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Abstract: Mutations in homodimeric isocitrate dehydrogenase (IDH) enzymes at specific arginine
residues result in the abnormal activity to overproduce D-2 hydroxyglutarate (D-2HG), which is
often projected as solid oncometabolite in cancers and other disorders. As a result, depicting the
potential inhibitor for D-2HG formation in mutant IDH enzymes is a challenging task in cancer
research. The mutation in the cytosolic IDH1 enzyme at R132H, especially, may be associated with
higher frequency of all types of cancers. So, the present work specifically focuses on the design
and screening of allosteric site binders to the cytosolic mutant IDH1 enzyme. The 62 reported drug
molecules were screened along with biological activity to identify the small molecular inhibitors
using computer-aided drug design strategies. The designed molecules proposed in this work show
better binding affinity, biological activity, bioavailability, and potency toward the inhibition of D-2HG
formation compare to the reported drugs in the in silico approach.

Keywords: chirality; oncometabolite; epigenetics; cancers; 2-Hydroxyglutarate; inhibitors; 3D-QSAR;
molecular docking; molecular dynamics simulation; ADME; drug discovery; CADD

1. Introduction

The wild-type cytosolic and mitochondrial homodimeric isocitrate dehydrogenase
(IDH1/2) enzymes often catalyze the reversible oxidative decarboxylation of isocitrate into α-
ketoglutarate (α-KG) using nicotinamide adenine dinucleotide phosphate (NADP+/NADPH)
as a cofactor [1]. This biochemical reaction depicts the fundamental biotransformation reac-
tion to maintain the post-translation modifications, DNA repair mechanism, cell signaling
process, lipid synthesis, antioxidant formation, and control the redox potential [2–4]. Modi-
fication in the cellular metabolic process is a dynamic process for cancer progression [5].
Likewise, the alteration in enzyme nature is largely associated with many biological modifi-
cations including oncogene activation [6]. The mutations in IDH enzymes, especially, have
an unexpected role in the genesis and progression of human malignancies [7]. Various clin-
ical studies also state that the somatic point mutation in the mutant IDH (mIDH) enzymes
causes a broad range of cancers [8]. Frequent experimental reports confirm that the muta-
tions in IDH1/2 are the central grounds for gliomas [9], glioblastomas [10], medulloblas-
tomas [11], acute myeloid leukemia [12], melanoma and sporadically in melanoma [13],
intrahepatic cholangiocarcinoma [14], angioimmunoblastic T cell lymphoma [15], chon-
drosarcoma [16], prostate cancer [17], and sporadically in thyroid, breast, stomach, and
pancreatic cancers and diseases including Ollier and Maffucci syndromes [7]. Mutations
in IDH1 and 2 are the fundamental hallmarks of brain cancers and they are reported
up to ≥80% in WHO grade II/III astrocytomas, oligodendrogliomas, glioblastomas, and

Molecules 2023, 28, 2315. https://doi.org/10.3390/molecules28052315 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28052315
https://doi.org/10.3390/molecules28052315
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-7559-3467
https://orcid.org/0000-0001-7201-1356
https://orcid.org/0000-0003-0920-4547
https://doi.org/10.3390/molecules28052315
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28052315?type=check_update&version=1


Molecules 2023, 28, 2315 2 of 29

oligoastrocytomas [18]. The mutations in IDH1/2 are somatic and heterozygous missense
substituted, which are recognized to be playing a dominant role in gain of function over
the wild-type enzyme. Intriguingly, the recurrent mutations in IDH1 and IDH2 occur
exclusively at precise arginine residues to change a different amino acid in active sites of
particular hotspots namely, R100Q, R132H, R132S, R132C, R132G, and R132L in IDH1, and
R140Q and R172K in IDH2. This dictates the distinct catalytic properties which activate
the oncogene pathway [19]. With respect to IDH1, the most accepted variation is R132H,
which contributes ≥89% of mutation and plays a paramount role in the mutation to pledge
the cancer progression extensively. All the remaining disparities are addressed at low
frequencies and represented as passenger mutations [20]. The specific amino acid sequence
R132 in IDH1 plays a prevailing role in the active site catalytic point of the isocitrate binding
pocket for changing NADP+ into NADPH which yields α-KG [21]. The mutations of this
enzyme change the amino acid sequence, resulting in the loss of the normal oxidative
decarboxylation of isocitrate to α-KG process and leading to the gain of the neomorphic
catalytic activity that reduces α-KG to an optically active endogenous oncometabolite 2HG
in specific to D form as a product by consuming NADPH [22,23] (Scheme 1). Mutations in
these enzymes harbor an exclusive gain of function to vary the normal cell route to produce
specific enantiomer D-2HG [24], which is reported as an important biomarker in many
cancers via the disruption of DNA and histone demethylation [25,26].
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To date, huge numbers of mIDH1 inhibitors are reported worldwide, and most of
the inhibitors are in the pre-clinical stage, except AG-120 and IDH-305. AG-120, also
known as Ivosidenib, is a potential candidate for various IDH1 mutants and the only
inhibitor which successfully entered into the phase III level of various clinical tests including
Cholangiocarcinoma, Leukemia, Acute Myeloid Cancer, and solid tumors [27]. IDH-305
is also a potential candidate for the mIDH1 enzyme and has successfully entered the
phase II level. Because of safety issues, its use was terminated for the clinical trials of
mIDH1-associated Myeloid Leukemia, Grade II and Grade III gliomas, and neurological
cancers [28,29]. Given that, it is important to continue designing small-molecular inhibitors
or drugs that are active organic compounds modulating cellular pathways by targeting
specific proteins, which have a low molecular weight and easy mobility in the biological
environment. Small-molecular drug development is a challenging task that calls for a wide
range of skills and several methodologies [30]. These small molecules can be obtained by
target-based drug discovery via utilizing the structure and activity relationship, which
typically entails target identification, target validation, assay development, hit identification,
hit-to-lead, lead optimization, candidate selection, and later development. The exploration
of the structure and activity relationship in detail yields potential, safe, and efficient
inhibitors for drug discovery pathways [31]. In this direction, our underlying aim is to
design a robust inhibitor to identify as a potential candidate to suppress the overproduction
of D-2HG via the deactivation of the mIDH1 enzyme. Based on the literature review,
62 active reported inhibitors were identified [29,32–34], which specifically focus on the
allosteric binding pocket of the mutant IDH1 enzyme.
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Computer-aided drug discovery (CADD) tools are commonly used in drug discovery
pathways which is a relatively lower-cost method to deliver potential drug candidates [35].
In CADD, the most commonly used methodology is the Quantitative Structure Activity
Relationship (QSAR) which has been applied for decades in the development of relation-
ships between physicochemical properties of chemical substances and their biological
activities to obtain a well-grounded statistical model to design the potential drugs [36].
The three-dimensional QSAR (3D-QSAR) model is a statistical analysis method of the
structure–activity relationship through the sequence of structural analogs to examine the
relationship between the ligand and the protein [37]. Likewise, Molecular Docking is the
foremost method in CADD used in a hit-to-lead optimization for drug discovery pathways
to predict the binding energy conformations of the optimized ligand, which helps to realize
the structural interaction between the ligand and its target protein [38]. The Molecular Dy-
namics (MD) simulation is the technique to describe the stability of the ligand and protein
complex over time, under dynamic conditions [39]. Absorption, Distribution, Metabolism,
and Excretion (ADME) are the fundamental properties to confirm the organic compound
as the lead molecule in the biological condition via the pharmacokinetic properties such as
drug-likeness, bioavailability, and synthetic accessibility [40]. So, the periodic combination
of 3D-QSAR, Molecular Docking, MD simulation, and ADME studies is considered a stan-
dard method to investigate the binding nature between the ligand and its target receptor.
In the present work, the research findings are systematically validated using 3D-QSAR,
Molecular Docking, MD simulation, and ADME to figure out the potential inhibitors of
the potent R132H in the mIDH enzyme at the allosteric site. To address our hypothesis,
uniform analyses are performed to identify the hit molecules via the structure-activity
relationship of Imidazole-Pyrimidine-Oxazolidin-based derivatives [29,32–34] as discussed
earlier using 3D-QSAR modeling to build the effective predicted half maximal inhibitory
concentration (pIC50) value and identify the required structural modification via the gener-
ated 3D contour maps. Based on the results, 3459 compounds are designed and shortlisted
into 600 molecules to check their binding energy using molecular docking analysis and
authenticate the 3D-QSAR results to discover the ligand–receptor interactions. Based on
the docking results, the designed molecules are further subjected to MD simulation and
ADME studies to validate the designed molecules that are potential candidates for the
mutant IDH1 enzyme at the allosteric binding pocket.

