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Abstract: Plasma methods are often employed for the desired wettability and soaking properties of
polymeric textiles, but the exact mechanisms involved in plasma–textile interactions are yet to be
discovered. This review presents the fundamentals of plasma penetration into textiles and illustrates
mechanisms that lead to the appropriate surface finish of fibers inside the textile. The crucial relations
are provided, and the different concepts of low-pressure and atmospheric-pressure discharges useful
for the modification of textile’s properties are explained. The atmospheric-pressure plasma sustained
in the form of numerous stochastical streamers will penetrate textiles of reasonable porosity, so the
reactive species useful for the functionalization of fibers deep inside the textile will be created inside
the textile. Low-pressure plasmas sustained at reasonable discharge power will not penetrate into
the textile, so the depth of the modified textile is limited by the diffusion of reactive species. Since
the charged particles neutralize on the textile surface, the neutral species will functionalize the fibers
deep inside the textile when low-pressure plasma is chosen for the treatment of textiles.

Keywords: non-equilibrium plasma; textiles; surface modification

1. Introduction

Textiles are made from fibers of various materials, typically polymers. The properties
of polymeric fibers depend on the type of materials and synthesis procedure. The ability of
textiles to capture liquids depends on several parameters, and the most important is the
surface wettability of the materials the fibers are made from. The surface wettability de-
pends on the surface chemistry, particularly the polarity of surface functional groups. Most
polymers contain an inadequate concentration of polar surface functional groups, so the
wettability is usually below the level desired in numerous applications, particularly when
attempting to bond chemically any foreign material. In cases when increased wettability
is needed, the surface functional groups should be altered by grafting more polar groups.
A common technique is the application of gaseous plasma. Although the technique has
been used for some types of textiles on an industrial scale for decades, the scientific aspects
are still a subject of investigation. Numerous scientific articles have been published on
plasma modification of textiles, and the trend is shown in Figure 1. Only a few publications
were published annually before 2000, and the number of publications increased by about
10-times in the past 20 years. Despite the increasing knowledge provided in these publica-
tions, the mechanisms involved in the modification of textile materials are still inadequately
understood. In particular, the surface mechanisms on the atomic level are still a subject
of research, even for smooth polymeric materials. The recommended theoretical papers
on atomic-scale mechanisms on smooth polymer surfaces include [1–3], while the experi-
mental observations on the surface kinetics were provided in [4,5]. Some review papers
on plasma modification of textiles have also been published explaining the observations
reported by various authors, such as [6–17]. Numerous books on various aspects of plasma
treatment of textiles have been published, including a textbook intended for users of plasma
technologies in the textile industry rather than experts in plasma science [18]. Despite a
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vast literature, the mechanisms of plasma-species penetration in fibrous materials, physical
and chemical interactions with the plasma species, and the resulting surface finish of fibers
deep inside the textiles are rarely explained to the level useful for scientists involved in the
modification of woven and non-woven textiles with gaseous plasma. This paper intends to
provide scientific aspects which are crucial for understanding plasma–textile interactions.
Most recent papers are cited where appropriate. A reader will find prior publications in the
citing literature.
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data were obtained from the Web of Science by searching with the keywords “textile” and “plasma”
and “surface”.

2. Gaseous Discharges and Plasma Species

Non-equilibrium plasma is usually sustained with an appropriate gaseous discharge.
A voltage source is used to create an electric field strong enough to ensure the acceleration
of free electrons, which thus gain appropriate energy for ionization collisions with neutral
molecules. Various discharges have been reported by different authors. Low-pressure
discharges usually operate with a power generator at high frequency in the range of
radiofrequency (RF) or microwave (MW), roughly between 10 kHz and 10 GHz. The use of
high-frequency fields is preferred since it ensures a rather homogeneous plasma in a large
volume without risking arcing. Furthermore, high-frequency discharges can be operated
in the electrodeless mode, i.e., any electrode placed outside the discharge chamber. This
is useful because the electrodeless configuration overcomes all problems associated with
an electrode placed inside the chamber, such as sputtering [19] the cathode by energetic
ions and deposition of cathode material on treated samples, and the loss of reactive plasma
species by heterogeneous surface recombination [20]. Namely, the loss of atoms on metallic
surfaces is usually 10–1000-times more extensive than on surfaces of inert materials such as
glasses and smooth polymers [21].

