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Abstract: For decades, ligands such as phosphanes or cyclopentadienyl ring derivatives have domi-
nated Coordination and Organometallic Chemistry. At the same time, alternative compounds have
emerged that could compete either for a more practical and accessible synthesis or for greater con-
trol of steric and electronic properties. Guanidines, nitrogen-rich compounds, appear as one such
potential alternatives as ligands or proligands. In addition to occurring in a plethora of natural
compounds, and thus in compounds of pharmacological use, guanidines allow a wide variety of
coordination modes to different metal centers along the periodic table, with their monoanionic chelate
derivatives being the most common. In this review, we focused on the organometallic chemistry
of guanidinato compounds, discussing selected examples of coordination modes, reactivity and
uses in catalysis or materials science. We believe that these amazing ligands offer a new promise in
Organometallic Chemistry.
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1. Introduction

Guanidines, Y-shaped compounds of general formula R1N=C(NR2R3)(NR4R5)
(R1–5=H, alkyl, aryl) (Figure 1), are very attractive organic molecules in different branches of
Chemistry, exploiting their highly basic character [1,2] or the stability of their guanidinium
cations, in which the positive charge could be delocalized over the three nitrogen atoms,
and which are involved in many biological processes. For example, several enzymes con-
taining the amino acid arginine take advantage of the presence of the side chain functional
group guanidinium for the fixation of diverse substrates [3–9]. Similarly, the facility to
form very stable hydrogen bonds allows the use of guanidines as organocatalysts in reac-
tions, such as Diels–Alder reactions, addition reactions, CO2 capture and transformation to
valuable products or the ring-opening polymerizations of lactones and lactides, even with
the adequate control of the enantioselectivity [10–32]. It should be noted that the expected
donor character of these derivatives and their anionic forms, the guanidinates, has led to
a new and growing class of metal complexes. Although there are a significant number of
examples where guanidines act as neutral ligands, the monoanionic forms exceed neutral or
dianionic forms in examples, the N,N’-chelating being by far the most widely encountered
coordination mode.

The main feature of these chelating monoanionic guanidinato ligands is the electronic
flexibility in coordination with metal centers due to the large electronic delocalization
through its structure (Figure 2). This in turn provides stabilization to a wide variety of
metal centers throughout the periodic table, in different oxidation states.
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Figure 1. General structures of guanidines, guanidinates and guanidinium cations. 
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It is noteworthy that the great interest in the study of these compounds provides a 
broad palette of synthetic methods, involving both stoichiometric and catalytic processes 
[33–37]. 

Since metallic compounds based on these ligands were first reported in 1970 [38], 
they have shown great promise for applications in catalysis and materials science. In par-
ticular, guanidinato ligands have been investigated as an interesting alternative to classi-
cal ligands, such as cyclopentadienyl. An appropriate modification of the steric properties 
of these ligands can also play an important role in the commented applications of these 
complexes. 

Although the chemistry of guanidinato derivatives (and their amidinato analogues) 
extends well beyond Organometallic Chemistry and has been covered in excellent reviews 
[39–46], this work is mainly concerned with systematically and comprehensively review-
ing the examples of organometallic complexes, excluding some carbonyl derivatives, 
highlighting synthetic or structural aspects and the influence of the presence of these 
guanidinato ligands on their properties. The results reviewed here show a trend towards 
the search for targeted guanidines with the main goal of obtaining organometallic com-
plexes with a use as potential homogeneous catalysts or as molecular precursors of solid 
materials. 

2. Organometallic Chemistry of Guanidines 
2.1. Main Group Complexes 

Although, as mentioned above, the most common coordination mode of guanidinato 
ligands is the chelating k2-N,N’ form, in the case of bulky lithium guanidinates, additional 
metal–carbon bond interactions can occur due to the presence of aromatic groups. These 
M-arene interactions have also been found for other group 1 elements, which are used to 
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It is noteworthy that the great interest in the study of these compounds provides a
broad palette of synthetic methods, involving both stoichiometric and catalytic
processes [33–37].

Since metallic compounds based on these ligands were first reported in 1970 [38], they
have shown great promise for applications in catalysis and materials science. In particular,
guanidinato ligands have been investigated as an interesting alternative to classical ligands,
such as cyclopentadienyl. An appropriate modification of the steric properties of these
ligands can also play an important role in the commented applications of these complexes.

Although the chemistry of guanidinato derivatives (and their amidinato analogues)
extends well beyond Organometallic Chemistry and has been covered in excellent re-
views [39–46], this work is mainly concerned with systematically and comprehensively
reviewing the examples of organometallic complexes, excluding some carbonyl derivatives,
highlighting synthetic or structural aspects and the influence of the presence of these guani-
dinato ligands on their properties. The results reviewed here show a trend towards the
search for targeted guanidines with the main goal of obtaining organometallic complexes
with a use as potential homogeneous catalysts or as molecular precursors of solid materials.

2. Organometallic Chemistry of Guanidines
2.1. Main Group Complexes

Although, as mentioned above, the most common coordination mode of guanidinato
ligands is the chelating k2-N,N’ form, in the case of bulky lithium guanidinates, additional
metal–carbon bond interactions can occur due to the presence of aromatic groups. These
M-arene interactions have also been found for other group 1 elements, which are used to
obtain guanidinates of other metals, with the purpose of generating steric protection for
these metal centers.