2. Result and Discussion
2.1. 3D-QSAR

The fundamental principle underlying 3D-QSAR is that the difference in structural
properties (3D-descriptors) is responsible for the variations in the biological activities (IC50)
of the compounds; this leads to optimizing a series of compounds and identifying the target
molecules. The result of the 3D-QSAR helps to enhance the specificity and potency of the
small chemical moieties via altering the structural chemical changes of the compounds
which enhances the affinity of the compounds for its target to preserve its original binding
mode while forming additional and advantageous connections [36,41]. Based on these tech-
niques and incorporated with the use of rational computational approaches, the neutralized
reported compounds are split into a test set (17 compounds = 27.41%) and a training set
(45 compounds = 72.59%) using the ratio of 70:30 to build a better Field-Based-3D-QSAR
(FB-3D-QSAR) model. The FB-3D-QSAR is an advanced technique and is an execution of
the CoMFA/CoMSIA methods with a specific set of parameters. It begins with the known
activity of aligned compounds and predicts the biologically active or inactive ligands via
steric, electrostatic, hydrophobic, and hydrogen bond donor and acceptor fields [42]. The
resulting test set and a training set of reported molecules along with their biological activity
and the parameters are shown in Table 1.
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Table 1. Test set and training set compounds with their parameters using FB-3D-QSAR method.

S.NO Reported Compounds QSAR Set
Reported
Biological
Activity

Predicted
Biological
Activity

RC-01
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Table 1. Cont.

S.NO Reported Compounds QSAR Set
Reported
Biological
Activity
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Biological
Activity
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Table 1. Cont.

S.NO Reported Compounds QSAR Set
Reported
Biological
Activity
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Biological
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RC-22 

 

Training 7.585 7.636 

RC-23 

 

Training 7.569 7.410 

Test 7.602 7.205
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Table 1. Cont.

S.NO Reported Compounds QSAR Set
Reported
Biological
Activity

Predicted
Biological
Activity

RC-22

Molecules 2023, 28, x FOR PEER REVIEW 6 of 30 
 

 

RC-16 

 

Training 7.717 7.687 

RC-17 

 

Training 7.658 8.097 

RC-18 

 

Training 7.623 7.902 

RC-19 

 

Training 7.620 7.487 

RC-20 

 

Test 7.618 7.527 

RC-21 

 

Test 7.602 7.205 

RC-22 

 

Training 7.585 7.636 

RC-23 

 

Training 7.569 7.410 

Training 7.585 7.636

RC-23

Molecules 2023, 28, x FOR PEER REVIEW 6 of 30 
 

 

RC-16 

 

Training 7.717 7.687 

RC-17 

 

Training 7.658 8.097 

RC-18 

 

Training 7.623 7.902 

RC-19 

 

Training 7.620 7.487 

RC-20 

 

Test 7.618 7.527 

RC-21 

 

Test 7.602 7.205 

RC-22 

 

Training 7.585 7.636 

RC-23 

 

Training 7.569 7.410 Training 7.569 7.410

RC-24

Molecules 2023, 28, x FOR PEER REVIEW 7 of 30 
 

 

RC-24 

 

Training 7.523 7.335 

RC-25 

 

Test 7.495 6.904 

RC-26 

 

Training 7.495 7.505 

RC-27 

 

Training 7.476 7.554 

RC-28 

 

Training 7.471 7.599 

RC-29 

 

Training 7.456 7.358 

RC-30 

 

Training 7.444 7.325 

RC-31 

 

Training 7.444 7.481 

Training 7.523 7.335

RC-25

Molecules 2023, 28, x FOR PEER REVIEW 7 of 30 
 

 

RC-24 

 

Training 7.523 7.335 

RC-25 

 

Test 7.495 6.904 

RC-26 

 

Training 7.495 7.505 

RC-27 

 

Training 7.476 7.554 

RC-28 

 

Training 7.471 7.599 

RC-29 

 

Training 7.456 7.358 

RC-30 

 

Training 7.444 7.325 

RC-31 

 

Training 7.444 7.481 

Test 7.495 6.904

RC-26

Molecules 2023, 28, x FOR PEER REVIEW 7 of 30 
 

 

RC-24 

 

Training 7.523 7.335 

RC-25 

 

Test 7.495 6.904 

RC-26 

 

Training 7.495 7.505 

RC-27 

 

Training 7.476 7.554 

RC-28 

 

Training 7.471 7.599 

RC-29 

 

Training 7.456 7.358 

RC-30 

 

Training 7.444 7.325 

RC-31 

 

Training 7.444 7.481 

Training 7.495 7.505

RC-27

Molecules 2023, 28, x FOR PEER REVIEW 7 of 30 
 

 

RC-24 

 

Training 7.523 7.335 

RC-25 

 

Test 7.495 6.904 

RC-26 

 

Training 7.495 7.505 

RC-27 

 

Training 7.476 7.554 

RC-28 

 

Training 7.471 7.599 

RC-29 

 

Training 7.456 7.358 

RC-30 

 

Training 7.444 7.325 

RC-31 

 

Training 7.444 7.481 

Training 7.476 7.554

RC-28

Molecules 2023, 28, x FOR PEER REVIEW 7 of 30 
 

 

RC-24 

 

Training 7.523 7.335 

RC-25 

 

Test 7.495 6.904 

RC-26 

 

Training 7.495 7.505 

RC-27 

 

Training 7.476 7.554 

RC-28 

 

Training 7.471 7.599 

RC-29 

 

Training 7.456 7.358 

RC-30 

 

Training 7.444 7.325 

RC-31 

 

Training 7.444 7.481 

Training 7.471 7.599
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Table 1. Cont.

S.NO Reported Compounds QSAR Set
Reported
Biological
Activity

Predicted
Biological
Activity

RC-29

Molecules 2023, 28, x FOR PEER REVIEW 7 of 30 
 

 

RC-24 

 

Training 7.523 7.335 

RC-25 

 

Test 7.495 6.904 

RC-26 

 

Training 7.495 7.505 

RC-27 

 

Training 7.476 7.554 

RC-28 

 

Training 7.471 7.599 

RC-29 

 

Training 7.456 7.358 

RC-30 

 

Training 7.444 7.325 

RC-31 

 

Training 7.444 7.481 

Training 7.456 7.358

RC-30

Molecules 2023, 28, x FOR PEER REVIEW 7 of 30 
 

 

RC-24 

 

Training 7.523 7.335 

RC-25 

 

Test 7.495 6.904 

RC-26 

 

Training 7.495 7.505 

RC-27 

 

Training 7.476 7.554 

RC-28 

 

Training 7.471 7.599 

RC-29 

 

Training 7.456 7.358 

RC-30 

 

Training 7.444 7.325 

RC-31 

 

Training 7.444 7.481 

Training 7.444 7.325

RC-31

Molecules 2023, 28, x FOR PEER REVIEW 7 of 30 
 

 

RC-24 

 

Training 7.523 7.335 

RC-25 

 

Test 7.495 6.904 

RC-26 

 

Training 7.495 7.505 

RC-27 

 

Training 7.476 7.554 

RC-28 

 

Training 7.471 7.599 

RC-29 

 

Training 7.456 7.358 

RC-30 

 

Training 7.444 7.325 

RC-31 

 

Training 7.444 7.481 Training 7.444 7.481

RC-32

Molecules 2023, 28, x FOR PEER REVIEW 8 of 30 
 

 

RC-32 

 

Training 7.409 7.420 

RC-33 

 

Training 7.398 7.231 

RC-34 

 

Training 7.387 7.371 

RC-35 

 

Training 7.377 7.439 

RC-36 

 

Training 7.377 7.248 

RC-37 

 

Training 7.370 7.590 

RC-38 

 

Training 7.354 7.414 

RC-39 

 

Training 7.328 7.366 

Training 7.409 7.420

RC-33

Molecules 2023, 28, x FOR PEER REVIEW 8 of 30 
 

 

RC-32 

 

Training 7.409 7.420 

RC-33 

 

Training 7.398 7.231 

RC-34 

 

Training 7.387 7.371 

RC-35 

 

Training 7.377 7.439 

RC-36 

 

Training 7.377 7.248 

RC-37 

 

Training 7.370 7.590 

RC-38 

 

Training 7.354 7.414 

RC-39 

 

Training 7.328 7.366 

Training 7.398 7.231

RC-34

Molecules 2023, 28, x FOR PEER REVIEW 8 of 30 
 

 

RC-32 

 

Training 7.409 7.420 

RC-33 

 

Training 7.398 7.231 

RC-34 

 

Training 7.387 7.371 

RC-35 

 

Training 7.377 7.439 

RC-36 

 

Training 7.377 7.248 

RC-37 

 

Training 7.370 7.590 

RC-38 

 

Training 7.354 7.414 

RC-39 

 

Training 7.328 7.366 

Training 7.387 7.371

RC-35

Molecules 2023, 28, x FOR PEER REVIEW 8 of 30 
 

 

RC-32 

 

Training 7.409 7.420 

RC-33 

 

Training 7.398 7.231 

RC-34 

 

Training 7.387 7.371 

RC-35 

 

Training 7.377 7.439 

RC-36 

 

Training 7.377 7.248 

RC-37 

 

Training 7.370 7.590 

RC-38 

 

Training 7.354 7.414 

RC-39 

 

Training 7.328 7.366 

Training 7.377 7.439
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Table 1. Cont.

