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Abstract: Since the discovery of cisplatin in the 1960s, the search for metallo-drugs that are more
efficient than platinum complexes with negligible side effects has attracted much interest. Among the
other metals that have been examined for potential applications as anticancer agents is copper. The
interest in copper was recently boosted by the discovery of cuproptosis, a recently evidenced form of
cell death mediated by copper. However, copper is also known to induce the proliferation of cancer
cells. In view of these contradictory results, there is a need to find the most suitable copper chelators,
among which Schiff-based derivatives offer a wide range of possibilities. Gathering several metal
complexes in a single, larger entity may provide enhanced properties. Among the nanometric objects
suitable for such purpose are dendrimers, precisely engineered hyperbranched macromolecules,
which are outstanding candidates for improving therapy and diagnosis. In this review article, we
present an overview of the use of a particular Schiff base, namely pyridine–imine, linked to the
surface of dendrimers, suitable for complexing copper, and the use of such dendrimer complexes in
biology, in particular against cancers.

Keywords: dendrimer; Schiff base; pyridine–imine; copper; metallo-drugs; cancer; phosphorus;
carbosilane; PAMAM

1. Introduction

Since the discovery of cisplatin in the 1960s and the success of its use to treat cancers [1],
researchers in bioinorganic chemistry have first focused on platinum derivatives, which are
of current use to treat testicular, ovarian, and lung cancers [2]. The search for metallo-drugs
more efficient than platinum complexes, while having negligible side effects, has attracted
much interest, as recently emphasized in a review of in vivo studies of the anticancer
activities of metal complexes [3]. Among the metals that have been thoroughly examined
for potential applications as anticancer agents are mainly ruthenium, titanium, gold, and
copper. Some of the corresponding complexes have been designed for clinical trials [4,5].
The use of copper complexes as anticancer agents has been reviewed early [6] in an article
structured according to the type of ligands used to complex copper [7]. The interest in
copper was boosted in the last few years, on the one hand, by the hypothesis that an
endogenous metal might exhibit fewer adverse effects on the body than exogenous metals,
such as platinum, and on the other hand, by the discovery of cuproptosis, a recently
evidenced form of cell death mediated by copper, which has potential applications in the
treatment of cancer [8–11], with the aim of overcoming anticancer drug resistances [12].
However, copper is also known to induce the proliferation of cancer cells, as it stimulates
the proliferation and migration of endothelial cells, as well as numerous pro-angiogenic
reactions [13], which are the first stages of tumor angiogenesis [14]. It has been shown, in
particular, that serum copper concentration increases as the cancer disease progresses [15].
In view of these contradictory results [16,17], there is a need to find the most suitable
copper chelators [18] with the aim of reaching copper homeostasis [19,20]. Among these

Molecules 2024, 29, 1800. https://doi.org/10.3390/molecules29081800 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29081800
https://doi.org/10.3390/molecules29081800
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-6742-1000
https://orcid.org/0000-0003-0900-7332
https://orcid.org/0000-0002-2937-6787
https://orcid.org/0000-0001-8487-3578
https://doi.org/10.3390/molecules29081800
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29081800?type=check_update&version=1


Molecules 2024, 29, 1800 2 of 18

chelators, Schiff-based derivatives offer a wide range of possibilities [21], particularly for
the biomedical field [22].

All of the above-mentioned properties concern the use of monomeric metal complexes,
i.e., containing a single metal per molecule. However, gathering several metal complexes in
a single and larger entity may offer enhanced properties. Indeed, it has been demonstrated
that nanoscale entities may induce the EPR (enhanced permeability and retention) effect,
which enables targeted drug delivery to a solid tumor, even if this effect is largely dependent
on the patient’s pathological and physiological conditions [23]. A critical review of this
effect has been published recently [24]. Among the nanometric objects suitable to observe
the EPR effect are dendrimers [25], outstanding candidates for improved therapy and
diagnosis [26]. Dendrimers [27] are hyperbranched macromolecules, generally constituted
of repetitive monomers, such as polymers, but synthesized step-by-step instead of a single
step in polymerization reactions [28]. Dendrimers possess a wide range of properties
and are used in various fields, such as sensing, catalysis, electronics, photonics, and
nanomedicine, to name a few [29]. Different types of dendrimers are known, the most
widely used being the PAMAM (poly(amidoamine)) dendrimers, having a nitrogen atom at
each branching point [30]. Of interest are also more “inorganic” dendrimers, in particular,
those having either phosphorus or silicon at each branching point, which were reviewed
early [31] and more recently [32].