The microwave discharges (frequency between about 1 and 10 GHz) always operate in
the electrodeless mode. The electric field provided by an MW generator will not penetrate
deep into plasma because of the skin effect [22]. Namely, non-equilibrium gaseous plasma
is a weakly or moderately conductive medium with an Ohmic character of the impedance,
so the penetration depth of the electric field is limited to the skin layer between the dielectric
discharge chamber and the gaseous plasma [23]. The higher the frequency, the thinner the
skin layer. A textile sample is placed inside the plasma, so there is no electric field nearby
except a small field due to the difference between the plasma and textile surface potentials,
which creates a negative potential on the textile surface of about 10 V. As a consequence,
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no highly energetic gaseous specie will interact with the textile when an MW discharge
is used.

The radiofrequency discharges operate either in the electrodeless mode or with an
electrode mounted inside a metallic chamber, which is typically grounded [24]. The
electrodeless mode is further divided into the E and H modes [25,26]. In the first case,
the samples are usually at the floating potential, the same as if plasma is sustained with
MW discharges. In the case of an electrode inside the chamber, the sputtering may be
suppressed by careful selection of processing parameters but cannot be avoided, so at least
a very thin metallic film (or clusters of metallic atoms) will deposit on the textile surface.
Furthermore, extensive loss of molecular radicals will occur on the metallic surface, so
the density of radicals, such as free atoms, will be orders of magnitude smaller than in
cases plasma is sustained with an electrodeless RF discharge. Regardless of the excitation
mechanisms, the penetration depth of the RF field inside plasma depends on plasma (not
discharge) parameters and increases with decreasing frequency of the power source and
with decreasing density of charged particles. This is a somewhat simplified illustration
useful for scientists involved in the plasma treatment of textiles. Details are still a subject of
scientific research [27,28].

As explained above, the charged particles are accelerated only in the volume of the
significant electric field, which is always limited. In the rest of the discharge chamber,
there will be diffusing plasma—plasma of practically zero electric field but rich in plasma
species because of the presence of rather energetic electrons. The volume of a large electric
field in a low-pressure gaseous plasma is often limited to a sheath next to the electrode,
which may or may not be inserted in the discharge chamber. The loss of electrons’ energy
in the gas phase at low pressure is rather weak because of the low collision frequency,
so practically all loss mechanisms take place on the surfaces. The same applies to other
reactive plasma species (ions, atoms in the ground and metastable states, and metastable
molecules). Typical examples of high-frequency low-pressure discharges and resulting
plasmas are shown in Figure 2. Photos of inductively coupled RF plasma in the H and E
modes are shown in Figure 3. A photo of a textile in a capacitive electrodeless plasma is
shown in Figure 4.
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Figure 2. Examples of low-pressure high-frequency discharges. (a) Microwave in a dielectric tube,
(b) inductive cylindrical RF in H-mode, (c) microwave in a metallic chamber, (d) inductive RF in a
metallic chamber, (e) classical capacitive RF, and (f) electrodeless capacitive RF.
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Figure 3 shows the drastic difference between the intense plasma sustained by the
RF discharge in the H-mode and the weakly ionized plasma sustained in the same tube
and the same RF generator but in the E-mode. In fact, the plasma luminosity in the
H mode is often several orders of magnitude larger than in the E-mode, and the reason
is in excellent coupling between the generator and plasma electrons [29]. The electron
density is much larger in the H-mode, but the density of neutral reactive species in both
modes is comparable and much larger than the density of charged particles, usually above
1020 m−3 [30]. The low-pressure plasma in the H-mode is, therefore, useful in cases when
the material should be processed with charged particles and radiation but may not be
suitable in cases when the neutral reactive species will do the job. Figures 3b and 4 also
indicate a rather uniform plasma in a large volume when the discharge is coupled in the
E-mode, while the H-mode RF plasmas are concentrated to a rather small volume, as also
illustrated in Figure 1.

RF and MW discharges can also be used for sustaining plasma at atmospheric pressure,
but the plasma volume will be limited to a small volume where the highest electric field
appears. Namely, the diffusing plasma cannot expand to a large volume at atmospheric
pressure due to numerous collisions of free electrons with gaseous molecules or atoms. The
electrons lose their energy at inelastic (and, to a much lower extent, at elastic) collisions
with molecules, so they do not diffuse far from the volume of a large electric field when
the pressure is around the atmospheric (1 bar). Therefore, large spatial gradients in the
density of charged particles are typical for atmospheric-pressure plasma sustained with
high-frequency discharges, for example, at the industrial RF frequency of 13.56 MHz or
MW frequency of 2.45 GHz. In addition, such discharges operate in the continuous mode
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even at atmospheric pressure, and the majority of discharge power is spent on heating
the gas (increasing gas temperature), so the application of such high-frequency plasmas is
limited at a pressure below, say, 30 mbar.