S.NO Reported Compounds QSAR Set
Reported
Biological
Activity

Predicted
Biological
Activity

RC-36

Molecules 2023, 28, x FOR PEER REVIEW 8 of 30 
 

 

RC-32 

 

Training 7.409 7.420 

RC-33 

 

Training 7.398 7.231 

RC-34 

 

Training 7.387 7.371 

RC-35 

 

Training 7.377 7.439 

RC-36 

 

Training 7.377 7.248 

RC-37 

 

Training 7.370 7.590 

RC-38 

 

Training 7.354 7.414 

RC-39 

 

Training 7.328 7.366 

Training 7.377 7.248

RC-37

Molecules 2023, 28, x FOR PEER REVIEW 8 of 30 
 

 

RC-32 

 

Training 7.409 7.420 

RC-33 

 

Training 7.398 7.231 

RC-34 

 

Training 7.387 7.371 

RC-35 

 

Training 7.377 7.439 

RC-36 

 

Training 7.377 7.248 

RC-37 

 

Training 7.370 7.590 

RC-38 

 

Training 7.354 7.414 

RC-39 

 

Training 7.328 7.366 

Training 7.370 7.590

RC-38

Molecules 2023, 28, x FOR PEER REVIEW 8 of 30 
 

 

RC-32 

 

Training 7.409 7.420 

RC-33 

 

Training 7.398 7.231 

RC-34 

 

Training 7.387 7.371 

RC-35 

 

Training 7.377 7.439 

RC-36 

 

Training 7.377 7.248 

RC-37 

 

Training 7.370 7.590 

RC-38 

 

Training 7.354 7.414 

RC-39 

 

Training 7.328 7.366 

Training 7.354 7.414

RC-39

Molecules 2023, 28, x FOR PEER REVIEW 8 of 30 
 

 

RC-32 

 

Training 7.409 7.420 

RC-33 

 

Training 7.398 7.231 

RC-34 

 

Training 7.387 7.371 

RC-35 

 

Training 7.377 7.439 

RC-36 

 

Training 7.377 7.248 

RC-37 

 

Training 7.370 7.590 

RC-38 

 

Training 7.354 7.414 

RC-39 

 

Training 7.328 7.366 Training 7.328 7.366

RC-40

Molecules 2023, 28, x FOR PEER REVIEW 9 of 30 
 

 

RC-40 

 

Training 7.321 7.482 

RC-41 

 

Training 7.310 7.202 

RC-42 

 

Training 7.294 7.447 

RC-43 

 

Training 7.268 7.351 

RC-44 

 

Test 7.252 7.044 

RC-45 

 

Training 7.208 7.281 

RC-46 

 

Training 7.187 7.457 

RC-47 

 

Training 7.071 6.963 

Training 7.321 7.482

RC-41

Molecules 2023, 28, x FOR PEER REVIEW 9 of 30 
 

 

RC-40 

 

Training 7.321 7.482 

RC-41 

 

Training 7.310 7.202 

RC-42 

 

Training 7.294 7.447 

RC-43 

 

Training 7.268 7.351 

RC-44 

 

Test 7.252 7.044 

RC-45 

 

Training 7.208 7.281 

RC-46 

 

Training 7.187 7.457 

RC-47 

 

Training 7.071 6.963 

Training 7.310 7.202

RC-42

Molecules 2023, 28, x FOR PEER REVIEW 9 of 30 
 

 

RC-40 

 

Training 7.321 7.482 

RC-41 

 

Training 7.310 7.202 

RC-42 

 

Training 7.294 7.447 

RC-43 

 

Training 7.268 7.351 

RC-44 

 

Test 7.252 7.044 

RC-45 

 

Training 7.208 7.281 

RC-46 

 

Training 7.187 7.457 

RC-47 

 

Training 7.071 6.963 

Training 7.294 7.447
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Table 1. Cont.

S.NO Reported Compounds QSAR Set
Reported
Biological
Activity

Predicted
Biological
Activity

RC-43

Molecules 2023, 28, x FOR PEER REVIEW 9 of 30 
 

 

RC-40 

 

Training 7.321 7.482 

RC-41 

 

Training 7.310 7.202 

RC-42 

 

Training 7.294 7.447 

RC-43 

 

Training 7.268 7.351 

RC-44 

 

Test 7.252 7.044 

RC-45 

 

Training 7.208 7.281 

RC-46 

 

Training 7.187 7.457 

RC-47 

 

Training 7.071 6.963 

Training 7.268 7.351

RC-44

Molecules 2023, 28, x FOR PEER REVIEW 9 of 30 
 

 

RC-40 

 

Training 7.321 7.482 

RC-41 

 

Training 7.310 7.202 

RC-42 

 

Training 7.294 7.447 

RC-43 

 

Training 7.268 7.351 

RC-44 

 

Test 7.252 7.044 

RC-45 

 

Training 7.208 7.281 

RC-46 

 

Training 7.187 7.457 

RC-47 

 

Training 7.071 6.963 

Test 7.252 7.044

RC-45

Molecules 2023, 28, x FOR PEER REVIEW 9 of 30 
 

 

RC-40 

 

Training 7.321 7.482 

RC-41 

 

Training 7.310 7.202 

RC-42 

 

Training 7.294 7.447 

RC-43 

 

Training 7.268 7.351 

RC-44 

 

Test 7.252 7.044 

RC-45 

 

Training 7.208 7.281 

RC-46 

 

Training 7.187 7.457 

RC-47 

 

Training 7.071 6.963 

Training 7.208 7.281

RC-46

Molecules 2023, 28, x FOR PEER REVIEW 9 of 30 
 

 

RC-40 

 

Training 7.321 7.482 

RC-41 

 

Training 7.310 7.202 

RC-42 

 

Training 7.294 7.447 

RC-43 

 

Training 7.268 7.351 

RC-44 

 

Test 7.252 7.044 

RC-45 

 

Training 7.208 7.281 

RC-46 

 

Training 7.187 7.457 

RC-47 

 

Training 7.071 6.963 

Training 7.187 7.457

RC-47

Molecules 2023, 28, x FOR PEER REVIEW 9 of 30 
 

 

RC-40 

 

Training 7.321 7.482 

RC-41 

 

Training 7.310 7.202 

RC-42 

 

Training 7.294 7.447 

RC-43 

 

Training 7.268 7.351 

RC-44 

 

Test 7.252 7.044 

RC-45 

 

Training 7.208 7.281 

RC-46 

 

Training 7.187 7.457 

RC-47 

 

Training 7.071 6.963 Training 7.071 6.963

RC-48

Molecules 2023, 28, x FOR PEER REVIEW 10 of 30 
 

 

RC-48 

 

Training 6.951 9.967 

RC-49 

 

Training 6.922 6.937 

RC-50 

 

Training 6.891 6.956 

RC-51 

 

Training 6.818 6.872 

RC-52 

 

Test 6.658 6.398 

RC-53 

 

Test 6.620 8.192 

RC-54 

 

Test 6.602 6.843 

RC-55 

 

Test 6.575 7.394 

Training 6.951 9.967

RC-49

Molecules 2023, 28, x FOR PEER REVIEW 10 of 30 
 

 

RC-48 

 

Training 6.951 9.967 

RC-49 

 

Training 6.922 6.937 

RC-50 

 

Training 6.891 6.956 

RC-51 

 

Training 6.818 6.872 

RC-52 

 

Test 6.658 6.398 

RC-53 

 

Test 6.620 8.192 

RC-54 

 

Test 6.602 6.843 

RC-55 

 

Test 6.575 7.394 

Training 6.922 6.937
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Table 1. Cont.