In this review, we present an overview of the use of a particular Schiff base, namely
pyridine–imine, linked to the surface of dendrimers, which is suitable for complexing
copper. The use of such dendrimer complexes in biology, particularly against cancers,
will be the main topic of this review, which will be organized depending on the type of
dendrimer. The different cell lines used to test the efficiency of dendrimers are gathered in
Table 1, organized in alphabetical order, together with the corresponding references.

Table 1. Cell names, cell lines, and references.

Cell Names Cell Lines 1 References

BTSC233 Glioblastoma stem cells [33]
Chang liver Liver cells, non-cancerous [34]

EPC Endothelial progenitor, Cyprinus carpio, non-cancerous [35,36]
HCC1806 Resistant breast cancer cells [37]

HCT15 Colon cancer [38]
HCT116 Colon cancer [35,38–41]

HeLa Cervical cancer cells [37,42,43]
HepG2 Liver carcinoma [44]
HL60 Leukemia [35,36,38,45,46]
HT29 Colorectal tumor [37]

JHH520 Glioblastoma stem cells [33]
KB Epidermal carcinoma [35,36,45]

MCF-7 Breast cancer cells, cisplatin resistant [34–38,43,44,47,48]
MOLT-4 Leukemia [34]
MRC5 Proliferative lung fibroblasts, non-cancerous [35,36,39,47]

NCH644 Glioblastoma stem cells [33]
NIH-3T3 Normal fibroblasts, non-cancerous [47]
OVCAR8 Ovarian carcinoma [35]

PBMC Peripheral blood mononuclear cells, non-cancerous [43,46]
PC3 Prostatic small cell carcinoma [36,37,42]

RPE1 Retinal pigment epithelial-1, non-cancerous [40,41]
SF188 Pediatric glioma cells [33]
U87 Glioblastoma-astrocytoma, epithelial-like [33,35]
U937 Myeloid tumor cells [43,49]
1301 Leukemia [46]

142BR Fibroblasts, non-cancerous [37]
4T1 Mouse breast adenocarcinoma cells [47]

1 of human origin, if not indicated.
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2. PAMAM Dendrimer Cu Complexes

Despite the fact that the PAMAM dendrimers are the most popular, they have been
scarcely functionalized with pyridine–imine complexes, and only one biological evaluation
has been published to the best of our knowledge. A small PAMAM dendrimer (generation
0) functionalized with four pyridine–imine ligands was used for the complexation of CuCl2.
In fact, not only four but seven CuCl2 were complexed by this small dendrimer, as the C=O
amide groups and the tertiary amines in the internal structure were also able to complex
CuCl2 (Figure 1). This compound, 1-G0, was found to be more toxic than cisplatin against
leukemia cells (MOLT-4) and breast cancer cells (MCF-7, cisplatin-resistant cell line) but is
also very toxic against the benign Chang Liver cells [34].
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Figure 1. Copper complex of the generation 0 PAMAM dendrimer functionalized with four pyridine–
imine groups.