The deprotonation of the bulky guanidine ArNC(NCy2)N(H)Ar (Ar = 2,6-iPr2C6H3)
with BunLi in THF led to the monomeric complex 1. Similarly, the deprotonation of
ArNC(NiPr2)N(H)Ar with K[N(SiMe3)2] gave an unsolvated polymer, 2. whereas the arene-
K interactions were close to η6- and the lithium compound showed an organometallic
bonding of the type η3- (Figure 3) [47,48].
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The polymeric structure is repeated in derivative 3 with methyl groups on the aromatic
rings. The solid-state structures reveal that the guanidinato ligand in these compounds
retains the typical Z-anti configuration occurring in this class of bulky guanidines (Figure 4).
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Figure 4. Polymeric potassium compound through η6-arene interactions.

The reaction of bulky carbodiimide (ArN)2C (Ar = 2,6-(diphenylmethyl)-4-tert-butylphenyl)
with LiNCtBu2 in tetrahydrofuran gives the monomeric lithium guanidinato compound 4.
Protonation and subsequent metalation allow the analogous compounds with K 5 and Cs 6
to be obtained (Figure 5). The solid-state structures of these complexes show that the alkali
cations sit within a cavity formed from the peripheral phenyl rings of the diphenylmethyl
substituents, which also provide additional support to the cations via intramolecular
metal–arene interactions [49].
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Other bulky guanidines, bearing 2,6-diisopropylphenyl (Dipp) group as substituent
show, again, a coordination of the aromatic group to the metal center. This is the case in
compounds 7–10 (Figure 6) [50].



Molecules 2022, 27, 5962 4 of 31

Molecules 2022, 27, 5962 4 of 31 
 

 

 

Other bulky guanidines, bearing 2,6-diisopropylphenyl (Dipp) group as substituent 
show, again, a coordination of the aromatic group to the metal center. This is the case in 
compounds 7−10 (Figure 6) [50]. 

 
Figure 6. Alkali metal complexes exhibiting bond interactions with the aromatic substituents of 
the guanidinato ligands. 

In the search for bimetallic systems with multiple metal-to-metal bonds, the reduc-
tion of a chromium guanidinate with KC8 led to a monomeric chromium (0) complex 11, 
in which this metal atom is sandwiched between two arene units of two guanidinato lig-
ands. The coordination of the arene units is not limited to the chromium atom, but the 
same aromatic substituents also coordinate one potassium cation in a similar fashion. Fur-
thermore, the guanidinato ligands in 11 act as amides coordinating the K atom (Figure 7) 
[51]. 

 
Figure 7. Monomeric chromium (0) bimetallic complex. 

The organometallic derivatives of most of the group 2 elements have been described. 
Very bulky guanidinato ligands enable the stabilization of abnormally low oxidation 
states for some metals. A dimeric magnesium (I) guanidinato complex acts as a facile and 
selective two-center/two-electron reductant towards a series of unsaturated substrates. 
The reaction with CyNCNCy gives the doubly reduced product 12 (Figure 8) [52]. 

 

Figure 6. Alkali metal complexes exhibiting bond interactions with the aromatic substituents of the
guanidinato ligands.

In the search for bimetallic systems with multiple metal-to-metal bonds, the reduction
of a chromium guanidinate with KC8 led to a monomeric chromium (0) complex 11, in
which this metal atom is sandwiched between two arene units of two guanidinato ligands.
The coordination of the arene units is not limited to the chromium atom, but the same aro-
matic substituents also coordinate one potassium cation in a similar fashion. Furthermore,
the guanidinato ligands in 11 act as amides coordinating the K atom (Figure 7) [51].
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The organometallic derivatives of most of the group 2 elements have been described.
Very bulky guanidinato ligands enable the stabilization of abnormally low oxidation states
for some metals. A dimeric magnesium(I) guanidinato complex acts as a facile and selective
two-center/two-electron reductant towards a series of unsaturated substrates. The reaction
with CyNCNCy gives the doubly reduced product 12 (Figure 8) [52].

Molecules 2022, 27, 5962 4 of 31 
 

 

 

Other bulky guanidines, bearing 2,6-diisopropylphenyl (Dipp) group as substituent 
show, again, a coordination of the aromatic group to the metal center. This is the case in 
compounds 7−10 (Figure 6) [50]. 

 
Figure 6. Alkali metal complexes exhibiting bond interactions with the aromatic substituents of 
the guanidinato ligands. 

In the search for bimetallic systems with multiple metal-to-metal bonds, the reduc-
tion of a chromium guanidinate with KC8 led to a monomeric chromium (0) complex 11, 
in which this metal atom is sandwiched between two arene units of two guanidinato lig-
ands. The coordination of the arene units is not limited to the chromium atom, but the 
same aromatic substituents also coordinate one potassium cation in a similar fashion. Fur-
thermore, the guanidinato ligands in 11 act as amides coordinating the K atom (Figure 7) 
[51]. 

 
Figure 7. Monomeric chromium (0) bimetallic complex. 

The organometallic derivatives of most of the group 2 elements have been described. 
Very bulky guanidinato ligands enable the stabilization of abnormally low oxidation 
states for some metals. A dimeric magnesium (I) guanidinato complex acts as a facile and 
selective two-center/two-electron reductant towards a series of unsaturated substrates. 
The reaction with CyNCNCy gives the doubly reduced product 12 (Figure 8) [52]. 