Low-frequency RF discharges or pulsed direct-current (DC) discharges are preferred
plasma sources at atmospheric pressure. In such cases, plasma is not sustained in the
continuous mode but rather in the form of stochastically distributed streamers [31]. The
streamers are actually ionization wavefronts [32] born on an electrode and move away from
the electrode at the speed of roughly 104 m/s [33,34]. They leave non-equilibrium gaseous
plasma beyond them, but the plasma species are quickly thermalized at atmospheric
pressure, so their density at a given position is marginal before the next streamer appears
in the same volume unless plasma is sustained in high-purity noble gas [35]. Streamers
are very narrow and short in duration, typically of the order of µm and µs, respectively.
The maximal density of charged particles in a streamer is large, often above 1020 m−3 [36].
In the limiting case of repetitively pulsed discharges sustained by very fast switchers
(switching time of the order of ns), the streamers form bullets that may propagate far from
the electrode, sometimes close to 1 m [37].

Low-frequency and pulsed discharges at atmospheric pressure come in various modes.
The scientific literature usually distinguishes two types of discharge: dielectric-barrier
discharges (DBD) and corona discharges. DBD employs a dielectric barrier on an electrode
to limit the current of a specific streamer, whereas corona employs a resistor mounted in
series with the plasma. The electrical current in a particular streamer sustained with the
DBD is limited by the available charge that could be transferred from the dielectric surface
to the counter electrode. In the case of the corona, the voltage drop will appear on the
resistor rather than on the gas gap when the electric current flows, so the voltage across the
gas gap will drop below the value useful for sustaining the gaseous discharge during the
current pulse. When the electric current diminishes, the entire available voltage (the source
voltage) appears again across the gas gap, so another streamer appears. A schematic of the
DBD and corona discharges are shown in Figure 5.
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low-frequency RF, alternative current (AC), direct current (DC), or pulsed voltage source.

The illustrations in Figure 6 represent the basic principles of such discharges. In prac-
tice, there are various configurations. When atmospheric-pressure plasma is used, textiles
are usually processed in the continuous mode to benefit from the automatization of the
plasma processing. The speed of the textile running through plasma is often close to 1 m/s,
so special configurations should be used. One of them is application of surface or coplanar
discharges [38–40]. In the case of surface discharges, the electrodes are incorporated as
conductive wires into a dielectric plate as shown schematically in Figure 6a. Streamers
therefore conduct the electric current on the surface of the dielectric material. The reason for
such surface streamers is that the breaking voltage for air at atmospheric pressure is much
smaller than for the dielectric plate providing the plate is made from a material of very
high resistance, for example, glass or some types of ceramics. The streamers will appear
stochastically along wires, as in the classical DBD configuration shown in Figure 6, but will
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be dense so the entire surface of the dielectric plate will be covered by luminous plasma.
Plasma will expand perhaps 1 mm from the surface, so the distance between the textile and
the dielectric plate is a crucial parameter governing the surface finish of textiles treated
with plasma sustained by surface discharges. A feasible solution is shown in Figure 6b. The
system shown in Figure 6 operates well as long as the impedance of any material between
the electrodes is much larger than the sum of impedances of dielectric material above the
electrodes and gas above the dielectric plate (Figure 6a). This requirement is not trivial and
dictates innovative solutions of coupling the power supply to the wires inside the dielectric
plate. The connecting wires (not shown in Figure 6a) should be placed inside a perfectly
insulating liquid that is cooled to prevent overheating. Namely, a significant fraction of the
discharge power is spent on heating the dielectric plate.
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Corona discharges useful for treatment in the continuous mode are usually sustained
along one or more electrodes mounted next to a grounded roll. The textile runs in the
space between the powered electrode and the grounded roll. The preferred embodiment is
not much different from the one illustrated in Figure 6b, except that the corona discharge
sustains plasma instead of the coplanar DBD. In both cases, it is vital to keep the distance
between the powered electrodes and the textiles as constant as possible to enable uniform
surface treatment.