3. Phosphorus Dendrimers and Dendrons
3.1. Phosphorus Dendrimers

Phosphorus dendrimers, essentially of type poly(phosphorhydrazone) (PPH), possess
a thiophosphate derivative at each branching point [50,51]. The first example of this type
of dendrimers functionalized with pyridine–imine ligands for the complexation of copper
was not designed for biological assays but for catalysis [52]. The very first example of PPH
dendrimers complexing copper through pyridine–imine/hydrazone ligands and used for
biological purposes concerned a series of nine dendrimers, from generation 1 (12 pyridine–
imine) to generation 3 (48 pyridine–imine), functionalized with three different types of
pyridine–imine groups, namely N-(pyridin-2-ylmethylene) ethanamine (2-Gn, n = 1–3),
N-(di(pyridin-2-yl)methylene) ethanamine (3-Gn, n = 1–3), and 2-(2-methylenehydrazinyl)
pyridine (4-Gn, n = 1–3), as shown in Figure 2. The corresponding monomers (x-M, with
x = 2–4) were also synthesized [35].

Both the non-complexed and complexed dendrimers and the corresponding monomers
were tested for their cytotoxicity activity. The cell proliferation inhibitory effects of the
series 2-compounds (both free and complexed) were assessed against the leukemia HL60
cell line at the 1 µM concentration, corresponding to 29 µg Cu/2-M, 348 µg Cu/2-G1,
696 µg Cu/2-G2, and 1392 µg Cu/2-G3. The third-generation dendrimer complexing
copper (2-G3-Cu48) was the most efficient when considering the number of moles (Figure 3),
but when considering the quantity of copper, the monomer was the most efficient. However,
no experiment was carried out with an identical quantity of copper in all cases [35].

In the following experiment, the influence of the type of ligand on the efficiency was
tested on the HL60 cell line and the KB cell line (epidermal carcinoma). As the maximum
inhibition was observed with the third generations, 2-G3 and 2-G3-Cu48 (Figure 3), only
the third generations of the other dendrimers were tested in this case (Figure 4). In all
cases, the copper complexes at 1 µM were more active than the non-complexed dendrimers
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at the same concentration, but the type of ligand played a crucial role. The N-(pyridin-2-
ylmethylene) ethanamine ligand (series 2-) was very active, whereas the N-(di(pyridin-2-
yl)methylene) ethanamine (series 3-) was poorly active, and 2-(2-methylenehydrazinyl)
pyridine (series 4-) had practically no activity [35].
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Finally, only the most active dendrimers (2-G3 and 2-G3-Cu48) were tested on a
panel of cancerous and non-cancerous cell lines. In this case, the IC50 was measured. It
indicates the concentration of a substance that is necessary to kill 50% of the cells and,
therefore, the potency of the compound. It is important to develop compounds with a good
selectivity towards cancer cells, compared to normal ones, in order to obtain promising
cytotoxic agents. Experiments were carried out on the HCT116 (human colon cancer),
MCF-7 (hormone-responsive human breast cancer), OVCAR8 (ovarian carcinoma), and
U87 (human glioblastoma-astrocytoma, epithelial-like) cancerous cell lines, and with the
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non-cancerous cell lines MRC5 (proliferative human lung fibroblasts) and the quiescent
EPC (endothelial progenitor cells, Cyprinus carpio). The results are shown in Figure 5.
Interestingly, the copper complex 2-G3-Cu48 is more toxic towards the cancerous cells than
towards the non-cancerous cells, contrarily to the non-complexed dendrimer 2-G3 [35].
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The same dendrimer complexes (2-Gn-Cux, 3-Gn-Cux, and 4-Gn-Cux, with n = 1–3
and x = 12 to 48) and monomer complexes (2-M-Cu1, 3-M-Cu1, and 4-M-Cu1) were then
studied by EPR (electron paramagnetic resonance) in the absence and presence of normal
(MRC5) and cancer (HCT116) cells. However, in those cases, CuCl2 is added to the free
dendrimers and monomers in solution, i.e., it is not the preformed complex that is studied,
contrarily to the previous experiments. In the absence of cells, the experiments were
carried out in DMF. It was shown that in series 2-, a chelate complex was formed (two
pyridine–imines for one CuII), stabilizing the complex, which is more difficult to form
in the case of the other series. In all cases, a better complexation was observed with the