 

Figure 8. Magnesium magnesioamidinato complex.

The Schlenk equilibrium between the bis-guanidinato complex of calcium [Ca{(Cy)N–
C[N(SiMe3)2]–N(Cy)}2·(Et2O)] and the benzyl derivative [Ca{α-(Me3Si)-o-(Me2N)benzyl}2·



Molecules 2022, 27, 5962 5 of 31

(THF)2] yields mainly the heteroleptic benzylcalcium complex 13 (Figure 9) [53]. This
complex, like many others that will appear throughout the text, is an example of one of the
main applications of the compounds described in this work: to act as catalysts, in this case,
in the catalytic polymerization of olefins in particular.
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In the case of the heavier group 2 elements, finding organometallic derivatives with
potential uses is often hampered by their low stability and tendency to form poorly soluble
oligomeric species. This is a consequence of the large ionic radius of the strontium and
barium metal centers. These problems can be addressed by employing suitable bulky
ligands that limit this tendency to aggregate. For example, a combination of guanidinato
ligands and Cp* (Cp*=C5Me5) allows dinuclear strontium and barium species to be ob-
tained, where the guanidinato chelate ligands also act as bridges between the metal atoms
(Figure 10) [54].
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Figure 10. Dinuclear strontium and barium compounds with guanidinato chelate and bridging ligands.

As with some group 1 elements, in the case of the barium complex 16, electronic stabi-
lization occurs, in addition to the steric protection of the guanidinato ligands, via interac-
tions between the metal cation and the aromatic substituents of the ligands (Figure 11) [55].

Molecules 2022, 27, 5962 6 of 31 
 

 

 

 
Figure 11. Electronic and steric stabilization of barium by aryl substituents in guanidinato ligands. 

Although zinc is a d-block element, it is not considered a transition metal and is more 
appropriately considered as part of the main group. Interestingly, zinc organometallic 
guanidinates are scarce. The selectivity of the reaction between zinc dialkyls and guani-
dines is mediated by the identity of the guanidine substrate. The use of bis-guanidines 
with bulky aromatic substituents leads to the formation of dimer species, which have elec-
tron-deficient ethyl bridges common in the organometallic chemistry of the main group. 
These compounds are suitable precursors for obtaining stable zinc hydride derivatives, as 
they are active in the hydroboration and hydrosilylation of ketones (Figure 12) [56]. 

 
Figure 12. Bis-guanidianato alkyl zinc dimeric complex. 

In the case of bicyclic guanidines, polynuclear systems can be achieved, where the 
more open projection of the orbitals of the nitrogen atoms of the amidine component of 
the ligand allows the formation of guanidinato bridges, as opposed to the formation of 
chelate systems (Figure 13) [57–59]. 

 
Figure 13. Bicyclic guanidinato complex acting as bridges in alkyl zinc complexes. 

With less sterically demanding guanidines, it is also possible to obtain dimer species 
in which the guanidinato ligands act both as chelate ligands and as a bridge between two 
zinc nuclei (Figure 14) [60,61]. The resistance to the protonation of the remaining alkyl 

Figure 11. Electronic and steric stabilization of barium by aryl substituents in guanidinato ligands.



Molecules 2022, 27, 5962 6 of 31

Although zinc is a d-block element, it is not considered a transition metal and is more
appropriately considered as part of the main group. Interestingly, zinc organometallic
guanidinates are scarce. The selectivity of the reaction between zinc dialkyls and guanidines
is mediated by the identity of the guanidine substrate. The use of bis-guanidines with
bulky aromatic substituents leads to the formation of dimer species, which have electron-
deficient ethyl bridges common in the organometallic chemistry of the main group. These
compounds are suitable precursors for obtaining stable zinc hydride derivatives, as they
are active in the hydroboration and hydrosilylation of ketones (Figure 12) [56].
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In the case of bicyclic guanidines, polynuclear systems can be achieved, where the
more open projection of the orbitals of the nitrogen atoms of the amidine component of the
ligand allows the formation of guanidinato bridges, as opposed to the formation of chelate
systems (Figure 13) [57–59].
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With less sterically demanding guanidines, it is also possible to obtain dimer species in
which the guanidinato ligands act both as chelate ligands and as a bridge between two zinc
nuclei (Figure 14) [60,61]. The resistance to the protonation of the remaining alkyl group is
manifested in the fact that protonation with a phenol involves the preferential cleavage of a
Zn–N bond, generating a zinc complex with a neutral guanidine ligand coordinated by the
imine nitrogen.
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The ethylzinc complexes of the type of 22, with asymmetrically coordinated guani-
dinato ligands, have been shown to be intermediates for the catalytic production of new
trisubstituted guanidines by the direct addition of anilines to carbodiimides (Figure 15) [61].
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There is the widespread organometallic chemistry of aluminum compounds with
guanidinate ligands. This interest can be seen in the trend of the last decades in the search
for catalysts based on Main Group metals, looking for catalytic systems less expensive
and with less impact on the environment than traditional catalysts based on transition
metals [62].

Thus, coordination and organometallic aluminum complexes with a well-defined
structure are among the most interesting due to their Lewis acidic characteristics and
their availability.