Regardless of the type of discharge used for sustaining gaseous plasma, the following
species are found in gaseous plasma:

• Free electrons and positively charged molecules or atoms;
• Neutral molecular radicals, including atoms, in the ground electronic state;
• Metastable atoms and molecules in excited electronic states;
• Radiation in the range from infrared (IR) through visible (vis) and ultraviolet (UV) to

vacuum ultraviolet (VUV);
• Negatively charged ions (important in the cases plasma is sustained in electronegative gases).

The fluxes of these species on the surface of any samples, including textiles, depend
enormously on the type of discharge used for sustaining gaseous plasma. Typical numerical
values will be disclosed in the following text.

3. Penetration of Gaseous Plasma in Textiles

Usually, uniform treatment of fibers within a textile sample is preferred to the localized
treatment of fibers stretching from a textile surface, so the penetration depth of species
capable of modifying the fibers is important information. By definition, plasma is at least
partially ionized gas with a density of charged particles large enough to form a space
charge of linear dimension larger than the distance between two pieces of solid material
(usually electrodes). The space charge is absolutely necessary for sustaining gaseous
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plasma; otherwise, the electrons would escape to the surfaces and will thus no longer be
able to sustain plasma. The voltage is screened by the space charge over the distance with
a characteristic thickness of the Debye length, which is defined as

λD =

√
ε0kBTe

e2
one

. (1)

where Te is the electron temperature, kB is the Boltzmann constant, εo is vacuum dielectric
permeability (εo = 8.85 × 10−12 F/m), e0 is the elementary charge (1.6 × 10−19 As), and ne
is the electron density. The Debye length is proportional to the square root of the electron
temperature. The electron temperature in gaseous plasma useful for the treatment of textiles
does not span over a broad range; a typical value is between 10,000 and 100,000 K, which
corresponds to the average electron energy of roughly between 1 and 10 eV. On the contrary,
the Debye length is inversely proportional to the square root of the electron density, which
depends significantly on the type of discharge and other discharge parameters and may
be anywhere between about 1014 and 1020 m−3. Obviously, the Debye length in plasma of
electron temperature a few 10,000 K assumes any value between about 1 mm and 1 µm for
low and high electron density, respectively. The Debye length versus the electron density is
plotted in Figure 7a.
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Low-pressure plasmas will have electron densities between about 1015 m−3 (this
value is typical for diffusing plasma) and about 1018 m−3 (typical for powerful inductively
coupled plasma in the H-mode or a microwave plasma sustained in a rather small discharge
tube). The electron density of 1018 m−3 corresponds to the Debye length of 10 µm (Figure 7a).
Obviously, the low-pressure plasma is not likely to penetrate deep into the textile unless a
powerful discharge sustains it. A plasma of high density of charged particles will cause
significant heating of an immersed material even if the material is kept at a floating potential.
The geometrical surface of a plasma-facing material is subjected to heating by ions, which
will neutralize on the surface and will bombard it with the kinetic energy gained by crossing
the sheath between the non-perturbed plasma and the sample [41]. The power dissipated
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on the surface of any material (including textile) due to the interaction with positively
charged ions is

Pcharged= nion·vBohm·Eion·A. (2)

where vBohm is Bohm velocity (vBohm =
√

kB·Te/mi), mi is the mass of the positively
charged ions, nion is positive ion density in the bulk plasma, Eion is the sum of ionization
energy and the kinetic energy of an ion, and A is the geometrical surface area. The dissipated
power per surface area is plotted versus the electron density in Figure 7b. A plasma of the
Debye length 10 µm (electron density 1018 m−3) will cause heating at a power as large as
104 W/m2. Obviously, either the density of charged power is too low to enable plasma
penetration inside the textile, or it is too high to avoid overheating of the textile surface.
From the plasma-penetration point of view, the low-pressure plasmas do not seem to be
useful for the treatment of textiles unless the treatment time is extremely short. The benefits
of using low-pressure plasmas will be explained below.