Molecules 2024, 29, 1800 6 of 18

highest generations (G3) due to the increased density of binding sites. An opalescence in
the solutions of series 4- indicates a phase separation and the formation of a precipitate,
emphasizing the weak complexation of CuII, correlating with the very low efficiency of this
series in the biological evaluation (Figure 4). For the weak complexes, the coordination
sphere of copper was completed with oxygen atoms from the solvent. In view of both the
EPR results in solvent and the biological properties, only the EPR properties of the Cu
complex of 2-G3 were studied in solution and in the presence of cells. It was shown, in
particular, that the EPR signal is more intense in the presence of the HCT116 cancerous
cells than in the presence of the MRC5 non-cancerous cells. Such behavior is correlated
with a stronger binding of Cu-2-G3 with HCT116 cells compared to the MRC5 cells [39].
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Additional biological experiments were carried out to determine the mechanism of
action of both dendrimers 2-G3 and 2-G3-Cu48. It was shown that both dendrimers pen-
etrated inside cells by endocytosis but behaved differently inside the cells. Dendrimer
2-G3 moderately activated caspase-3, moderately initiating the apoptotic cascade leading
to cell death. On the contrary, dendrimer 2-G3-Cu48 strikingly reduced the caspase-3
content and activity but promoted the translocation of the Bax protein to the mitochondrial
compartment, resulting in the release of apoptosis-inducing factor. Such a release induced
the activation of the caspase-independent apoptotic pathway through severe DNA frag-
mentation without alteration of the cell cycle. These different behaviors correlate with the
weak anti-proliferative efficiency observed with 2-G3 and the better efficiency of 2-G3-Cu48,
which possesses a distinctive mode of action [38].

In a further step of this project, compound 2-G3 and analogs, bearing a few PEG
(polyethylene glycol) moieties to increase the solubility in water, were used for complexing
mixtures of copper and gold. Contrarily to copper, it is not AuCl3 that is complexed by the
pyridine–imine ligand, but [AuCl2]+ with [AuCl4]- as the counter ion. Two examples of
this stochastic (random) functionalization on the surface of the third-generation dendrimer
are shown in Figure 6 [36].

The biological properties of both randomly functionalized dendrimers shown in
Figure 6 were tested in comparison with the dendrimers fully complexed with either
copper (2-G3-Cu48) or gold (2-G3-[Au48][AuCl4]48), as shown in Figure 7. The dendrimeric
complexes fully functionalized with gold metal are far more efficient than the corresponding
copper complex toward cancerous cells (KB and HL60), with IC50 in the nanomolar range for
the gold complex compared to the hundreds nanomolar range for the copper complex. Both
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dendrimers were tested against the non-cancerous cells EPC and MRC5. Both compounds
displayed relatively low toxicity towards EPC cells, but deceptively, the gold complexes
are highly toxic toward the MRC5 cells. Thus, there is a very good safety index for the gold
complex, but only for EPC cells [36].
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In view of the large difference observed between copper and gold, the question of
the quantity of gold necessary to obtain the same effect arose. Dendrimer 2-G3-[Au20-
Cu20-PEG8][AuCl4]20, possessing the same quantity of gold and copper, plus 8 PEGs,
was highly toxic towards both KB and HL60 cancerous cells and poorly toxic towards
the non-cancerous EPC cells (see Figure 7). Even dendrimer 2-G3-[Au10-Cu20-NN10-
PEG8][AuCl4]10, having only 10 [AuCl2][AuCl4] complexes, had exactly the same proper-
ties. Both dendrimers 2-G3-[Au20-Cu20-PEG8][AuCl4]20 and 2-G3-[Au48][AuCl4]48 were
then tested towards two other cancerous cell lines, MCF-7 (human breast adenocarcinoma
cell line) and PC3 (prostatic small cell carcinoma). The gold complex was more efficient
than the copper-gold complex against both cell lines (Figure 7) [36].