These aluminum guanidinate derivatives can be obtained both by metathesis of the lig-
and salt and an aluminum halide or by the protonolysis of alkylaluminums
(Figure 16) [51,63–67].
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Depending on the type of guanidine, systems with chelating or bridging ligands can
be obtained. As previously described for zinc [57–59], the arrangement of the electron
pairs of the donor atoms in the bicyclic ligand makes a chelate-type coordination difficult
(Figure 17).
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Figure 17. Bicyclic guanidinates acting as bridging ligands.

An alternative is the migratory insertion of carbodiimides into AlR2(NR’2)-type com-
pounds. In fact, it has been shown that the amido groups are preferred to the alkyl or halide
groups for migration [68].

These amido derivatives can be generated in situ and lead to the insertion of the
carbodiimide to form the guanidinato species (Figure 18). It should be noted that this can
occur during the catalytic process of addition of amines to carbodiimides to form new
guanidines. The acid–base reaction between an aluminum alkyl and an N–H bond of the
amine results in the formation of the amido species which, via nucleophilic addition to
the carbodiimide, followed by protonolysis by another amine molecule of the guanidinato
intermediate, gives rise to the corresponding guanidine [64,69,70].
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The high kinetic inertness and thermodynamic stability provided by the guanidinato
ligands to their complexes makes them very interesting precursors for the formation
of transition metal–aluminum bonds by suitable reactions with organometallic anions
(Figure 19) [71].
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Figure 19. Bimetallic iron–aluminum compound.

An interesting example of how a guanidinato ligand is obtained occurs when alkylalu-
minums and a biscarbodiimide, or two carbodiimide molecules, react at high temperatures.
Instead of the desired amidinate, after the insertion process of one of the carbodiimide
groups, the reaction proceeds with the attack of the nitrogen of the formed amidinate to the
electrophilic carbon atom of the second carbodiimide (Figure 20) [72,73].
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Figure 20. Double insertion of carbodiimides.

This reaction has also been observed for aluminum guanidinato compounds but depends on
the nature of the substituents on the carbodiimide. Thus, [Al{k2-(NCy)(NPh)C(Net2)}Me2] reacts
with CyN=C=NPh, but not with CyN=C=Ncy, to give rise to a complex similar to those of
Figure 20 [74].

The potential of some of these organometallic complexes to act as catalysts is mani-
fested in their ability to selectively reduce the carbonyl group of unsaturated aldehydes
and ketones by the Meerwein–Ponndorf–Verley reaction [67,75].

In relation to ketone and aldehyde reduction, the feasibility of transforming some
of these organometallic complexes into hydride derivatives should be highlighted. From
bis-guanidines, mononuclear and dinuclear hydroboration or hydrosilylation catalysts can
be obtained (Figure 21) [76,77].
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priate choice of molar ratio and ligand structure, it is possible to achieve mononuclear 
complexes with the conventional chelate tetrahedral coordination, complexes with two 
AlMe2 moieties, or mononuclear with a rare pentacoordinated environment around the 
aluminum metal center (Figure 23). Some of these complexes are very active catalysts for 
the transformation of styrene oxide and CO2 into the corresponding cyclic carbonate [79]. 
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Likewise, the dinuclear complexes of the type 30 (Figure 22) are efficient catalysts for
the ring-opening polymerization of L-lactide and ε-caprolactone [78].
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Figure 22. Dinuclear aluminum compounds, catalyst for ring-opening polymerization (n = 2, 3, 4).

The protonolysis of AlMe3 with trisubstituted arylguanidines allows to prepare mono-
and dinuclear complexes, with different coordination modes. Through an appropriate
choice of molar ratio and ligand structure, it is possible to achieve mononuclear complexes
with the conventional chelate tetrahedral coordination, complexes with two AlMe2 moieties,
or mononuclear with a rare pentacoordinated environment around the aluminum metal
center (Figure 23). Some of these complexes are very active catalysts for the transformation
of styrene oxide and CO2 into the corresponding cyclic carbonate [79].
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Figure 23. Mononuclear and dinuclear aluminum compounds with different coordination num-
bers. 

The modification of guanidines with phosphane groups generates N-phos-
phanoguanidines, of general formula (HNR)(Ph2PNR)C(NAr). In the reaction with tri-
methylaluminum, phosphanoguanidinato derivatives were detected or isolated as the ki-
netic products of the reaction. Surprisingly, when the solutions of these organometallic 
complexes are heated, it results, selectively and quantitatively, in phosphanimine–amidi-
nato compounds as the thermodynamic products of the process (Figure 24). A similar pro-
cess was observed for other metals, such as Zn, Mg and Li [80,81]. 
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Finally, as will be described later for other elements, because of its stability and vol-
atility, organometallic aluminum guanidinates are potential precursors for the deposition 
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and lead often display guanidinato ligands with substituents that complete the coordina-
tion sphere of the metal, such as aryl, amido, alkoxy or iminoacyl groups [83–95]. 
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sors. Although the guanidinato derivatives of transition metals had already been de-
scribed [38], Richeson’s group opened up the organometallic chemistry of metals of the 

Figure 23. Mononuclear and dinuclear aluminum compounds with different coordination numbers.