The density of charged particles within a streamer of an atmospheric pressure dis-
charge is often much larger than in continuous plasma (for example, plasma sustained at
low pressure). From this point of view, atmospheric-pressure plasma sustained by DBD or
corona has advantages over continuous plasmas. The high plasma density will ensure for
penetration of streamers in volume between the fibers. The schematic of the penetration of a
streamer through the textile is illustrated in Figure 8. A streamer touches the textile surface
(Figure 8a). The electrons are much faster than the ions (the velocity is v =

√
2W/m), where

W is the kinetic energy and m the mass of a particle, so they charge the neighboring fibers
negatively (Figure 8b). The negative surface charge will suppress the loss of electrons
on surfaces, so the electron density within the streamer will remain large enough to sus-
tain the plasma, which will propagate inside the textile (Figure 8c). Any obstacle on the
streamer’s way will be charged negatively (Figure 8d), thus re-directing further propagation
(Figure 8e), so finally the streamer may actually penetrate the textile providing the electron
density in the original streamer (Figure 8a) is large enough. The streamer will leave behind
a partially dissociated gas, and the molecular radicals (in particular free atoms) will interact
chemically with the fibers’ surfaces. A benefit of such streamers propagating within porous
material such as textile is that the molecular radicals are formed inside the textile (by
electron-impact dissociation), so they can interact with fibers deep in the textile despite the
short shelf-time typical for atmospheric-pressure plasmas. The drawback is non-uniform
treatment because the streamers are stochastically distributed over the textile surface. The
wettability, however, is a macroscopic parameter, so even a relatively small fraction of fibers
inside the textile will ensure improved wettable and/or soaking properties. The effect is
yet to be elaborated on in scientific literature, so the simplified explanation provided in this
paragraph should be taken just as an illustration of the penetration of plasma streamers
through textiles. The most important difference between streamers and continuous plasma
is that the streamers will not destroy the textile by overheating because they carry negligible
energy as compared to the flux of plasma species in the continuous mode.

The surface discharges powered by generators of frequency up to about a few 10 kHz
illustrated in Figure 6 also consist of streamers, but those streamers will not penetrate
the textile because they propagate on the dielectric’s surface. The streamers of surface
discharges will thus only touch the textile surface, which is beneficial for processing
thin textiles but may not always be useful for reasonably uniform functionalization of
thicker fabrics.
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Differently to streamers, continuous plasma of reasonable density of charged particles
will not penetrate the porous material because the Debye length is larger than the distance
between neighboring fibers in a textile. Instead, the movement of reactive plasma particles
will be governed by diffusion. One exception is the penetration of radiation. The interested
photon energy is beyond the threshold for breaking bonds in polymer materials, i.e., above
several eV, i.e., the UV and VUV range of wavelengths. The absorption depth of photons
depends on the type of polymer and concentration of impurities that act as absorption sites.
The absorption coefficient is a complex function of the photon energy even for pristine
polymers [42], let alone textiles made from finite-purity materials. As a rule of thumb,
the penetration depth decreases with increasing photon energy and becomes only 0.1 µm
or less when the photon energy is above, say, 8 eV [43]. Such energetic radiation will, of
course, penetrate the gaps between the fibers but will be absorbed into the relatively thin
surface film of a fiber. If the textile porosity is large, the radiation will penetrate deep into
the textile and break bonds in the surface film of polymer fibers. The dangling bonds may
be occupied with gaseous molecules, so the functionalization with new functional groups
may occur upon exposure of textiles to (V)UV radiation in the presence of a reactive gas
such as oxygen.

The penetration depth of particles such as charged particles, metastables, and radicals
in the textile treated with a continuous plasma will depend predominantly on the surface
loss coefficients. As already mentioned and illustrated in Figure 8b, the electrons are fast as
compared to any other plasma particle, so they will be the first to be lost by attachment to the
fiber’s surface. The positively charged ions will be attracted by the negative surface charge
and will also be lost quickly because the surface neutralization efficiency is practically 100%.
Negatively charged ions will be reflected upon entering the sheath, so they cannot reach the
textile surface unless in cases of intentional RF biasing, which is beyond the scope of this
text. On the other hand, metastables and radicals may suffer numerous collisions with the
polymer surface before they finally relax, recombine, or are lost by chemical bonding to the
polymer surface. The penetration depth of various plasma species in cases of streamer-free
discharges (i.e., continuous plasma) is illustrated in Figure 9.
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4. Surface Modifications Caused by Plasma Species

Once the penetration depths are known, it is possible to provide an illustration of the
textile modifications upon treatment with gaseous plasma. Obviously, the inhomogeneous
treatment over the entire thickness of the textile cannot be avoided but could be suppressed
by the appropriate design of the treatment device and choice of the discharge parameters.
Below are listed the effects of treatment by different plasma species.