In another experiment, the copper complex 2-G3-Cu48 was used in combination with
several anticancer agents with different modes of action: camptothecin, cisplatin, paclitaxel,
doxorubicin, and MG132. These combinations were tested against KB and HL60 cell lines at
the active dose of each compound to detect the inhibition of cell proliferation. No effect was
observed with cisplatin towards KB cells, but an increased efficiency was observed against
the HL60 cell line. An additive effect was observed with the combinations of 2-G3-Cu48
with paclitaxel or MG132 (proteasome inhibitor). More interestingly, a synergistic effect
was observed in the combination of 2-G3-Cu48 with doxorubicin, ongoing from ca. 30%
inhibition with doxorubicin alone to ca. 90% with doxorubicin + 2-G3-Cu48 [45].

The minimal inhibitory concentrations (MIC) and the minimal bactericidal concen-
trations (MBC) of some of these copper and gold complexes of dendrimers against nu-
merous bacteria and yeast were also measured. It was shown that dendrimer 2-G3-
[Au48][AuCl4]48 had the highest antimicrobial activity, whereas dendrimer 2-G3-[Au10-
Cu20-NN10-PEG8][AuCl4]10 had the highest antifungal activity. Interestingly, and con-
trarily to the results in oncology shown above, a marked synergistic effect was found
for the antifungal activity when both copper and gold were present together in the same
dendrimer [36].
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3.2. Phosphorus Dendrons

A series of phosphorus dendrons was synthesized thanks to the versatile reactivity of
the cyclotriphosphazene core and, in particular, the possibility to differentiate one function
among six to produce AB5 derivatives [53]. The terminal functions of these dendrons are
identical to those of compound 2-Gn, shown in Figure 2. The function at the core is an
alkyl chain incorporating either 11 or 17 carbon atoms linked to the dendrons through
a phenol amide. Only the first generations of these dendrons (5-G1-C11, 5-G1-C17) were
synthesized, and they were used for complexing either copper or gold (Figure 8). These
dendrons self-associate in water to form aggregates whose hydrodynamic size measured
by dynamic light scattering (DLS) depends mainly on the length of the alkyl chain, from ca.
260 nm for the dendrons equipped with the C11 chain to ca. 500 nm with the C17 chain [47].

The efficiency of all these dendrons was then tested against two different breast cancer
cell lines, 4T1 (mouse breast adenocarcinoma cells) and MCF-7 (human breast cancer),
and normal cells, NIH-3T3 (normal fibroblast) and MRC5. The corresponding metal-free
dendrons were tested but displayed no anti-proliferative activity (IC50 values >100 µm). The
four dendron complexes were then tested against the four cell lines, as shown in Figure 9.
The gold complexes 5-G1-C11-[Au10][AuCl4]10 and 5-G1-C17-[Au10][AuCl4]10 are more
efficient against both cancerous cell lines than the copper complexes 5-G1-C11-Cu10 and
5-G1-C17-Cu10. However, the gold complexes are highly toxic toward the non-cancerous
cells NIH-3T3, whereas the copper complexes are less toxic (Figure 9). All dendrons shown
in Figure 8 are less toxic against the non-cancerous cells MRC5. The length of the alkyl
chain has a larger influence in the case of the copper complexes than in the case of the gold
complexes. The longer chain decreases the efficiency of dendron 5-G1-C17-Cu10 [47].