The modification of guanidines with phosphane groups generates N-phosphanoguanidines,
of general formula (HNR)(Ph2PNR)C(NAr). In the reaction with trimethylaluminum,
phosphanoguanidinato derivatives were detected or isolated as the kinetic products of the
reaction. Surprisingly, when the solutions of these organometallic complexes are heated,
it results, selectively and quantitatively, in phosphanimine–amidinato compounds as the
thermodynamic products of the process (Figure 24). A similar process was observed for
other metals, such as Zn, Mg and Li [80,81].
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Finally, as will be described later for other elements, because of its stability and
volatility, organometallic aluminum guanidinates are potential precursors for the deposition
of high-quality aluminum oxide by atomic layer deposition (ALD) [82].

Much less common are references to organometallic complexes of the other group
13 elements and other main group metals. These complexes of gallium, indium, thallium, tin
and lead often display guanidinato ligands with substituents that complete the coordination
sphere of the metal, such as aryl, amido, alkoxy or iminoacyl groups [83–95].

2.2. Transition Metal Complexes

Some of the alkali metal guanidinates described above were synthesized or prepared in
situ as starting materials for reactions with transition metal halides and related precursors.
Although the guanidinato derivatives of transition metals had already been described [38],
Richeson’s group opened up the organometallic chemistry of metals of the early groups with
this type of ligands. The alkylation of a symmetrically substituted guanidinato derivative
of zirconium by metathesis reaction with PhCH2MgCl generates complex 42 (Figure 25). As
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with analogous classic complexes with cyclopentadienyl ligands, this compound exhibits a
η2-type bond interaction of a benzyl ligand [96].
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Alternatively, the same complex could be accessed via a toluene elimination reaction
between neutral guanidine and tetrabenzylzirconium. This reaction can also be extended
to other alkyltitanium derivatives [97–99].

There are far fewer examples of complexes containing a guanidinato (2−) ligand than
the monoanionic ligands mentioned above [100,101]. For example, the reaction of [Cp*ZrCl3] with
the dianion [{(PhN)3C}Li2] gave the zwitterionic species [Cp*Zr{C(NPh)3}Cl2Li(Et2O)(THF)],
a complex active in ethylene polymerization [100]. As for their monoanionic analogues,
these doubly negatively charged ligands also exhibit chelate-type coordination. Fluxional
behavior was found in solution, and this involves a syn/anti isomerization process of the
guanidinato (2−) ligand [101].

The formation of mixed cyclopentadienyl zirconium guanidinato derivatives can also
be achieved by a formal [2 + 2] cycloaddition reaction of carbodiimides to imides. These
azaallyl-like ligands still exhibit the κ2-chelate coordination described above and not the
possible κ3-coordination similar to that of the allyl ligands, due to the orbitals involved in
both cases (Figure 26). These complexes enable exchange reactions with other carbodiimides
under mild conditions, which extends the family of this type of derivatives [102,103].
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This type of complex still presents an uncoordinated imino group with a lone pair that
could participate in the coordination to Lewis acid centers. However, the more than likely
delocalization of these electrons along the ligand prevents such reactivity [104].

Whereas the alkylation with MeLi of the derivative Cp(C(C(NiPr)2(NMe2))ZrCl2 leads
to a metathesis process to form the metallocene derivative and the bis-guanidinate, the
use of the Grignard reagent MeMgCl or, more conveniently, the protonation reaction of
the derivative (C5H3(SiMe3)2)ZrMe3 with triisopropylguanidine allows the obtention of
dialkyl derivatives with guanidinato ligands [102,103,105].

Following the similarity with the chemistry of metallocene derivatives, these neutral
alkyl zirconium complexes with guanidinato ligands can be transformed into cationic
derivatives by reaction with reagents, such as tris(pentafluorophenyl)borane, [Ph3C][B(C6F5]3]4
or Me3SiOTf (Figure 27).
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Occasionally, the lithiated guanidine derivative does not generate the expected che-
late complex observed in most of the compounds described. Instead, in complexes such 
as Cp2TiCl(k1-N = C(NMe2)2) 50, the guanidinate assumes an unusual binding mode, in 
the form of a monodentate ligand [110,111]. 
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by protonolysis with neutral guanidine or carbodiimide insertion in amido precursors. 
Titanium complex 51 is an effective catalyst for the addition of primary and secondary 

Figure 27. Cationic derivatives of a bis-guanidinato zirconium compound.

The great influence of the geometry and the donor capacity of the guanidinato ligands
on the reactivity of the complexes they form can be exemplified by studying the reactions
of dialkyl derivatives with aryl isonitriles. The titanium or zirconium complexes of this
class form intermediates, sometimes isolated, with η2-iminoacyl ligands for which subse-
quent transformations lead to vinylamido-type species, in the case of linked guanidinato
ligands [106], while their unlinked analogues evolve towards imido or enediamido species
(Figure 28) [107–109].
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Occasionally, the lithiated guanidine derivative does not generate the expected chelate
complex observed in most of the compounds described. Instead, in complexes such as
Cp2TiCl(k1-N=C(NMe2)2) 50, the guanidinate assumes an unusual binding mode, in the
form of a monodentate ligand [110,111].

The metallacarborane complexes of zirconium and titanium can be obtained either
by protonolysis with neutral guanidine or carbodiimide insertion in amido precursors.
Titanium complex 51 is an effective catalyst for the addition of primary and secondary
aliphatic and aromatic amines to carbodiimides with good functional group tolerance
(Figure 29) [112,113].
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Figure 29. Metallocarborane complexes of titanium.