4.1. Electrons

As illustrated in Figures 8 and 9, the electrons will cause a negative charge of the
fibers on the surface (Figure 9) or even deep inside the textile (Figure 8). The negative
charge will retard all but the fastest electrons arriving from the gaseous plasma toward the
fibers’ surfaces. As a result, the kinetic energy of a vast majority of electrons impinging the
polymer surface will be below the threshold for breaking bonds. Therefore, the electrons
have little effect on the textile modifications, except in the case of RF biasing, which is
beyond the scope of this text. In almost all practical cases, the effect of electrons on the
surface finish of textiles is marginal.

4.2. Positively Charged Ions

If the negatively charged electrons are retarded by the surface charge, the positively
charged ions are accelerated toward the surface, as illustrated in Figures 8 and 9. There
is always a successive negative charge on the surface of any material facing plasma, so
the positively charged ions will impinge surfaces full of negatively charged electrons and
will neutralize. Surface neutralization is very efficient, with the probability very close to
100%. The excessive energy (the ionization energy) will be dissipated on the fiber surface,
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so the surface will be heated. Furthermore, the kinetic energy of positively charged ions
impinging the surface will also end up heating the fibers according to Equation (2). The
kinetic energy of ions (about 10 eV in the most common case when the textile is left at
floating potential) is larger than the bond strength in the polymer materials (several eV)
so the ions impinging the surface are likely to interact chemically with the solid material.
On the other hand, the kinetic energy of positively charged ions (roughly 10 eV when
the textile is at floating potential) will not cause sputtering. The effect of the interaction
between the positively charged ions and the pristine polymer is surface functionalization
with groups that result from chemical interaction. If the ions are O2

+, O+, or (OH)+, the
newly formed functional groups will be C-OH, C=O, O-C=O, C-O-C, and so on. The effect
will be limited to the very surface of the fiber unless some diffusion of successive surface
oxygen occurs. The surface will soon be saturated with polar functional groups. Prolonged
treatment will cause oversaturation, formation of low molecular weight fragments, and
desorption of such fragments from the surface. Macroscopically, these effects will cause
etching. The etching will be enhanced due to the heating caused by the dissipation of the
potential and kinetic energy of positively charged ions impinging the surface. The etching
is rarely laterally uniform, so nanostructuring of the fibers will occur. The combination
of polar surface functional groups and rich morphology on the sub-micrometer scale will
cause a super-hydrophilic surface finish [44] and, thus, excellent soaking dynamics upon
wetting the textile. Obviously, the surface finish will depend on the fluence of ions on the
surface, the surface temperature, and the type of polymer. The effect of positively charged
ions is illustrated in Figure 10.
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4.3. Negatively Charged Ions

As already mentioned, the surfaces facing non-equilibrium gaseous plasma are biased
negatively against the plasma because of the adsorption of free electrons from gaseous
plasma. The negatively charged ions (relevant only for plasmas sustained in electronegative
gases) will be retarded by the surface potential and be directed back to bulk plasma.
Therefore, the negatively charged ions will not reach the fiber surface, so any discussion of
interaction with the fibers is not necessary.
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4.4. Metastables

Electrons of adequate energy will cause the excitation of both neutral molecules and
atoms, as well as ions, into electronically excited states. The excitation occurs in the gaseous
plasma where the electron density and temperature are rather large. The excited states
may be resonant, meaning that they will immediately (in a time measured in nanoseconds)
relax by emitting a photon. Many states, however, are metastable because of the rules of
quantum physics, which prevent the relaxation by electrical dipole radiation. The lifetime
of such excited states may be long enough to enable the metastables to reach the surface. On
the surface, the excitation energy may be transferred to an electron bonded to the polymer
surface, thus causing surface modification. The effect is yet to be elaborated because very
few results on the interaction between oxygen metastables and polymer materials have
been published, although plasma scientists often take them into account when explaining
mechanisms in oxygen plasmas [45–47].