S.NO Reported Compounds QSAR Set
Reported
Biological
Activity

Predicted
Biological
Activity

RC-50

Molecules 2023, 28, x FOR PEER REVIEW 10 of 30 
 

 

RC-48 

 

Training 6.951 9.967 

RC-49 

 

Training 6.922 6.937 

RC-50 

 

Training 6.891 6.956 

RC-51 

 

Training 6.818 6.872 

RC-52 

 

Test 6.658 6.398 

RC-53 

 

Test 6.620 8.192 

RC-54 

 

Test 6.602 6.843 

RC-55 

 

Test 6.575 7.394 

Training 6.891 6.956

RC-51

Molecules 2023, 28, x FOR PEER REVIEW 10 of 30 
 

 

RC-48 

 

Training 6.951 9.967 

RC-49 

 

Training 6.922 6.937 

RC-50 

 

Training 6.891 6.956 

RC-51 

 

Training 6.818 6.872 

RC-52 

 

Test 6.658 6.398 

RC-53 

 

Test 6.620 8.192 

RC-54 

 

Test 6.602 6.843 

RC-55 

 

Test 6.575 7.394 

Training 6.818 6.872

RC-52

Molecules 2023, 28, x FOR PEER REVIEW 10 of 30 
 

 

RC-48 

 

Training 6.951 9.967 

RC-49 

 

Training 6.922 6.937 

RC-50 

 

Training 6.891 6.956 

RC-51 

 

Training 6.818 6.872 

RC-52 

 

Test 6.658 6.398 

RC-53 

 

Test 6.620 8.192 

RC-54 

 

Test 6.602 6.843 

RC-55 

 

Test 6.575 7.394 

Test 6.658 6.398

RC-53

Molecules 2023, 28, x FOR PEER REVIEW 10 of 30 
 

 

RC-48 

 

Training 6.951 9.967 

RC-49 

 

Training 6.922 6.937 

RC-50 

 

Training 6.891 6.956 

RC-51 

 

Training 6.818 6.872 

RC-52 

 

Test 6.658 6.398 

RC-53 

 

Test 6.620 8.192 

RC-54 

 

Test 6.602 6.843 

RC-55 

 

Test 6.575 7.394 

Test 6.620 8.192

RC-54

Molecules 2023, 28, x FOR PEER REVIEW 10 of 30 
 

 

RC-48 

 

Training 6.951 9.967 

RC-49 

 

Training 6.922 6.937 

RC-50 

 

Training 6.891 6.956 

RC-51 

 

Training 6.818 6.872 

RC-52 

 

Test 6.658 6.398 

RC-53 

 

Test 6.620 8.192 

RC-54 

 

Test 6.602 6.843 

RC-55 

 

Test 6.575 7.394 

Test 6.602 6.843

RC-55

Molecules 2023, 28, x FOR PEER REVIEW 10 of 30 
 

 

RC-48 

 

Training 6.951 9.967 

RC-49 

 

Training 6.922 6.937 

RC-50 

 

Training 6.891 6.956 

RC-51 

 

Training 6.818 6.872 

RC-52 

 

Test 6.658 6.398 

RC-53 

 

Test 6.620 8.192 

RC-54 

 

Test 6.602 6.843 

RC-55 

 

Test 6.575 7.394 Test 6.575 7.394

RC-56

Molecules 2023, 28, x FOR PEER REVIEW 11 of 30 
 

 

RC-56 

 

Training 6.320 6.070 

RC-57 

 

Training 6.252 6.442 

RC-58 

 

Test 6.215 6.964 

RC-59 

 

Training 6.142 6.224 

RC-60 

 

Training 6.086 5.996 

RC-61 

 

Test 6.080 7.028 

RC-62 

 

Test 5.000 5.909 

From the FB-3D-QSAR results, the obtained statistical data are well correlated and 
validated based on the references, as projected in Table S1 as the supporting information. 
The partial-least-square (PLS) factor 7 shows better results compared to all other factors 
where it contains minimal standard deviation (S.D = 0.1984), higher regression coefficient 
(R2 < 0.6 = 0.90), lower variance ratio, and root-mean-square error (P = 4.40 × 10−17 and 
RMSE = 0.71), and acceptable cross-validated correlation coefficient (Q2 < 0.5 = 0.5123) 
[43]. 

The reference ligands are aligned via the Tanimoto similarities [44] and clustered [45] 
based on the related central nucleus with limited disparities, as shown in Figure 1, along 

Training 6.320 6.070
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Table 1. Cont.

S.NO Reported Compounds QSAR Set
Reported
Biological
Activity

Predicted
Biological
Activity

RC-57

Molecules 2023, 28, x FOR PEER REVIEW 11 of 30 
 

 

RC-56 

 

Training 6.320 6.070 

RC-57 

 

Training 6.252 6.442 

RC-58 

 

Test 6.215 6.964 

RC-59 

 

Training 6.142 6.224 

RC-60 

 

Training 6.086 5.996 

RC-61 

 

Test 6.080 7.028 

RC-62 

 

Test 5.000 5.909 

From the FB-3D-QSAR results, the obtained statistical data are well correlated and 
validated based on the references, as projected in Table S1 as the supporting information. 
The partial-least-square (PLS) factor 7 shows better results compared to all other factors 
where it contains minimal standard deviation (S.D = 0.1984), higher regression coefficient 
(R2 < 0.6 = 0.90), lower variance ratio, and root-mean-square error (P = 4.40 × 10−17 and 
RMSE = 0.71), and acceptable cross-validated correlation coefficient (Q2 < 0.5 = 0.5123) 
[43]. 

The reference ligands are aligned via the Tanimoto similarities [44] and clustered [45] 
based on the related central nucleus with limited disparities, as shown in Figure 1, along 

Training 6.252 6.442

RC-58
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RC-56 

 

Training 6.320 6.070 

RC-57 

 

Training 6.252 6.442 

RC-58 

 

Test 6.215 6.964 

RC-59 

 

Training 6.142 6.224 

RC-60 

 

Training 6.086 5.996 

RC-61 

 

Test 6.080 7.028 

RC-62 

 

Test 5.000 5.909 

From the FB-3D-QSAR results, the obtained statistical data are well correlated and 
validated based on the references, as projected in Table S1 as the supporting information. 
The partial-least-square (PLS) factor 7 shows better results compared to all other factors 
where it contains minimal standard deviation (S.D = 0.1984), higher regression coefficient 
(R2 < 0.6 = 0.90), lower variance ratio, and root-mean-square error (P = 4.40 × 10−17 and 
RMSE = 0.71), and acceptable cross-validated correlation coefficient (Q2 < 0.5 = 0.5123) 
[43]. 

The reference ligands are aligned via the Tanimoto similarities [44] and clustered [45] 
based on the related central nucleus with limited disparities, as shown in Figure 1, along 

Test 6.215 6.964

RC-59
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RC-56 

 

Training 6.320 6.070 

RC-57 

 

Training 6.252 6.442 

RC-58 

 

Test 6.215 6.964 

RC-59 

 

Training 6.142 6.224 

RC-60 

 

Training 6.086 5.996 

RC-61 

 

Test 6.080 7.028 

RC-62 

 

Test 5.000 5.909 

From the FB-3D-QSAR results, the obtained statistical data are well correlated and 
validated based on the references, as projected in Table S1 as the supporting information. 
The partial-least-square (PLS) factor 7 shows better results compared to all other factors 
where it contains minimal standard deviation (S.D = 0.1984), higher regression coefficient 
(R2 < 0.6 = 0.90), lower variance ratio, and root-mean-square error (P = 4.40 × 10−17 and 
RMSE = 0.71), and acceptable cross-validated correlation coefficient (Q2 < 0.5 = 0.5123) 
[43]. 

The reference ligands are aligned via the Tanimoto similarities [44] and clustered [45] 
based on the related central nucleus with limited disparities, as shown in Figure 1, along 

Training 6.142 6.224

RC-60
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RC-56 

 

Training 6.320 6.070 

RC-57 

 

Training 6.252 6.442 

RC-58 

 

Test 6.215 6.964 

RC-59 

 

Training 6.142 6.224 

RC-60 

 

Training 6.086 5.996 

RC-61 

 

Test 6.080 7.028 

RC-62 

 

Test 5.000 5.909 

From the FB-3D-QSAR results, the obtained statistical data are well correlated and 
validated based on the references, as projected in Table S1 as the supporting information. 
The partial-least-square (PLS) factor 7 shows better results compared to all other factors 
where it contains minimal standard deviation (S.D = 0.1984), higher regression coefficient 
(R2 < 0.6 = 0.90), lower variance ratio, and root-mean-square error (P = 4.40 × 10−17 and 
RMSE = 0.71), and acceptable cross-validated correlation coefficient (Q2 < 0.5 = 0.5123) 
[43]. 