Using chiral modified 2-aminooxazolines gave rise to chiral half-sandwich complexes
where the amino-oxazolinato group had undergone a ring opening and a migratory inser-
tion of a dimethylamido ligand, providing a configurationally stable chiral-at-metal system
(Figure 30) [114,115].
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Although, as with metallocene derivatives, their application in catalytic processes
makes the guanidinato complexes of group 4 metals very attractive compounds, these
complexes have received interest as precursors to metal nitride or oxide thin films due to
their nitrogen or carbon content, their potential to increase the volatility of the compound
and their ability to stabilize the metal center due to their electronic flexibility. For example,
thin films of carbonitrides or oxides of titanium, zirconium or hafnium can be obtained
from guanidinato or mixed cyclopentadienyl guanidinato precursors. The above properties
of these molecules satisfy the important requirements for their application in chemical
deposition techniques, such as ALD or CVD [116–119].

As mentioned above, guanidinato ligands allow the stabilization of less common
oxidation states for transition metals. Some mixed halide complexes of zirconium and
hafnium can be reduced in the presence of N2 to form bimetallic complexes with a side-on-
bridged dinitrogen molecule and proved to be very active toward both hydrosilylation and
hydrogenation (Figure 31) [120].
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The titanium (II) complex 54 (Figure 32), obtained by a two-electron reduction from
a dichloride precursor, exhibits an arene–M bond interaction similar to that previously
described for group 1 elements, such as lithium or potassium. This type of complexes
allows catalytic hydrogenation by hydrogen transfer to monocyclic and polycyclic arenes,
mimicking the reactivity of late transition metals, as well as demonstrating a great ability
to reductively activate a wide range of substrates, such as ketones, azides, N2O or C–F
bonds [121–123].
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There is some parallelism between the organometallic chemistry of guanidinato com-
plexes of groups 4 and 5. For example, the alkyl derivatives of niobium of the type 55
(Figure 33) show a η2-benzyl group in the solid state, and this is in rapid exchange with
the other η1-benzyl ligand in solution. While the migratory insertion of tBuNC into the
niobium–alkyl bonds gives rise to the corresponding bis(iminoacyl) derivatives, the inser-
tion of an aryl isonitrile, XyNC (Xy = 2,6-Me2C6H3), into a niobium–benzyl bond results,
as with some zirconium complexes [107], in the isomerization of an η2-iminoacyl group
to a vinylamido-type one via a 1,2-hydrogen shift. The influence of the guanidinato lig-
and on this process is clear, since the same reaction does not take place starting from
the precursor compound of the guanidinato complexes, the trialkylimido [NbBz3(NtBu)]
(Bz = benzyl) [124,125].
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These dibenzyl complexes with guanidinato ligands derived from diisopropylcar-
bodiimide and an aromatic amine show an asymmetric coordination of the ligand via an
alkylamino nitrogen atom and the arylimino nitrogen atom. Computational studies confirm
this preference, and the results suggest that electronic factors prevail over steric factors. In
fact, when a guanidine with three alkyl substituents, one of them different, was used for
the synthesis, a mixture of isomeric complexes was formed with the coordinated ligands
without any selectivity for any of the nitrogen atoms. In addition, these complexes were
proposed as intermediates in the mechanism of the catalytic guanylation of anilines, using
the complex [NbBz3(NtBu)] as a precatalyst [126].

Another example of the remarkable influence of the coordination of a guanidinato
ligand on the reactivity on the coordination sphere of a metal is the process, in which
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an alkyl guanidine reacts with an iminocarbamoyl complex, which undergoes an easy
cleavage of a C–N bond at room temperature (Figure 34) [127].
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This process contrasts with that observed when migratory insertion of aryl isonitriles into the
Ta-NMe2 bonds of a previously formed guanidinato complex was undertaken [128]. In this case,
the iminocarbamoyl species [Ta(NMe2)[C(NiPr)3][η2-(Me2N)C=N(2,6-Me2C6H3)]2] 56, which
is stable, was formed.

As was the case for group 4 metals [120], guanidinato ligands stabilize organometal-
lic tantalum species in a medium or low oxidation state [129–131]. For example, mixed
cyclopentadienyl-guanidinato species of Ta(IV) give rise to N≡N bond cleavage to provide
the bimetallic bis(µ-nitrido) complex, {Cp*Ta[N(iPr)C(NMe2)N(iPr)](µ-N)}2 57. The pres-
ence of the uncoordinated NMe2 group in the guanidinato ligand can serve to modulate
the magnitude of the free energy barrier for N≡N bond cleavage.

Very recently, the participation of tantalum alkyl guanidinato derivatives of the type
[Ta(hpp)2(CH2SiMe3)3] (hpp = 1,5,7-triazabicyclo [4.4.0]dec-5-ene) 58 has been studied as
probable intermediates in the process of hydroaminoalkylation of terminal alkenes with a
variety of secondary amine substrates to give substituted secondary amine products [132].

While the organometallic chemistry of group 6 derivatives is limited to a molybdenum
complex, [(ArN)2MoMe{N(Cy)C[N(iPr)2]N(Cy)}] (Ar = 2,6-iPr2C6H3) 59 [133], and that of
group 7 is non-existent, group 8 organometallic complexes with guanidine-derived ligands
offer interesting structural and reactivity aspects.