4.5. Molecular Radicals, including Atoms

The neutral reactive particles usually govern the surface chemistry upon treatment of
polymer materials with oxygen plasma [48]. In almost all practical cases, their concentration
in gaseous plasma is orders of magnitude larger than the concentration of charged parti-
cles [20]. In low-pressure plasmas, the main reason for the large concentration of neutral
reactive particles is the excellent stability in the gas phase. Namely, the recombination
of simple radicals like atoms to parent molecules in the gas phase requires a three-body
collision. Such collisions are scarce at pressures below a few mbar. The lifetime of atoms in
a properly designed experimental system is more than a millisecond [49], so the radicals
may pass several meters from the source (i.e., dense plasma) [50]. The recombination in
low-pressure systems takes place practically exclusively on surfaces. Unlike the neutraliza-
tion of charged particles with almost 100% probability, the surface recombination of neutral
radicals depends enormously on the type of materials facing plasma [51], and may be as
low as 0.001 for some types of polymers [52]. The neutral reactive species will therefore
diffuse in the space between the fibers of the textile and may actually cause significant
chemical modification of fibers deep inside the textile, providing the loss on polymer
fibers by surface recombination is marginal. The atoms are often in thermal equilibrium
with the neutral gas, so their temperature will not be much over room temperature. As a
consequence, the atoms will not cause heating of the textile unless a chemical or physical
reaction occurs on the fiber surface. The physical reaction is surface recombination to parent
molecules, while the chemical reactions cause polymer oxidation. The oxidation kinetics
are complex. For example, Longo et al. [1] found as many as 20 binding sites with different
adsorption energies even for pristine polymer, let alone partially oxidized material. By far
the most probable interaction is the substitution of C-H with C-OH [1]. Hydroxyl groups
are, therefore, the first to be formed on a polymer surface. In fact, experiments show that
the surface saturation with hydroxyl groups occurs at the dose of O atoms of 1019 m−2 [5].
If the atom density next to the fiber is 1021 m−3, the saturation occurs in 0.1 ms! Much
larger doses are needed for saturating the surface with other oxygen-containing functional
groups, but 1022 m−2 is enough for many polymers, including fluorinated ones [4].

The unique advantage of using neutral radicals over positively charged ions is excellent
efficiency for surface oxidation. An atom will either interact chemically with a polymer
surface or will experience an elastic collision and will not cause surface heating. The heating
also occurs at surface recombination, but the coefficient is low for most polymers [52], so
the atoms represent the plasma species of choice when functionalization of fibers deep in
the textile is desired without significant heating of the textile surface. The interaction of
O atoms with a polymer fiber is shown in Figure 11. Large doses will cause etching, but
the effect is marginal as compared to etching rates observed for treatment with positively
charged ions.
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atoms. a—before interaction, b—after receiving the dose of about 1019m−3, c—after receiving the
dose of about 1022 m−3, and d—after very large doses.

At atmospheric pressure, the loss of radicals in the gas phase is efficient in molecular
gases and less efficient in noble gases with a small admixture (typically up to about 1 vol.%)
of molecular gas. That is one of the reasons for using noble gases in atmospheric-pressure
plasmas. In any case, the maximal achievable atom density at atmospheric plasmas is
practically the same as in low-pressure plasmas, i.e., roughly about 1021 m−3 [53]. The
energy efficiency of atmospheric-pressure plasmas, especially those sustained in molecular
gases such as oxygen or air, is inferior to the efficiency of low-pressure plasmas sustained
in dielectric tubes by electrodeless discharges because of the extensive recombination of
atoms to parent molecules at three-body collisions at atmospheric pressure.