The reference ligands are aligned via the Tanimoto similarities [44] and clustered [45] 
based on the related central nucleus with limited disparities, as shown in Figure 1, along 

Training 6.086 5.996

RC-61
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RC-56 

 

Training 6.320 6.070 

RC-57 

 

Training 6.252 6.442 

RC-58 

 

Test 6.215 6.964 

RC-59 

 

Training 6.142 6.224 

RC-60 

 

Training 6.086 5.996 

RC-61 

 

Test 6.080 7.028 

RC-62 

 

Test 5.000 5.909 

From the FB-3D-QSAR results, the obtained statistical data are well correlated and 
validated based on the references, as projected in Table S1 as the supporting information. 
The partial-least-square (PLS) factor 7 shows better results compared to all other factors 
where it contains minimal standard deviation (S.D = 0.1984), higher regression coefficient 
(R2 < 0.6 = 0.90), lower variance ratio, and root-mean-square error (P = 4.40 × 10−17 and 
RMSE = 0.71), and acceptable cross-validated correlation coefficient (Q2 < 0.5 = 0.5123) 
[43]. 

The reference ligands are aligned via the Tanimoto similarities [44] and clustered [45] 
based on the related central nucleus with limited disparities, as shown in Figure 1, along 

Test 6.080 7.028

RC-62
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RC-56 

 

Training 6.320 6.070 

RC-57 

 

Training 6.252 6.442 

RC-58 

 

Test 6.215 6.964 

RC-59 

 

Training 6.142 6.224 

RC-60 

 

Training 6.086 5.996 

RC-61 

 

Test 6.080 7.028 

RC-62 

 

Test 5.000 5.909 

From the FB-3D-QSAR results, the obtained statistical data are well correlated and 
validated based on the references, as projected in Table S1 as the supporting information. 
The partial-least-square (PLS) factor 7 shows better results compared to all other factors 
where it contains minimal standard deviation (S.D = 0.1984), higher regression coefficient 
(R2 < 0.6 = 0.90), lower variance ratio, and root-mean-square error (P = 4.40 × 10−17 and 
RMSE = 0.71), and acceptable cross-validated correlation coefficient (Q2 < 0.5 = 0.5123) 
[43]. 

The reference ligands are aligned via the Tanimoto similarities [44] and clustered [45] 
based on the related central nucleus with limited disparities, as shown in Figure 1, along 

Test 5.000 5.909

From the FB-3D-QSAR results, the obtained statistical data are well correlated and
validated based on the references, as projected in Table S1 as the supporting information.
The partial-least-square (PLS) factor 7 shows better results compared to all other factors
where it contains minimal standard deviation (S.D = 0.1984), higher regression coefficient
(R2 < 0.6 = 0.90), lower variance ratio, and root-mean-square error (P = 4.40 × 10−17 and
RMSE = 0.71), and acceptable cross-validated correlation coefficient (Q2 < 0.5 = 0.5123) [43].

The reference ligands are aligned via the Tanimoto similarities [44] and clustered [45]
based on the related central nucleus with limited disparities, as shown in Figure 1, along



Molecules 2023, 28, 2315 13 of 29

with the physicochemical properties. The most biologically active compound is selected to
modify the favorable functional node based on the R-group enumeration method [46] to
design the potential candidate.
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Figure 1. The aligned structures of (A) 62 reported ligands using Tanimoto similarities and
the FB-3D-QSAR modeled results of favorable and unfavorable contour maps for (B) steric
(Green—Positive, Yellow—Negative), (C) electrostatic (Blue—Positive, Red—Negative), (D) hy-
drophobic (Green—Positive, Red—Negative), (E) hydrogen bond acceptor (Cyan—Positive, Pink—
Negative) and (F) donor (Blue—Positive, Red—Negative) properties.

Among the five physiochemical properties, the steric and hydrophobic functions
are playing a major role to determine and enhance the predicted biological activity of
the designed compounds. Here, the steric function contributes roughly 45% and the
hydrophobic factor contributes up to 29%, which is shown in Table S2 in the Supplementary
Materials. Based on contour map analysis, the favorable modification in the selected
molecules can result in improved activity via the functional group modifications. The most
anticipated modifications of favorable and non-favorable functional groups for steric (S
and S′) and hydrophobic (H and H′) properties are shown in Figure 2.
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favorable functional points in reference compound (RC-01). The green represents the oxazolidine
moiety, pink represents the pyrimidine moiety, and cyan represents the imidazole moiety.

The most expected favorable and non-favorable modifications of steric and hydropho-
bic functional nodes are highly available in the oxazolidine, followed by imidazole and
pyrimidine moieties. The favorable steric modification (S3) in the imidazole moiety can
observe the steric and hydrophobic repulsion through the neighboring methyl group. To
overcome this effect, the hydrophilic modification or non-favorable hydrophobic modifica-
tion (H2′), is required. Likewise, the favorable (H3, H4, and S4) and non-favorable (H3′,
S3′, H4′, and S4′) modifications of steric and hydrophobic functional groups enhance the
activity of the designed compounds in a minimal range. Similarly, the favorable modifi-
cation of steric and hydrophobic properties (S1, H1, and H2) in the oxazolidine moiety
highly augments the activity of the designed compounds due to the free rotation away
from the steric groups. The steric modification (S1), especially, will boost the activity of the
designed compound; specifically, below the plane (dative bond), not above the plane, and it
is incorporated in the ligand design. Likewise, the favorable hydrophobic (H2) modification
will increase the activity only above the plane and not below. The non-favorable steric
modification (S2′) is highly correlated with the favorable steric point (S2) of the pyrimidine
moiety due to the pyrimidine–oxazolidine rotation (N-C), and the non-favorable hydropho-
bic modification (H1′) arises due to the availability of neighboring methyl group. The
non-favorable steric modification S1′ avails above the plane to destabilize the oxazolidine
moiety. From the FB-3D-QSAR, one can conclude that the small modification in the selected
groups with specific functional nodes can dramatically increase the activity of the designed
compound. Based on the contour map results, the high biological activity of molecule
RC-01 was taken as the template molecule for further studies.

2.2. Molecular Docking

One of the most essential and widely used tools to deliver the potential drug can-
didate using low cost computer-assisted drug designing is molecular docking. The core
of molecular docking is to place the small molecules in the active region of the target
enzyme and use scoring functions to estimate a compound’s biological activity to predict
the ligand accessibility in the biological environment. Molecular docking provides essential
information about the three-dimensional structure possibilities of the specific ligand in the
various regions of its target protein connectivity to list out via the scoring functions [47].
Based on this scoring value, one can determine the binding affinity of the ligand–protein
interactions. From the FB-3D-QSAR results, the template molecule can allow modification
with the selected nodes of the specific functional groups to check their binding affinity
using the R-group enumeration method. Based on the available space in each functional
node, it is possible to generate more than 2750 entries using the diverse R-group functional-
ities [46] such as steric effects, electronegativity, hydrophobicity, and hydrogen bond donor
and acceptor nature. The limited entries were specifically selected based on the contour
map results and designed 3459 ligands, especially using steric and hydrophobic functional
nodes. A total of 936 designed molecules were selected and further allowed for the ligand
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preparation analysis [48] and finally, 600 compounds were shortlisted based on the highest
predicted biological activity, which is further examined in the molecular docking study [49].
The molecular docking results are shown in Table S3 (reference compounds) and Table
S4A,B (designed compounds) are in Supplementary Materials. Based on the molecular
docking results, two ligands were chosen as reference compounds from the reported drugs,
where one has the highest biological activity (RC-01) and another one contains the highest
binding energy (RC-02), they are considered the control group to validate the newly de-
signed compounds in this work. From the docking results, the top five designed ligands
are selected for further studies (DC-01 to DC-05). The selected designed ligands and their
parameters, along with the reference molecules, are shown in Table 2.

Table 2. The selected designed and reference compounds along with their biological activity and
docking scores.

S.NO Active Ligands Biological Activity Docking Score
kcal/mol

Glide Score
kcal/mol

RC-01
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Table 2. Cont.

S.NO Active Ligands Biological Activity Docking Score
kcal/mol

Glide Score
kcal/mol
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a—Experimental value. b—Predicted value using FB-3D-QSAR.

