φ(g) = ∑
i

[
σ( fi)−σ(gi)−

d σ( fi)

d fi
( fi−gi)

]
(52)

When gi ≈ fi, the Taylor expansion can be considered as

σ(gi) ≈ σ( fi) +
d σ( fi)

d fi
(gi − fi) +

1
2

d2σ( fi)

d f 2
i

(gi − fi)
2 (53)

so that we obtain

Φ( f )− Φ(g) ≈ −∑
i

1
2

d2σ(gi)

d g 2
i

( fi − gi)
2 (54)
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and after taking into account the expression of d2σ(gi)

d g 2
i

as given by Equation (47), we obtain

Φ( f )− Φ(g) ≈ ∑
i

γκ(lnκ(ϵgi))

2 γ gi
( fi − gi)

2 ≥ 0 (55)

The latter relationship tells us that Φ( f ) represents the maximum value of Φ(g) and
expresses the thermodynamic stability of the system.

Another stability that differs from thermodynamic stability is the Lesche stability
condition, which prescribes that any physically meaningful entropy that depends on a
probability distribution function g should exhibit a small relative error

R =

∣∣∣∣S(g)− S(h)
Smax

∣∣∣∣ (56)

with respect to small changes in the probability distributions g → h

D = ||g − h|| (57)

Mathematically, this means that for every ε > 0, there is a δ > 0 so that R ≤ ε applies to
all distribution functions that fulfill D ≤ δ. It is known that the Lesche stability condition
holds for the Boltzmann–Shannon entropy, and in refs. [18,19], it was shown that the
Lesche stability condition also holds for the κ-entropy. In addition, the κ-entropy is also
Lesche-stable in the thermodynamic limit.

4.2. κ-Kinetics

Let us consider the first equation of the Bogoliubov–Born–Green–Kirkwood–Yvon
hierarchy, which describes the evolution of a relativistic many-body system in the presence
of an external force field and imposes particle conservation during collisions [6,176,177]:

p ν∂ν f − mFν ∂ f
∂p ν

=
∫ d3 p′

p′0
d3 p1

p 0
1

d3 p′1
p′01

G
[
C( f ′, f ′1)− C( f , f1)

]
(58)

The system is described by the one-particle correlation function or distribution function
f = f (x, p), where x and p are the four-vector position and momentum. In the above
equation, both the streaming term and the Lorentz invariant integrations in the collision
integral have the standard forms of relativistic kinetic theory. The two-particle correlation
function C( f , f1), which is determined below, is postulated in the case of ordinary relativistic
kinetics as C( f , f1) = f f1, which represents the molecular chaos hypothesis and reduces the
above evolution equation to the relativistic Boltzmann equation.

Following standard lines of kinetic theory, we note that in stationary conditions, the
collision integral vanishes and then C( f , f1) = C( f ′, f ′1). This relationship expresses a conser-
vation law for the particle system and must have the form L( f ) + L( f1) = L( f ′) + L( f ′1). In
relativistic kinetics, the collision invariant L( f ), unless an additive constant, is proportional to
the microscopic relativistic invariant I(x, p), i.e.,

L( f ) = −a2 I(x, p) + a1 (59)

with a1 and a2 being two arbitrary constants. The more general microscopic relativistic in-
variant I, in the presence of an external electromagnetic field Aν, has a form proportional to

I(x, p) = (pν + qAν/c)Uν − mc2 (60)

with Uν being the hydrodynamic four-vector velocity with UνUν = c2 [176].
The expression of the distribution function defined in Equation (50) holds in stationary

conditions where the entropy of the particle system reaches its maximum value. According
to the scaling axiom, after considering the correspondences fi → f (x, p) and Ii → I(x, p)



Entropy 2024, 26, 406 14 of 22

and after the identification of a2 = 1/kBT and a1 = µ/kBT, it follows that L( f ) = λκ( f ), or
more explicitly

L( f ) =
1
γ

lnκ(ϵ f ) (61)

while the stationary distribution assumes the form

f (x, p) =
1
ϵ

expκ

(
− I(x, p)− µ

kBTκ

)
(62)

with Tκ = T/γ.

4.3. κ-Molecular Chaos Hypothesis

In stationary conditions, C( f , f1) = C( f ′, f ′1) applies. This relationship expresses a
conservation law and can be written in the form L( f ) + L( f1) = L( f ′) + L( f ′1) after posing

C( f , f1) = L−1( L( f ) + L( f1)) (63)

The function L(w) increases monotonically on the interval 0 ≤ w < +∞, with L(0) = −∞
and L(+∞) = +∞. These conditions imply that C(0, f1) = C( f , 0) = 0, just as in the case
of the ordinary correlation function. After taking into account the expression of the function
L( f ), the two-particle correlation function assumes the form

ϵ C( f , f1) = expκ( lnκ(ϵ f ) + lnκ(ϵ f1)) (64)

which can be written in a more compact form

ϵ C( f , f1) = (ϵ f )⊗ (ϵ f1) (65)

by involving the generalized product

g ⊗ h = expκ( lnκ g + lnκ h) (66)

This κ-product between probabilities has the following properties:

(i) (g ⊗ h)⊗ l = g ⊗ (h ⊗ l), i.e., it is associative;
(ii) g ⊗ h = h ⊗ g, i.e., it is commutative;
(iii) 1 ⊗ g = g, i.e., it admits the unity as a neutral element;
(iv) g ⊗ (1/g) = 1, i.e., the inverse element of g is 1/g;
(v) It holds the property g ⊗ 0 = 0;
(vi) g⊘h = g ⊗ (1/h) defines the κ-division between probabilities.