5. Conclusions

An insight into the plasma techniques for the functionalization of textiles from the
perspective of plasma science was presented. Plasma sustained in pure noble gases does
not contain chemically reactive particles but is a source of VUV and UV radiation which
breaks bonds in the polymer material and thus provides dangling bonds to be occupied
upon exposure to reactive gases. The efficiency is rather inadequate because the photons
are not absorbed in the very-surface film useful for functionalization with desired surface
functional groups but rather in a thicker film, typically about 100 nm for very energetic
photons of 8 eV and above, more for less energetic photons. The effect of other plasma
species is limited to the very surface, especially when the textile is kept at a floating potential
(which is true in all practical cases). The reactive plasma particles are predominantly formed
at an impact with an energetic electron in gaseous plasma, but the loss will be in the gas
phase at elevated pressure (atmospheric and above), and on surfaces at low pressure (a few
mbar and below). In between atmospheric and low pressure, there is a range of pressures
rarely tackled by scientists or users of plasma technologies. The energy dissipated at the
neutralization of charged particles and the recombination of radicals, including atoms, to
stable molecules will cause heating. Gaseous molecules will be heated in atmospheric-
pressure plasmas, while in low pressure, the surfaces will be heated. Low-pressure plasmas
are usually sustained in the continuous mode and are rich in neutral reactive particles that
are useful for chemical interaction with polymer surfaces. While the atmospheric-pressure
plasmas can be sustained in the continuous mode, they are not very useful for the treatment
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of textiles due to the high-power density needed for sustaining the continuous plasma
at high pressure. From this aspect, it is advisable to use atmospheric plasmas, which
operate in streamers—current pulses of duration of the order of µs occurring stochastically
in the discharge gap. The streamers are actually ionization wavefronts progressing from
the powered electrode at a speed of roughly 104 m/s. The ionization wavefronts leave
behind non-equilibrium gaseous plasma, which is of short duration because of numerous
collisions which lead to the gas thermalization and thus the loss of chemically reactive
particles useful for surface functionalization of polymers. An advantage that makes the
atmospheric-pressure plasmas attractive for the treatment of textiles is the ability to sustain
plasma even inside the textile, in the space between the fibers, providing the electron
density within the streamer is large enough so that the space charge can suppress their
loss on the surfaces. By using streamers of high electron density, it is possible to obtain the
desired surface finish of the entire textile despite the localized character of the streamers.
On the contrary, low-pressure plasmas assure a large density of molecular radicals, in
particular atoms, which may diffuse in the space between the fibers and cause surface
chemistry even on fibers rather deep in the textiles. The charged particles will always cause
significant heating of the materials facing them, so the plasma of a large density of charged
particles may cause overheating of the fibers on the textile surface while leaving the fibers
deep inside the textile inadequately treated.
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4. Lojen, D.; Zaplotnik, R.; Primc, G.; Mozetič, M.; Vesel, A. Optimization of surface wettability of polytetrafluoroethylene (PTFE) by
precise dosing of oxygen atoms. Appl. Surf. Sci. 2022, 598, 153817. [CrossRef]
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15. Tudoran, C.; Roşu, M.C.; Coroş, M. A concise overview on plasma treatment for application on textile and leather materials.

Plasma. Processes. Polym. 2020, 17, 2000046. [CrossRef]
16. Mowafi, S.; Abou Taleb, M.; El-Sayed, H.E.-D. A Review of Plasma-assisted Treatments of Textiles for Eco-friendlier Water-less

Processing. Egypt. J. Chem. 2022, 5, 737–749. [CrossRef]
17. Yilma, B.B.; Luebben, J.F.; Nalankilli, G. Cold Plasma Treatment in Wet Chemical Textile Processing. Fibres Text. East. Eur. 2020,

28, 118–126. [CrossRef]
18. Gorjanc, M.; Mozetic, M. Modification of Fibrous Polymers by Gaseous Plasma; LAP LAMBERT Academic Publishing: Saartbrücken,

Germany, 2014.
19. Petrovska, S.; Sergiienko, R.; Ilkiv, B.; Nakamura, T.; Ohtsuka, M. Influence of sputtering power on optical, electrical properties

and structure of aluminum-doped indium saving indium-tin oxide thin films sputtered on preheated substrates. Mol. Cryst.
Liquid Cryst. 2022, 1–9. [CrossRef]

20. Primc, G. Generation of Neutral Chemically Reactive Species in Low-Pressure Plasma. Front. Phys. 2022, 10, 895264. [CrossRef]
21. Wickramanayaka, S.; Meikle, S.; Kobayashi, T.; Hosokawa, N.; Hatanaka, Y. Measurements of catalytic efficiency of surfaces for

the removal of atomic oxygen using NO2* continuum. J. Vac. Sci. Technol. A-Vac. Surf. Films 1991, 9, 2999–3002. [CrossRef]
22. Lee, H.-C.; Oh, S.; Chung, C.-W. Experimental observation of the skin effect on plasma uniformity in inductively coupled plasmas

with a radio frequency bias. Plasma Sources Sci. Technol. 2012, 21, 035003. [CrossRef]
23. Apostol, M. Penetration depth of an electric field in a semi-infinite classical plasma. Optik 2020, 220, 165009. [CrossRef]
24. Chabert, P.; Tsankov, T.V.; Czarnetzki, U. Foundations of capacitive and inductive radio-frequency discharges. Plasma Sources Sci.

Technol. 2021, 30, 024001. [CrossRef]
25. Zaka-ul-Islam, M.; O’Connell, D.; Graham, W.G.; Gans, T. Electron dynamics and frequency coupling in a radio-frequency

capacitively biased planar coil inductively coupled plasma system. Plasma Sources Sci. Technol. 2015, 24, 044007. [CrossRef]
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