Based on the FB-3D-QSAR modeling, the specific steric active modification, especially
in the fourth position of the oxazolidine moiety, results in the enhanced predicted biological
activity which improves the binding affinity of the ligand–receptor interaction. The pyrroli-
dine, piperidine, and butyl functional groups enhance the steric nature (highlighted in pink),
especially in DC-01 (S-3-fluoro-3-methylpyrrolidine), DC-02 (R-3-methylpyrrolidin-3-ol),
DC-03 (3,3-dimethylpyrrolidine), DC-04 (piperidin-4-ol), and DC-05 (S-2,3-dimethylbutan-
1-aminium). From the molecular docking results, it is very clear that the reference and
designed ligands are perfectly fitted in the allosteric binding site and are shown in Figure 3.
The 2D interactions of receptor–ligands obtained from the molecular docking results are
shown in Figure S1A–G in Supplementary Materials.
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From the molecular docking results, it is deduced that the functional node modification
using R-group enumeration is the potential target to augment the hydrophobic interac-
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tions via pi–pi and alkyl–alkyl interactions due to the steric and hydrophobic functional
group modifications. The reference ligands contain the least hydrophobic interaction in
the oxazolidine moiety except for one alkyl–alkyl interaction with the VAL-281 residue.
The main aim is to improve the activity of the designed compound without disturbing the
existing interactions in the reference compounds via the FB-3D-QSAR approach. Thus,
the modified ligands showcase the reference ligand interactions along with the enhanced
interactions, especially in the oxazolidine site; this is one of the more robust predictions
of the rational computational approach. The designed ligands are well enriched with
hydrophobic and steric interactions in the preferable site to increase the activity and affinity.
The molecular docking results of receptor–ligand interactions with specific residues of
reference compounds along with designed compounds are shown in Table S5 in Supple-
mentary Materials. The strong hydrophobic connectivity of selective residues ILE-113,
ILE-117, TYR-285, MET-290, and CYS-379 enhance the alkyl–alkyl and pi–alkyl interactions
to improve the binding affinity of the receptor–ligand complex. Similarly, the ILE-112,
ILE-117, and ILE-118 residues involve a strong hydrogen bond, halogen-induced hydrogen
bond (Fluorine-HB), and non-classical hydrogen bond interaction. Based on the molecular
docking results, one can conclude that the high binding affinity molecules show higher
interaction with their target protein, which is the potential key for robust drug delivery.

2.3. MD Simulation

Molecular dynamics (MD) simulation is the foremost method used and it creates
a paradigm in computer-assisted drug discovery pathways to conclude if the designed
compounds are biologically active or inactive. The fundamental principle of MD simulation
is to analyze the physical movement of atoms in the molecule by using intermolecular
interactions under dynamic conditions over a time period to provide abundant information
such as enzymatic favorable reactions, chemical pathways, thermodynamic and kinetic
stability, and so on. For the flair drug discovery identification, the designed compounds
must fulfill all the conditions in the MD simulation study which allow interaction with
its target protein under the biological condition over a period to achieve results confirm-
ing whether the specific compound is biologically stable or unstable [50]. The selected
designed compounds DC (01 to 05) and reference compounds are further subjected to
an MD-simulation study [51] to identify the stability of the receptor–ligand complex in
the biological environment. The results depict the ligand stability through the root-mean-
square deviation (RMSD), root-mean-square fluctuation (RMSF), the radius of gyration
(Rg), and hydrogen bond (HB) plots, which all state that the designed compounds have
better stability for 50 ns compared to the reference compounds.

2.3.1. Root-Mean-Square Deviation (RMSD)

The RMSD of carbon alpha (C-alpha) of all the investigated systems was calculated
to determine the convergence, i.e., stability of the trajectory. The average RMSD values of
the designed compounds DC-03 (0.18 nm), and DC-04 (0.19 nm) are slightly lower than
the reference compounds RC-01 (0.25 nm) and RC-02 (0.20 nm), which indicates that the
designed complex is comparably more stable than the reference complex which is shown in
Figure 4. However, the average RMSD value of DC-01 (0.20 nm) displayed similar stability
compared to RC-02 and DC-02 (0.24 nm) and displayed higher stability than RC-01 and
lower stability than RC-02. While the apo-protein average RMSD value is (0.50 nm) and the
designed compound DC-05 (0.90 nm) shows an extremely high value, which indicates that
it is unstable in the protein–ligand environment. As the DC-05 complex system is unstable,
it is excluded from further studies.
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2.3.2. Root-Mean-Square Fluctuation (RMSF)

The inherent fluctuation of the receptor–ligand is frequently linked to its function.
The residue-wise protein fluctuation factor is determined, which is directly related to the
biological function of the specific ligand. In Figure 5, the overall RMSF value of the designed
compound DC-01 shows a slightly high fluctuation in two specific regions (140–180 and
280–290) compared to the reference compound RC-01. Whereas, DC-02 shows identical
fluctuation compared to RC-01, except it is in a different region (70–90). The overall RMSF
value of DC-03 was considerably high in the zones of 70–90, 140–150, and 160–180 as
compared to the RC-01. Similarly, DC-04 also shows an acceptable high fluctuation in
specific regions (70–90, 110–120, and 270–280) as compared to the RC-01 where the average
RMSF value of the RC-02 is highest among all the complex systems. This indicates that all
of the designed compounds (DC-01 to DC-04) have comparable stability to the reference
compounds RC-01 and RC-02.

2.3.3. Radius of Gyration (Rg)

The Rg is a very important parameter for measuring the structural compactness, over-
all folding, and shape of the protein. Figure 6 exhibits the Rg plot for all the complexes (DC
and RC). The average Rg values of DC-01 (2.30 nm), DC-03 (2.26 nm), and DC-04 (2.28 nm)
are lower than RC-01 (2.32 nm), which indicates that they have higher compactness, and
DC-02 (2.33 nm) compactness is nearly similar to RC-01. The average Rg value of RC-02
is (2.36 nm) shows the least compactness in comparison to all other complexes, which
designates that the designed compounds, DC-01 to DC-04, are much more stable and active
in the biological environment compared to the reference compounds RC-01 and RC-02.
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2.3.4. Hydrogen Bond (HB) Interaction

The HB interaction is very essential to determine the receptor–ligand interaction in
dynamic conditions over time. Figure 7 shows the HB plot for all the investigated systems
including reference and designed compounds. The average number of HB interactions
for DC-01(1.833), DC-02(2.428), DC-03(2.164), and DC-04(2.901) are lower compare to
RC-01(4.059) and RC-02(3.191) up to 50 ns. Comparably DC-02, DC-03, and DC-04 have
acceptable HB average values but are not higher compared to the reference molecules. To
overcome this consequence, the ligand–receptor interaction is analyzed at the final frame
of the overall simulation (50 ns).

Figure 8 shows the final frame (50 ns) of receptor–ligand interaction after the MD
simulation using the Groningen Machine for Chemical Simulation (GROMACS v2022.4)
package [51]. The 2D representation of receptor–ligand interaction after the MD simulation
at the final frame (50 ns) is shown in Figure S2A–F in Supplementary Materials.
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Figure 8. The receptor–ligand 3D interaction of reference compound (A) (RC-01), (B) (RC-02), and the
designed compounds (C) (DC-01), (D) (DC-02), (E) (DC-03) and (F) (DC-04) after the simulation at the
final frame (50 ns). Green—Classical and non-classical hydrogen bond interactions, Cyan—halogen
induced hydrogen bond interactions, Lavender—alkyl-alkyl and pi-alkyl interactions, Magenta—pi-
pi interactions.

From the receptor–ligand interaction after the simulation at 50 ns as shown in Figure 8A–F,
it is very clear that the designed ligands have better interaction compared to the reference
compounds. The total number of residues involved in ligand–receptor interaction after the
simulation is shown in Table 3.

Here, the reference compound RC-01 has 12 interactions including 9 hydrophobic
(alkyl–alkyl and pi–alkyl) and 3 strong HBs with the help of eight active residues around
the ligand. Similarly, RC-02 has a total of 13 interactions which include 8 hydrophobic
(alkyl–alkyl, pi–alkyl,) 3 strong HBs, one pi–pi stacking, and pi–sulfur with the help of eight
active residues around the ligand. However, the designed compounds contain a higher
number of interactions over the reference compounds. DC-01 has a total of 20 interactions
which include 3 classical and non-classical HBs, one halogen-induced HB (Fluorine-HB), 2
pi–pi stacking, and 11 hydrophobic interactions (alkyl–alkyl and pi–alkyl) with the help
of 12 residues around the ligand pocket site. Similarly, DC-02 has 20 interactions which
include 5 strong HBs, 3 pi–pi stacking, and 12 hydrophobic (alkyl–alkyl and pi-alkyl)
with the help of 12 active residues. Furthermore, DC-03 contains 24 interactions which
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include 3 classical and non-classical HBs, one pi–sigma and pi–sulfur, and 16 hydrophobic
(alkyl–alkyl and pi–alkyl) with the help of 14 active residues around the ligand pocket.
DC-04 contains 18 interactions which include 4 strong classical HBs, one non-classical HB,
one pi–sigma and pi–pi, and 11 hydrophobic (alkyl–alkyl and pi–alkyl) with the help of
nine active residues. Among every designed compound, DC-03 had the highest number of
interactions with 24, DC-01 and DC-02 had the same number of interactions with 20, and
DC-04 had the lowest number of interactions with 18. Thus, all the designed compounds
have a higher number of interactions compared to the reference compounds, RC-01(12)
and RC-02(13). This dictates that our designed compounds are much more stable in the
dynamic condition up to 50 ns.