The real, positive probability distribution functions form an abelian group. The properties
of ⊗ are the same as those of the ordinary product, so the two products are isomorphic.

We can conclude that the relation given by Equation (64), which defines the two-
particle correlation function by the κ-product, is the relativistic version of the molecular
chaos hypothesis and reduces to its standard form C( f , f1) ∝ f f1 in the classical limit
κ → 0.

4.4. Four-Vector κ-Entropy and Relativistic H-Theorem

In standard relativistic kinetics, it is known from the H-theorem that entropy produc-
tion is never negative and that there is no entropy production under equilibrium conditions.
In the following, we will demonstrate the H-theorem for the system governed by the kinetic
Equation (58). We define the four-vector entropy Sν = (S0, S) as follows:

Sν = −
∫ d3 p

p0 pν f lnκ( f ) (67)
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and note that the scalar entropy S0 = Sκ coincides with the κ-entropy, while S = Sκ is the
κ-entropy flow. After considering the identity d3 p/p0 = d4 p 2 θ(p0) δ(pµ pµ − m2c2) and
the observation that d4 p is a scalar because the Jacobian of the Lorentz transformation is
equal to unity, we conclude that Sν transforms as a four-vector, since pν transforms as a
four-vector.

In order to calculate the entropy production ∂νSν, we start from the definition of
Sν and the relationship ∂ν [ f lnκ( f )] = [ ∂ [ f lnκ( f )]/ ∂ f ] ∂ν f = λκ( f ) ∂ν f with λκ( f ) =
1
γ lnκ(ϵ f ), obtaining

∂νSν = −
∫ d3 p

p0 λκ( f ) pν ∂ν f (68)

After taking into account the kinetic equation (58), the entropy production assumes the form

∂νSν =−
∫ d3 p

p0
d3 p′

p′0
d3 p1

p 0
1

d3 p′1
p′01

G
[
C( f ′, f ′1)−C( f , f1)

]
λκ( f )−m

∫ d3 p
p0 λκ( f ) Fν ∂ f

∂p ν
(69)

Since the Lorentz force Fν has the properties pνFν = 0 and ∂Fν/∂pν = 0, the last term
in the above equation involving Fν is equal to zero [176]. Given the particular symmetry of
the non-vanishing integral in Equation (69) we can write the entropy production as follows

∂νSν =
1
4

∫ d3 p
p0

d3 p′

p′0
d3 p1

p 0
1

d3 p′1
p′01

G

×
[
C( f ′, f ′1)−C( f , f1)

]
[λκ( f ′)+λκ( f ′1)−λκ( f )−λκ( f1)] (70)

From the definition of the two-particle correlation function, it follows that λκ( f ′) +
λκ( f ′1) − λκ( f ) − λκ( f1) = λκ(C( f ′, f ′1)) − λκ(C( f , f1)), and after posing α′ = C( f ′, f ′1),
α = C( f , f1), finally, we write Equation () in the form

∂νSν =
1
4

∫ d3 p
p0

d3 p′

p′0
d3 p1

p 0
1

d3 p′1
p′01

G
[
α′ − α

]
[λκ(α

′)− λκ(α)] (71)

With λκ(α) being an increasing function, it follows that [α′ − α][λκ(α′)− λκ(α)] ≥ 0, ∀α′, α,
and then we can conclude that

∂νSν ≥ 0 (72)

This last relation is the local formulation of the relativistic H-theorem, which represents the
second law of thermodynamics for the system governed by the evolution Equation (58).

4.5. Relativistic Temperature

The construction of a thermodynamic theory compatible with the principles of special
relativity is an old and still open problem, dating back to the first years immediately after
the proposal of the relativistic theory. The proposals that have dealt with the question of
how the thermodynamic quantities that characterize the physical system change when the
inertial reference system changes are diverse and contradictory. Some of these proposals
are still under consideration, and the problem is still highly topical. Let T denote the
temperature of a body at rest and T′ the temperature of the body when the body is observed
from a reference frame moving at a speed characterized by the Lorentz factor γ. According
to Planck and Einstein, the two temperatures are linked by T′ = T/γ. According to Ott,
T′ = γT. Finally, according to Landsberg, T′ = T. In a series of subsequent articles, some
of which have appeared recently, the scientific community has overwhelmingly sided with
the Planck–Einstein proposal and accepted that a moving body is colder.