Several other series of phosphorus dendrons with diverse functions at the core and
pyridyl–imine/hydrazone derivatives as terminal functions (Figure 2, but without metal)
were synthesized (Figure 10). The functions at the core were chosen for their ability to react
with functionalized graphene oxide (GO). Dendrons having a Boc-protected amine at the
core (dendrons 6a,b,c-G1) were tentatively deprotected to generate a primary amine suitable
to react with GO modified with acyl chlorides. Unfortunately, the trifluoroacetic acid used
for the deprotection of the amine at the core induced a partial cleavage of the imine bonds
on the surface of the dendrons and precluded the use of these dendrons for grafting to GO.
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However, the biological properties of the Boc-protected dendrons were tested against the
HCT116 cells. Only dendrimer 6c-G1 was relatively active at a concentration of 10−5 M,
but it was more toxic against the non-cancerous cells RPE1 (Figure 10) [40].
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Two other series of dendrons were synthesized, bearing either an alkyne or an azide
at the core. Both series were used in “click” chemistry [54,55] with GO functionalized with
either azide or alkyne. The result of the reaction of the dendrons bearing an alkyne at the
core (dendrons 7a,b,c-G1, Figure 10) with graphene oxide functionalized with azides is
shown in Figure 11. The biological properties of the dendrons alone and of the dendrons
grafted to GO were tested towards the cancerous cell line HCT116 and the non-cancerous
cells of human retinal pigment epithelial-1 (RPE1). Four dendrons (7a-G1, 7b-G1, 8a-G1,
and 8b-G1) were active against the HCT116 cell line at a concentration of 10−5 M but not at
10−6 M. These four dendrons were then tested with the non-cancerous RPE1 cells and were
deceptively found to be even more toxic, as shown in Figure 10. The GO functionalized by
the six dendrons was also tested against the HCT116 cell line, but none of them were really
active [41].

The last example of phosphorus dendrons functionalized with pyridine–imine groups
concerns generation zero. It has a triazine ring bearing two nitrogen C12 alkyl chains and is
linked to the core by the third nitrogen via a para-ethylphenoxy fragment. It also integrates
in its end five pyridyl hydrazones capable of complexing either copper (9-G0-Cu5) or
gold (9-G0-[Au5][AuCl4]5), as shown in Figure 12. These dendrons form single micelles
(diameter ca. 9 nm) with 9-G0-Cu5 and multi-micellar aggregates (diameter ca. 60 nm)
with 9-G0-[Au5][AuCl4]5 in water, as shown both by DLS and TEM images. Both dendrons
were tested against three lines of glioblastoma stem cells (BTSC233, JHH520, and NCH644),
pediatric glioma cells SF188, and two growth variants of the U87 glioblastoma cells (U87a
and U87s). In all experiments, a comparison with temozolomide (IC50 > 100 µM), the
clinical standard of care for glioblastoma, is made. In most cases, the copper complex is
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more efficient than temozolomide, whereas the gold complex is only slightly more efficient
than temozolomide at high concentrations. At the concentration of 3 µM, all SF188 cells
were killed by 9-G0-Cu5, whereas no SF188 cells were killed by 9-G0-[Au5][AuCl4]5, and
only about 30% of the SF188 cells were killed by temozolomide. At the concentration of
100 µM, all the SF188 cells were killed by 9-G0-Cu5 and by 9-G0-[Au5][AuCl4]5, but only
about 50% of the SF188 cells were killed by temozolomide. Figure 13 displays the results
obtained against the SF188 cell line [33].
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[Au5][AuCl4]5 compared to temozolomide, the clinical standard. NTC, non-treated control.

4. Carbosilane Dendrimers

Carbosilane dendrimers are constituted of short alkyl chains linked through silicon
at the branching points [56]. Generations zero and one carbosilane dendrimers were
functionalized with four and eight pyridine–imine derivatives, respectively, which were
used for complexing copper (Figure 14).
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Figure 14. Generations zero and one carbosilane dendrimers functionalized with copper complexes
of pyridine–imine.