Table 3. The ligand–receptor interactions of designed and reference compounds after the MD
simulation at the final frame.

S.NO
Active

Ligands

Hydrophobic Interactions Hydrogen Bond Interactions
Total Number
of Interactionsalkyl–alkyl and

pi–alkyl pi–pi pi–
sigma

pi–
sulfur Classical

Non-Classical
(Carbon–

Hydrogen)
Halogen

1 RC-01
ARG-109, ALA-111,

ILE-113, ILE-130,
VAL-276, MET-291

Nil Nil Nil ILE-128,
SER-278 ILE-128 Nil 12

2 RC-02
ALA-111, ILE-128,
ILE-130, VAL-255,

TRP-267
TRP-124 Nil MET-291 LEU-120,

ILE-128 Nil Nil 13

3 DC-01

ALA-111, ILE-117,
TRP-124, PRO-127,
ILE-128, VAL-255,

ALA-258, MET-290,
MET-291

TRP-124,
TYR-285 Nil Nil ALA-111,

ILE-128

ALA-111,
ILE-112,
VAL-255

CYS-114 20

4 DC-02

ALA-111, ILE-113,
CYS-114, LEU-120,
TRP-124, PRO-127,
ILE-128, ILE-130,

MET-259, MET-290

TRP-124,
TRP-267,
TYR-285

Nil Nil
LEU-120,
ILE-128,
TYR-285

Nil Nil 20

5 DC-03

ARG-109, ALA-111,
ILE-117, TRP-124,
ILE-128, ILE-130,

VAL-281, ALA-282,
TYR-285, MET-290,

MET-291

Nil ALA-111 MET-291 ILE-128,
SER-287,

ALA-111,
ILE-112,
SER-278

Nil 24

6 DC-04

ARG-109, ALA-111,
ILE-113, TRP-124,
ILE-128, ILE-130,

VAL-255, MET-259

TRP-124 ALA-111 Nil
ALA-111,
ILE-112,
ILE-128

ALA-111 Nil 18

2.4. ADME

A fundamental segment of drug discovery and development is addressing the phar-
macokinetics and metabolism of the designed drug, which is often denoted as ADME
properties [40]. The therapeutic effect of an effective drug is not only dependent on its
biological activity, but also has to have proper ADME properties. Thus, it is very impor-
tant to address the pharmacokinetic properties of the designed compound using in silico
modeling to validate it as a therapeutic candidate. The ADME study in CADD tools is
an essential and effective method to reduce the number of animal models in in vivo tests.
The biologically active small molecules or drug candidates must follow the specific set of
parameters which are widely denoted as pharmacokinetic properties. These biologically
active designed molecules are called preclinical candidates and it is must have the affinity to
be absorbed into the specific target surface, completely distributed to its target binding site,
appropriately metabolized in the liver, and excreted after functioning. For this activity, a
potent drug compound must follow Lipinski’s rule of five (Ro5) for excellent drug-likeness
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and absorption activity. The physicochemical properties on which Lipinski’s based drug-
likeness comprise the number of H-bond donors (must be ≤5) and acceptors (must be
≤10), molecular weight (not more than 500 Da), and partition coefficient or lipophilicity
as denoted as Log P (must be ≤5). Ligands, phytochemicals, and bioactive compounds
derived from natural or synthetic sources or designed using CADD tools that would violate
more than one of these rules are considered to have poor absorption [52]. The online free
SwissADME server [53] is used to predict the drug bioavailability via the ADME property
and confirm the designed drug molecules which obey Lipinski’s rule of five [54] in the
biological environment. Overall, the ADME properties of our designed drugs along with
reported drugs are shown in Table 4 with the required parameters.

Table 4. ADME properties of the designed drugs along with reference drugs.

S.NO
Active

Compounds

Lipinski’s Rule of Five

PSA
Å

MW
g/mol

Log P
o/w NRB HBA HBD

1. RC-01 85.17 486.49 3.73 6 8 1

2. RC-02 85.17 468.49 3.73 6 8 1

3. DC-01 89.66 546.54 3.93 6 9 2

4. DC-02 109.89 544.55 3.57 6 9 3

5. DC-03 89.66 542.58 3.77 6 8 2

6. DC-04 109.89 544.55 3.42 6 9 3

From Table 4, one can conclude that our designed compounds have passed 90% in the
drug-likeness test, and all have acceptable ranges except the MW, which is allowed in the
drug discovery pathway [55]. Based on the results, the designed compound, DC-04 has
highest solubility and PSA value, followed by DC-02, compared to all the other compounds.
Similarly, DC-01 and DC-03 have higher PSA values and lower solubility compared to the
reference compounds.

3. Conclusions

Abnormal activity in the mutated metabolic pathway leads to oncometabolite forma-
tion, which is the hallmark of cancers. Identifying potential drug candidates in cancer
treatment is a challenging task for ongoing cancer research. The mIDH enzyme, espe-
cially, has gained huge attention in recent years to treat various cancers and other disease
pathways. Specifically, the cytosolic mIDH1 enzyme gains the abnormal activity to be
involved in the non-favorable reaction that produces the enantiomeric selective metabolite
D-2HG. This metabolite is projected as a distinguished oncometabolite primarily in gliomas,
glioblastomas, medulloblastomas, acute myeloid leukemia, melanoma and sporadically in
melanoma, intrahepatic cholangiocarcinoma, angioimmunoblastic T cell lymphoma, and
chondrosarcoma, and accountably in prostate, thyroid, breast, stomach, and pancreatic can-
cers and diseases including Ollier and Maffucci syndromes. The mutations in IDH enzymes
are heterozygous somatic and recurrent modifications that take place in specific arginine
residues to change the catalytic activity and endorse the abnormal activity involving the
oncogene pathway. The R132H is the most accepted variation in the mIDH1 enzyme and it
acts as a fuel to stimulate the oncogene pathway in more than 89% of human cancers and
diseases. To date, the drug discovery pathway of the mIDH1 enzyme is quite complicated
and only two inhibitors have been identified as potential candidates, namely, AG-120 and
IDH-305. The AG-120 is the only inhibitor that successfully cleared phase III trials and is
an accepted drug candidate for Cholangiocarcinoma, Leukemia, Acute Myeloid Cancer,
and solid tumors; however, IDH-305 failed in phase III and the further developmental
process is ongoing in IDH-305 modification. Examination of the combination of 3D-QSAR,
molecular docking, MD simulation, and ADME studies yields the potential, safe, and
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efficient inhibitors for drug discovery pathways. This present work with the aid of CADD
strategies aimed to identify the potential inhibitor for mIDH1, especially in the allosteric
site to suppress the overproduction of D-2HG. Based on this direction, the Schrodinger suite
2022-3 was used to identify 62 allosteric site-reported inhibitors to build better FB-3D-QSAR
modeling which obeys the required statistical parameters. From the FB-3D-QSAR method,
the positive functional nodes are recognized and modified using the R-group enumeration
method to design the robust derivatives of a highly active reference compound (RC-01)
to predict biological activity. The designed compounds show high predicted biological
activity compared to the reference compounds and selected designed compounds were
further tested to understand the receptor–ligand interaction via molecular docking anal-
ysis to calculate the binding energy using the Glide package. The designed compounds
DC-01 (−13.336 kcal/mol), DC-02 (−13.175 kcal/mol), DC-03 (−13.159 kcal/mol), DC-04
(−13.131 kcal/mol), and DC-05 (−12.952 kcal/mol) show high binding affinity compared
to the reference compounds RC-01 (−11.800 kcal/mol) and RC-02 (−12.403 kcal/mol).
These compounds were further tested to understand the stability via the MD simulation
using the GROMACS v2022.4 package. From the MD simulation results, DC-01 to DC-04
show the highest stability compared to the reference compounds. The average RMSD value
of DC-03 is 0.18 nm and DC-04 is 0.19 nm, which is a very low deviation compared to the
reference compounds; RC-01 is 0.25 nm and RC-02 is 0.20 nm. Similarly, DC-01 has a value
of 0.20 nm and DC-02 is 0.24 nm, which are an acceptable deviation as per the references.
The designed compound DC-05 shows a high deviation in the RMSD of 0.90 nm compared
to the apo-protein, which exhibits 0.50 nm. The RMSF plot of the designed compounds
(except DC-05) shows acceptable fluctuation compared to the reference compound RC-01,
where RC-02 shows higher fluctuation compared to all the other investigated systems.
Similarly, the Rg plot shows very good compactness of designed compounds compared to
the reference compounds. DC-01 has a value of 2.30 nm, DC-03 is 2.26 nm, and DC-04 is
2.28 nm and these are a higher compactness of ligands in the receptor region compared
to RC-01 (2.32 nm) and RC-02 (2.36 nm). DC-02 has a value of 2.33 nm, which represents
having similar and higher compactness compared to RC-01 and RC-02. The hydrogen
bonding interaction analysis reveals that the average number of HBs is lower in all the
designed compounds compared to the reference compounds. However, newly designed
compounds are much augmented with hydrophobic and steric functional nodes. Thus, the
types of interactions available in every compound after the simulation are explored, and
surprisingly, our designed compounds have a higher number of interactions compared to
the reference compounds, which drives the high stability over the reference compounds.
The highest number of interactions observed for the investigated compounds after the
simulation up to 50 ns is 24 in DC-03, followed by 20 in DC-01 and DC-02, 18 in DC-04, 12
in RC-01, and 13 in RC-02. The pharmacokinetic properties (ADME and Lipinski’s rule) are
well correlated (except MW) to our designed compounds along with reference compounds.
They exhibit pharmacokinetic, bioavailability, and drug-likeness properties. The results
obtained from the rational computational approaches for the designed compounds show
better stability, activity, bioavailability, and binding affinity compared to the reference
compounds. This delineates that our designed compounds with in silico approaches using
CADD tools could be potential candidates for an mIDH1 enzyme drug at the allosteric site
to control the overproduction of D-2HG. The present work delineates the new strategies that
would minimize the experimental cost involved in drug design and screening in laboratory
research. This work provides new insights for researchers to synthesize the proposed class
of molecules in the laboratory. Further, biochemical experimental investigations would be
required to validate the designed compounds that could be therapeutic drug candidates
for mIDH1 enzymes in various cancers.
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4. Methodology
4.1. Data Set