We do not intend to go into this important topic here. However, it is noteworthy that
the present formalism proves to be consistent with the Planck–Einstein proposal. Let us
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consider the particle gas described by the distribution function (62), where the relevant
temperature is given by

Tκ =
1
γ

T (73)

with
γ =

1√
1 − κ2

=
1√

1 − ( v∗
c )

2
(74)

A possible interpretation of the above formula of temperature is the following. The tem-
perature of the system at rest is T0 = T while Tκ = T0/γ < T0 is its temperature when it
is moving at speed v∗; this is just the Planck–Einstein proposal. The two temperatures Tκ

and T0 are proportional to each other, and the proportionality factor is the Lorentz factor
γ. Remarkably, entropy does not have this proportionality property. The entropy of the
physical system moving at the speed v∗ is Sκ = −∑i fi lnκ( fi), while its entropy at rest
reduces to the classical Boltzmann entropy S0 = −∑i fi ln ( fi).

5. Epilogue

Some of the results of the present theory, which were discussed in the previous sections,
are emphasized below:

(i) Relativistic statistical theory: It is possible to construct a statistical theory within the
framework of special relativity that preserves the main features of classical statistical
theory (axiomatic structure, maximum entropy principle, thermodynamic stability,
Lesche stability, molecular chaos hypothesis, local formulation of H-theorem, etc.).

(ii) Old problems of special relativity: Within the framework of the new relativistic statis-
tical theory, answers naturally arise to questions that were formulated immediately
after the proposal of special relativity as to how the temperature and entropy of a
moving body change. In particular, it turns out that the temperature varies according
to the law Tκ = T0/γ proposed by Planck and Einstein in 1906, where γ = 1/

√
1 − κ2

is the Lorentz factor.
(iii) Axiomatic structure of the theory: Although the statistical theory generated by the

entropy Sκ was developed within the framework of Einstein’s special relativity, it can
also be introduced without reference to special relativity given its applications outside
physics by following the guidelines of information theory, which emphasizes the
axiomatic structure of the various theories. In the construction of κ-entropy, the first
three Khinchin–Shannon axioms are taken into account, i.e., those of the continuity,
maximality, and expansibility of the ordinary Boltzmann entropy. Subsequently, the
fourth Khinchin–Shannon axiom of strong additivity is replaced by two new axioms,
namely, those of self-duality and scaling, which express well-known properties of
logarithmic Boltzmann entropy. In the final step, it is shown that these five axioms are
not only able to generate the Boltzmann entropy but also a further and unique entropy,
namely, κ-entropy, which turns out to be a one-parameter continuous generalization of
the Boltzmann entropy. The axioms of self-duality and scaling can be seen as stemming
from the first principles of special relativity. In any case, these two axioms can also be
easily justified outside the special relativity, since they have general validity and can
also generate the Boltzmann entropy.

(iv) κ-mathematical statistics: Statistical theory does not only include statistical mechanics,
which is a physical theory. Mathematical statistics is another important tool for ana-
lyzing complex systems. Two important families of distributions dominate ordinary
mathematical statistics. On the one hand, there is the family of distributions with
exponential tails (generalized gamma distribution, Weibull distribution, logistic distri-
bution, etc.), and on the other hand, the family of distributions with power-law tails
(Pareto, Log-Logistic, Burr type XII or Singh-Maddala distribution, Dagum distribu-
tion, etc.). This dichotomy can be overcome in the framework of the present formalism
by using the κ-exponential function instead of the ordinary exponential function in
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the construction of statistical distributions, obtaining a unique family of statistical
distributions (κ-generalized gamma distribution, κ-Weibull distribution, κ-logistic
distribution, etc.). The new unified class of κ-distributions [178] in the low spectral
region reproduces the standard family of exponential distributions, while in the high
spectral region, it exhibits Pareto power-law tails.

(v) κ-mathematics: In special relativity, the physical quantities such as momentum, kinetic
energy, etc. are relativistically generalized and change their expressions relatively to
the corresponding classical expressions. The composition laws of the various physical
quantities are also properly generalized. The generalized sum of relativistic moments
inevitably leads to the generalization of the entire mathematics. The resulting κ-
calculus allows for the introduction of relativistic functions such as the κ-exponential,
the κ-logarithm, the κ-trigonometry, and so on. κ-mathematics proves to be isomorphic
to ordinary mathematics, which classically obtains the κ → 0 limit.

(vi) The Gell-Mann plectic: κ-mathematics is based on a formalism that can handle both
simple systems (relativistic one-particle physics) and complex systems (relativistic
statistical physics). Furthermore, the same formalism makes it possible to treat phys-
ical and non-physical complex systems (statistical physics, information theory, and
statistical mathematics) in a unified way. The above features of the κ-formalism give
it the status of a candidate for the construction of the holistic theory of simple and
complex systems, called plectics by Gell-Mann [179,180].
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