4.1. Anticancer Properties of Carbosilane Dendrimers

The anticancer properties of carbosilane dendrimers were, in particular, studied, as was
done previously with the phosphorus dendrimers. The first paper about copper complexes
of carbosilane dendrimers described the synthesis of dendrimers 10-G0-[CuCl2]4 and 10-G1-
[CuCl2]8, and their efficiency against two cancerous cell lines, PC3 (human prostate) and
HeLa (human cervical). IC50 values were found in the µM range, with generation 0 (IC50
4.5 µM) being more efficient against the PC3 cell line than generation 1 (IC50 12.5 µM). Both
generations have the same efficiency against the HeLa cell line, with IC50 at ca. 10 µM [42].
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Dendrimers 10-G0-[Cu(ONO2)2]4 and 10-G1-[Cu(ONO2)2]8 were also synthesized,
and the hemotoxicity of the four dendrimers of series 10 was measured by the intensity of
membrane destruction on blood from healthy donors. Dendrimers complexing Cu(NO3)2
are more toxic than those complexing CuCl2. The four dendrimers of the series 10-Gn-[Cu]
were then tested against two cancerous cell lines of leukemia (HL60 and 1301) and against
the normal cell line PBMC (peripheral blood mononuclear cells). Figure 15 displays the
IC50 values. Interestingly, all dendrimers were more toxic against both cancerous cell lines
than towards the PBMCs [46].
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The behavior of the same dendrimers of series 10-Gn-[Cu] towards cell membrane
models (cethyl-trimethylammonium bromide (CTAB) micelles and lecithin liposomes)
was investigated by EPR (electron paramagnetic resonance). The results indicated that
generation 1 10-G1-[CuCl2]8 dendrimers interact more strongly with the model membranes
than other dendrimers. The dendrimers were tested against other cancerous cell lines
HeLa, MCF-7, and HCC1806 (normal and resistant breast cancer cells), PC3, and HT29
(colorectal tumor), and one healthy cell line 142BR (human fibroblasts). Figure 15 also
displays these additional results, with some differences compared to the previous results.
In particular, both dendrimers bearing Cu(NO3)2 complexes 10-G0-[Cu(ONO2)2]4 and
10-G1-[Cu(ONO2)2]8 are highly toxic towards the healthy cell line 142BR. Dendrimer 10-
G0-[Cu(ONO2)2]4 is both the most efficient against the resistant prostate cancer cell line
PC3 and the easiest to synthesize; it was also tested in ex vivo experiments with mice
bearing xenografted human prostate cancer. Up to 37% smaller tumor sizes were observed
in the mice treated with 10-G0-[Cu(ONO2)2]4 compared to untreated mice [37]. Additional
experiments were carried out against the myeloid U937 tumor cells [49].

The four dendrimers of series 10-Gn-[Cu] were also tested in combination with pro-
apoptotic siRNAs against breast cancers, which may result in the induction of apopto-
sis. Associations of dendrimers with siRNAs formed dendriplexes in the ratio 1:25–1:50
(siRNA/dendrimer) for the CuCl2 complexes and 1:15–1:25 for the Cu(NO3)2 complexes;
thus, the chosen molar ratio for all compounds was 10-Gn-[Cu]/siRNA = 30. The size of
the dendriplexes was measured by DLS, affording sizes ranging from 980 to 1110 nm with
generations zero and 290–340 nm with the first generations. The uptake of the dendriplexes
in MCF-7 cells was more efficient with the first generation than with the zero-generation
dendrimers. The dendriplexes obtained with dendrimer 10-G1-[Cu(ONO2)2]8 are the most
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efficiently internalized. The viability of MCF-7 cells after 72 h of incubation is largely
affected by the presence of the dendriplexes, and the best results were obtained with den-
driplexes formed with the first generations [48]. The dendriplexes were also shown to be
more active against MCF-7 cells than the dendrimers alone.