The 62 specific allosteric binding inhibitors with similar molecular nuclei were taken
from the existing literature and used in the present work. The 62 molecules showed a
similar assay technique with a substantial disparity in their geometry and potency. The
values of half maximal inhibitory concentration (IC50) varied from 49µM to 1nM, which
were converted into pIC50 values using the following equation and converted into relatable
values from 5.000 to 9.000.

pIC50 = − log10[IC50]

All the computational calculations were conducted using the Schrodinger suite 2022-3,
which we acquired from www.schrodinger.com and used from 6 September 2022 to 27
September 2022 as a trial package, and the 3D geometries of the existing compounds
were generated via the builder panel Maestro 13.3 [56] and consequently neutralized
using Ligand preparation with Wizard segment [48]. We limited the reported ligand size
to 500 atoms with default options such as desalt, determined the chirality from the 3D
structure and disabled the tautomer generation, and executed the energy neutralization
using the OPLS-2005 force field [57] for better results.

4.2. 3D-QSAR

The optimized compounds were treated in fingerprint analysis using Canvas simi-
larities [45] and clustered to identify the mismatched molecular nucleus using Tanimoto
analysis [44] to build a better 3D-QSAR model. We used the Field-Based (FB) 3D-QSAR
techniques [42] to incorporate the 62 reported compounds into 70:30 ratios in the test set
and training set for better results. We built the FB-3D-QSAR model using the Gaussian
filed style and unchecked the use of input partial charges to generate electrostatic interac-
tions. The pIC50 values of mIDH1 were used as the dependent variables and generated 3D
molecular field descriptors were used as independent variables. Partial-least-square (PLS)
procedure was used to correlate linearly in the FB-3D-QSAR method to limit the maximum
PLS factor up to 7 to avoid over-fitting and Leave-one-out (LOO) cross-validation method
is used to determine the cross-validation coefficient (R2), correlation coefficient (Q2), root-
mean-square error (RMSE), the standard deviation of the regression (SD), and Pearson
coefficient (Pearson-R). From these results, we explored the 5 physicochemical properties
namely Gaussian Steric (GS), Gaussian Electrostatic (GE), Gaussian Hydrophobic (GH),
Gaussian Hydrogen Bond Acceptor (GHA), and Gaussian Hydrogen Bond Donor (GHD)
fields, which were visualized in the QSAR visualization module.

4.3. Molecular Docking

The Protein Preparation Wizard [58] in Maestro 13.3 was used to prepare the crystal
structure of mIDH1 enzyme complex with IDH-305 ligand (PDB: 6B0Z). This was obtained
from the RCSB protein data bank to remove water and heteroatoms, add hydrogen and
partial charges, assign protonated state at pH 7.0 ± 2.0 using Epik mode [59], fill the
missing loops and side chains using Prime [60], optimize with appropriate pH, and finally,
minimize the energy of the complex using OPLS4 force field [61]. Then we created the
grid box size 10Å × 10Å × 10Å (x, y, z coordinates 27.16, 25.74, 29.27) to delineate the
binding site of mIDH1 using the ligand position using the Receptor Grid Generation
module in Maestro13.3 with default settings. All the ligands were optimized with the
aforementioned neutralization methodology to generate an ionization state at pH 7.0 ± 2.0
in Epik mode [59] with the OPLS-2005 force field [57]. Finally, we performed molecular
docking using Glide version 2022-3 [49] standard precision method with default settings.
All the ligand–receptor interactions obtained from molecular docking were visualized with
the help of the Discovery Studio—2021 package [62].

www.schrodinger.com
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4.4. MD Simulation

To examine the essential residues interaction in ligand binding, we performed the
MD simulation for mIDH1 protein and ligands based on the molecular docking results
using the GROMACS v2022.4 package [51]. The highest biological activity and binding
energy of reported compounds were taken as the reference compounds to test our de-
signed compounds. The high binding affinity and predicted biological activity of selected
protein–ligand complexes from the results were exported. They were then used to cre-
ate the topology parameters and coordinate files of receptor and hit molecules using the
CHARMM36 force field [63] in GROMACS and SwissParam [64], respectively. The docked
protein–ligand complex was solvated using a transferable intermolecular potential 3 point
(TIP3P) water solvation model [65] enclosed within the dodecahedron box of 1 Å and neu-
tralized via sufficient numbers of Na+ and Cl− ions added via the Monte Carlo ion-placing
method [66]. Further, the energy minimization was performed by using the steepest descent
approach by applying a maximum force of 10 kJ/mol to avoid steric hindrance up to 500 ps.
Berendsen coupling [67] and the Parrinello–Rahman method [68,69] were employed to
regulate temperature (NVT) and pressure (NPT) at 300 k and 1 bar, respectively, inside the
box up to 100 ps. The overall simulation time was fixed as 50 ns for the reference and the
designed complexes to determine the ligand–protein stability.

4.5. ADME

To address the pharmacokinetics and drug-likeness properties, we utilized the online
free SwissADME [53] server to check the ADME properties along with the Lipinski rule of
five to confirm the drug ability of our designed and reported compounds.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules28052315/s1, Figure S1A: The molecular docking results
for reference compound (RC-01) interaction with the receptor; Figure S1B: The molecular docking
results for reference compound (RC-02) interaction with the receptor; Figure S1C: The molecular
docking results for designed compound (DC-01) interaction with the receptor; Figure S1D: The
molecular docking results for designed compound (DC-02) interaction with the receptor; Figure S1E:
The molecular docking results for designed compound (DC-03) interaction with the receptor; Figure
S1F: The molecular docking results for designed compound (DC-04) interaction with the receptor;
Figure S1G: The molecular docking results for designed compound (DC-05) interaction with the
receptor; Figure S2A: The MD simulation results for reference compound (RC-01) interaction with
the receptor at the final frame (50 ns); Figure S2B: The MD simulation results for reference compound
(RC-02) interaction with the receptor at the final frame (50 ns); Figure S2C: The MD simulation results
for designed compound (DC-01) interaction with the receptor at the final frame (50 ns); Figure S2D:
The MD simulation results for designed compound (DC-02) interaction with the receptor at the final
frame (50 ns); Figure S2E: The MD simulation results for designed compound (DC-03) interaction with
the receptor at the final frame (50 ns); Figure S2F: The MD simulation results for designed compound
(DC-04) interaction with the receptor at the final frame (50 ns); Table S1: The PLS statistical data of the
homogenous 3D-QSAR model using the Field-Based method; Table S2: The physiochemical property
contribution of reported compounds using the FB-3D-QSAR method; Table S3: The molecular docking
results for 62 reported compounds using Glide package in Schrodinger suite; Table S4: The molecular
docking results for 229 designed compounds using Glide package in Schrodinger suite; Table S4A:
The molecular docking results for 371 designed compounds using Glide package in Schrodinger suite;
Table S5: The specific residues involved in the receptor-ligand interaction of reference and designed
compounds using molecular docking analysis.
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