Iron guanidinato (2−) complexes 60 and 61 (Figure 35) were obtained via a formal [2 + 2]
cycloaddition of carbodiimide to imido precursors in high or low oxidation states [134,135].
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Figure 35. Iron dianionic guanidinato compounds.

Ruthenium witnesses the first reference of a complex in which the guanidinato ligand
acts as a chelate. Indeed, complex 62 contains an η6-bonded aromatic ligand, a terminal
chloride and the chelating triphenylguanidine anion. The structure of this compound
shows, for the first time, a feature that is repeated in many guanidinato complexes: the



Molecules 2022, 27, 5962 17 of 31

angles around the central carbon of the guanidine ligand total 360◦ indicating the strict
planarity of the CN3 core (Figure 36) [136].
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This coordination mode is present in other similar ruthenium complexes with both
monoanionic and dianionic ligands [137–141].

It is also worth noting that, despite the prominent role of ruthenium complexes
in organic synthesis, there are only a few examples of guanidinato complexes reported
to date that have been explored as catalysts. Complexes similar to those described are
excellent catalysts for the redox isomerization of allylic alcohols in the absence of base
(Figure 37) [142].
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This catalytic process also takes place using ruthenium (IV) guanidinato complexes,
namely [RuCl{κ2-C(NR)(NiPr)NHiPr}(η3:η3-C10H16)] 64 (Figure 38). This type of com-
pounds are excellent precursors for the preparation of octahedral ruthenium (II) guanidi-
nato complexes, mer-[RuCl{κ2-C(NR)(NiPr)-NHiPr}(CN-2,6-C6H3Me2)3] 65, through the
reductive elimination of the ligand 2,7-dimethylocta-2,6-diene-1,8-diyl with high stereose-
lectivity [143].
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In contrast, less attention has been paid to osmium guanidinato complexes [137,144],
although some examples were able to transform a wide variety of aldoximes selectively
and catalytically into the corresponding nitriles (Figure 39).
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Interestingly, in the search for new coordination modes, guanidines have been modi-
fied with other donor groups, such as phosphanes. In this way, ruthenium (II) (Figure 40)
and osmium (II) complexes were obtained [145,146].
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Figure 40. Phosphane-modified guanidine as ligand in a ruthenium complex.

This type of multidentate ligand allows the preparation of the iridium and rhodium
guanidinato complexes as 68, which behave as a frustrated Lewis pair (FLP) capable of
reversibly activating polar bonds, such as those of water, and non-polar bonds, such as
those of dihydrogen (Figure 41) [147,148].
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Although the usual ligand arrangement in many rhodium complexes is the κ2-N,N
chelate [137,149,150], examples are known where the guanidinate acts as a bridge between
two metal centers [99], or even a complex where the anionic ligand coordinates the rhodium
center in an unusual η5-cyclohexadienyl mode, before isomerizing to the conventional
chelate form (Figure 42) [151].
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Figure 42. Bridging and arene coordination of guanidinato ligands in rhodium complexes.

Not surprisingly, as well as several examples of rhodium complexes with guanidinato
ligands are known, the organometallic chemistry of analogous iridium compounds is
wide. In addition to reactivities parallel to those described for rhodium [137,148,150],
there are interesting examples of the influence of these ligands on the behavior of the
metal. For example, the presence of the lone pair of electrons on the uncoordinated
NR2 group increases the electron density of the ligand available for coordination to the
metal. This obviously makes these ligands stronger donors than the related amidinato
ligands. Consequently, if they coordinate to a metal in a low oxidation state, the possibility
of reaching higher oxidation states increase. Thus, in the reactions of iridium guanidinato
complexes with O2, the observed reactivity trends correlate well with both the electronic and
steric properties of the substituents of the guanidinato ligands, allowing the stabilization
and characterization of complexes with peroxo groups (Figure 43) [152–155].
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This same donor capacity of the guanidinato ligand also lies at the basis of several
catalytic processes involving organometallic iridium species, which allow the metathesis
of carbodiimides and isocyanates, the carbodiimide cleavage or the cross-dimerization of
terminal alkynes [156–158].

Organometallic iridium (III) complexes are also useful as photophysical active mate-
rials in a wide variety of applications, e.g., as lighting devices, as dyes in solar panels, as
bio-imaging agents or as photosensitizers for the production of hydrogen from water by
photocatalysis [159]. It has been shown that these properties can be altered practically on a
whim by modifying the ligands in these complexes. This is why, given the high tunability
provided by the guanidinato ligands, they appear as excellent precursors of phosphorescent
iridium cyclometalated complexes, becoming prominent in the preparation of Organic
Light Emitting Devices (OLEDs), where the proper selection of ligand substituents allows
high efficiencies and high variability of the emission color (Figure 44) [160–163].
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Figure 44. Luminescent iridium guanidinato compound.

The analogy between bulky guanidinates andβ-diketiminates has been used to achieve
the stabilization of Co(I) toluene adducts, as precursors of dimeric compounds with short
Co–Co bonds [164].