In another type of association, the same dendrimers were used in combination with
conventional antitumor drugs, doxorubicin, methotrexate, and 5-fluorouracil. These com-
binations were tested against two cancerous cell lines, MCF-7 and HepG2 (human liver
carcinoma). The efficiency of the conventional drugs significantly increased when associ-
ated with the dendrimers. This association resulted in an increase in the reactive oxygen
species (ROS) levels and in the depolarization of mitochondrial membranes. The presence
of copper ions enhanced the anticancer properties of the whole system and induced both
apoptosis and necrosis. Figure 16 displays the most spectacular example of the efficiency of
these combinations on the MCF-7 cell viability using methotrexate (MTX) as the conven-
tional drug at a concentration in which alone the cell viability decreased only to 80% (0.02
µM/L), and the dendrimers 10-G0-[Cu(ONO2)2]4 and 10-G1-[Cu(ONO2)2]8 at different
concentrations [44].
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In order to perform a larger structure/activity study, pyridine–imine derivatives
functionalized in the para position (relative to the nitrogen atom of pyridine) were also
synthesized (series 11-Gn-[Cu] and 12-Gn-[Cu] in Figure 14). The IC50 values of all these
dendrimers were measured against two cancerous cell lines, HeLa and MCF-7 (Figure 17).
All dendrimers display potent antitumor activity in the micromolar range, lower than
those observed with the non-substituted derivatives. No clear trends depending on the
nature of the pyridine–imine substituent could be deduced from these results. As gen-
eration zero seems more potent than generation-one dendrimers, an in-depth biological
evaluation was carried out with these small dendrimers. Dendrimers 11-G0-[CuCl2]4 and
12-G0-[Cu(ONO2)2]4 strongly affected U937 tumor myeloid cells viability, by inducing late
apoptotic/necrotic cells in 75% and 95%, respectively [43], while they poorly affected the
viability of PBMC normal cells.
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4.2. Antibacterial Properties of Carbosilane Dendrimers

Besides the anticancer properties, the four carbosilane dendrimers of series 10-Gn-[Cu]
(R = H in Figure 14) were also tested against Gram-positive (Staphylococcus aureus) and
Gram-negative (Escherichia coli) bacteria, and biofilms of Staphylococcus aureus. Generations
zero (10-G0-[CuCl2]4 and 10-G0-[Cu(ONO2)2]4) are more efficient than generation one.
They display MIC values in the range of 2–4 mg/L against S. aureus, 4–8 mg/L against
E. coli, and MIB values in the range of 4–8 mg/L against both bacteria. Both generation-zero
dendrimers were also tested for preventing S. aureus biofilm formation. Both compounds
had an MIC of 8 mg/L and an MIB in the range of 4–8 mg/L for preventing biofilm
formation [57].

The functionalized dendrimers (generations zero of series 11-G0-[Cu] (R = Me) and
12-G0-[Cu] (R = OMe)) were also tested against Staphylococcus aureus biofilms, as were the
unfunctionalized dendrimers (10-Gn-[Cu] (R = H)). All compounds were active but less
active than the corresponding unfunctionalized dendrimers 10-Gn-[Cu] [58].

5. Conclusions

We have shown in this review that pyridine–imine copper complexes of dendrimers
offer interesting anticancer properties in vitro and, in some cases, in vivo (mice). The large
panel of cancerous cells was studied, in most cases, only one or two times, and thus
precludes a real SAR (structure–activity relationship) study. The only exception concerns the
MCF-7 cisplatin-resistant breast cancer cells, which have been studied in eight publications
(Table 1). All tested dendrimers and dendrons against MCF-7 cells display IC50 activities in
the µMolar range. The only exception concerns the randomly functionalized phosphorus
dendrimer 2-G3-[Au20-Cu20-PEG8][AuCl4]20, which displays the IC50 at a very low value
of 13 ± 2 nM. However, this low value is essentially due to the presence of gold, in addition
to copper [36].

It should be noted that pyridine–imine copper complexes are found essentially on the
surface of only two types of dendrimers, namely phosphorhydrazone and carbosilane den-
drimers. This fact emphasizes that main group element dendrimers have many interesting
properties, even if they are frequently unrecognized. Furthermore, we hope that this review
will also convince researchers working with other types of dendrimers of the usefulness of
this type of ligand and complex for other biological experiments. According to literature
reviews, the current treatments for cancers [59], and even those foreseen [60], do not display
any information about the use of dendrimers in clinic. It means that additional work is
really needed in the field of dendrimers to bring them to clinical trials [61].
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