As with other platinum group metals, the first reference of group 10 organometal-
lic complexes with guanidinato ligands presents species bearing dianionic ligands with
chelate coordination [137–140]. Since then, it is worth noting the studies carried out by
Thirupathi’s group, who have extensively studied aspects of the coordination chemistry
of triarylguanidines towards palladium or platinum, in which the presence of Me or Ome
substituents on the aromatic rings of the guanidines, together with their inherent basic
properties, allowed the formation of interesting six-membered cyclometalated complexes,
in which the guanidinato ligand shows a κ2-C,N coordination mode (Figure 45) [165–175].
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To conclude this section, the organometallic derivatives of group 11 are limited to an
example of a strongly phosphorescent copper (I) complex with an (alkyl)(amino)carbene
ligand (Figure 46) [176].
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2.3. Group 3 and the Lanthanoid Complexes

The group 3 elements and the lanthanoids represent a family of metals with very
interesting properties in terms of chemical reactivity, luminescence or magnetism [177,178].
In particular, the guanidinato derivatives of these metals stand out for their potential use
in catalytic processes or as molecular precursors of new ceramic materials. Although
there are excellent reviews by Edelmann and Trifonov on rare earth amidinates and
guanidinates [43–45], in this work we have selected the references focused on organometal-
lic complexes, highlighting their usefulness and the possible differential nuances with the
complexes of other groups of metals previously described.

As with some of these examples, the metathesis of a lithium guanidinate and a metal
halide is one of the main routes to rare-earth metal derivatives [179–181]. This is the case for
75, the first reported organolanthanide complex supported by such a ligand [182]. After the
formation of the halide derivative, the reaction with LiCH(SiMe3)2 yields a mononuclear
organometallic compound (Figure 47).
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Stable low-coordinate organometallic complexes, using bulky guanidinato ligands,
allow agostic interactions between the yttrium atom and the tert-butyl group in the solid
state for [{(Me3Si)2NC(NCy)2}2YtBu] 76 [183] or with two methyl carbon atoms of SiMe3
groups in [{(Me3Si)2NC(NCy)2}2Y(µ-CH2SiMe3)2Li] 77 [184].

Alternatively, the insertion reaction of carbodiimides into M–N bonds of amido deriva-
tives allows a very efficient synthesis of organometallic complexes with symmetric and,
mainly, asymmetric guanidinates [185,186].

The presence of NH groups on the ligands assists the insertion and can provide an
interesting isomerization of these coordinated fragments (Figure 48) [187,188].
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nate cyclotrimerization [110,189]. The presence of reactive alkyl groups, such as benzyl, 
offers the possibility to study alternative insertion processes [190–192]. Complex 82 inserts 
nitriles and isocyanates, generating binuclear complexes (Figure 49) [191]. 
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In contrast to the usual lack of reactivity observed in guanidinates of other metals, cer-
tain organolanthanides allow examples of the insertion of small unsaturated molecules into
the metal–guanidinate bond. Complexes [(C5H5)2Ln(µ-η1:η2-N=C(NMe2)2)]2
(Ln = Y 79, Gd 80, Er 81) can mono-insert phenyl isocyanate into the Ln–N bond to
yield [(C5H5)2Ln(µ-η1:η2-OC(N=C(NMe2)2)NPh)]2 without further insertion or the usual
isocyanate cyclotrimerization [110,189]. The presence of reactive alkyl groups, such as
benzyl, offers the possibility to study alternative insertion processes [190–192]. Complex 82
inserts nitriles and isocyanates, generating binuclear complexes (Figure 49) [191].
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A third route is the protonolysis reaction of alkyl derivatives with neutral guani-
dines [193]. In this way, an alkyl yttrium compound has been obtained with a guanidine
with elevated steric demand and with the adequate control of the electronic deficiency of
the metal. Compound 84 was highly efficient in the hydrosilylation of alkenes via hydride
intermediates with excellent anti-Markovnikov selectivity (Figure 50) [193].
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Such alkyl or hydride complexes stabilized by guanidinato ligands also allow ring-
opening or polar monomer polymerizations [197,198].

To conclude this section, guanidinato ligands have met the needs for rare-earth metal
molecular precursors for ALD or CVD techniques: the bidentate coordination mode allows
to saturate coordinatively even large cations; the electronic delocalization across the ligand
stabilizes the whole molecular structure; and the easy modification of the substituents al-
lows to modulate the physical properties, all contributing to expand the library of potential
precursors of new high quality materials obtained by these deposition techniques [199].

3. Conclusions

In conclusion, a great deal of work has been carried out in this field, but there is
still scope for the development of new organometallic complexes, in which the choice of
metal and the design of the ligands provide greater control of their chemical and physical
properties. Guanidines provide easy access to such control, as they can be obtained by
very straightforward and efficient syntheses from widely available reagents. The ease
of formation of coordination and organometallic complexes, even in unconventional or
unstable oxidation states, can be enhanced by potentially modifying these ligands to
increase the number and type of donor atoms. A further step towards a firm foothold
among the most successful ligands is the possibility to design and synthesize new chiral
derivatives for enantioselective catalysis applications. So, again, an appropriate choice of
precursors and methods to obtain these ligands, if possible, in a sustainable manner, opens
up a whole range of possibilities for organometallic chemists.
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59. Zelga, K.; Leszczyński, M.; Justyniak, I.; Kornowicz, A.; Cabaj, M.; Wheatley, A.E.H.; Lewiński, J. Synthesis, structure and unique
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