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Abstract: Nonalcoholic fatty liver disease (NAFLD) is the liver component of a cluster of conditions,
while its subtype, nonalcoholic steatohepatitis (NASH), emerges as a potentially progressive liver
disorder that harbors the risk of evolving into cirrhosis and culminating in hepatocellular carcinoma
(HCC). NASH and cardiovascular disease (CVD) have common risk factors, but compared to liver-
related causes, the most common cause of death in NASH patients is CVD. Within the pharmacological
armamentarium, statins, celebrated for their lipid-modulating prowess, have now garnered attention
for their expansive therapeutic potential in NASH. Evidence from a plethora of studies suggests that
statins not only manifest anti-inflammatory and antifibrotic properties but also impart a multifaceted
beneficial impact on hepatic health. In this review, we used “statin”, “NAFLD”, “NASH”, and “CVD”
as the major keywords and conducted a literature search using the PubMed and Web of Science
databases to determine the safety and efficacy of statins in patients and animals with NASH and
NAFLD, and the mechanism of statin therapy for NASH. Simultaneously, we reviewed the important
role of the intestinal microbiota in statin therapy for NASH, as it is hoped that statins will provide
new insights into modulating the harmful inflammatory microbiota in the gut and reducing systemic
inflammation in NASH patients.

Keywords: nonalcoholic steatohepatitis (NASH); statins; cardiovascular risk; drug safety; molecular
mechanism

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) has emerged as the pre-eminent chronic
hepatic disorder and is now the most rapidly escalating cause of liver-related mortality
worldwide. NAFLD affects a quarter of the global adult populace, as the prevalence of
NAFLD has soared from 25.3% in the span of 1990–2006 to an alarming 38.0% in the period
of 2016–2019, and is expected to be the leading cause of liver transplantation by 2030. Within
this cohort, about one-third of patients are grappling with nonalcoholic steatohepatitis
(NASH). This condition will impose a substantial fiscal impact on healthcare systems [1–3].
Currently, in terms of the progress of research in the field of NASH, Resmetirom has
been formally approved by the FDA for the treatment of adults with noncirrhotic NASH
with moderate to advanced liver scarring (fibrosis). Although encouraging, the results
raise important questions, such as the uncertainty about the overall risks and benefits of
Resmetirom [4].

NAFLD is the hepatic manifestation of the metabolic syndrome, delineated by the
accrual of hepatic lipids in the absence of excessive alcohol consumption [5]. It is a dynamic
and progressive phenomenon that commences with the augmented accretion of fatty acids
and triglycerides (>5%) in hepatocytes, leading to hepatic inflammation and culminating in
hepatic injury [6]. NASH is a pathologic entity involving hepatocyte ballooning and lobular
inflammation [7]. Once hepatic inflammation is triggered in NASH, it is perpetuated
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by several vicious cycles that occur both outside and inside the hepatic injury, which
eventually result in cirrhosis and hepatocellular carcinoma (HCC) [8]. In addition to
liver disease and mortality, NAFLD is associated with cardiovascular disease (CVD),
metabolic syndrome, type 2 diabetes, and malignant tumors [2]. Therefore, not only
is the deleterious impact of NAFLD related to the progression of hepatic deterioration
but also heightens the independent risk of the development of atherosclerosis and other
CVD-related morbidities [9]. Increased de novo lipogenesis (DNL) promotes liver fat
accumulation in NAFLD, contributing to the development of a proatherosclerotic lipid
profile and atherosclerotic cardiovascular disease [10]. Interestingly, certain novel NASH
drugs, which promote weight reduction and ameliorate dyslipidemia and insulin resistance,
may improve long-term clinical outcomes beyond their hepatic benefits by providing
extended cardioprotective benefits [11].

There has been a notable rise in the administration of statins to individuals suffering
from cardiovascular disease over the past few decades. Statins act by decreasing the cellu-
lar cholesterol content by selectively impeding the enzyme 3-hydroxy-3-methylglutaryl
coenzyme A (HMG-CoA) reductase, curtailing cholesterol biosynthesis and diminishing
hepatic cholesterol concentrations [12]. Excessive cholesterol accumulation in the liver or
bloodstream can precipitate pathological conditions such as hepatic steatosis and atheroscle-
rosis. Disrupted hepatic cholesterol equilibrium and the aggregation of free cholesterol
are intricately associated with the pathogenesis of NASH/NAFLD [13–15]. Consequently,
impaired hepatic cholesterol homeostasis may represent a common pathogenesis of both
NAFLD and atherosclerosis [16]. The lipid-lowering capabilities of statins hold promise for
conferring beneficial effects in NAFLD.

In recent years, the intestinal microbiota has emerged as a hot topic of research. The
gut–liver axis refers to the bidirectional relationship between the gut and its resident
microbiota, involving the transport of gut-derived metabolites via the portal vein to the
liver, while bile and antibody secretion from the liver provide feedback to the intestine.
A high-fat diet alters the microbiome, which subsequently compromises the integrity of
both the intestinal barrier and the gut vascular barrier, and it facilitates the portal influx
of bacterial products, exacerbating non-hepatic inflammation and metabolic abnormali-
ties [17]. Moreover, the intestinal microbiota presents potential as a predictive tool for
individual responses to statin therapy. Dietary interventions inclusive of probiotics may
enhance the efficacy of statins in managing hyperlipidemia, while concurrently mitigating
adverse effects such as myopathy [18]. It is worth noting that concurrent administration of
antibiotics with lovastatin may attenuate the systemic bioavailability of lovastatin’s active
metabolites, thereby diminishing its therapeutic efficacy [19].

In this review, we outline the role of statins in the management of NASH and assess
their safety. The mechanism of statins in the treatment of NASH has been demonstrated
through Kupffer cells (KCs), hepatic stellate cells (HSCs), liver sinusoidal endothelial
cells (LSECs), Paraoxonase 1 (PON1), small guanine triphosphate binding proteins (GT-
Pases), Peroxisome proliferator-activated receptors (PPARs), AMP-activated protein kinase
(AMPK) and ferroptosis. We next summarize the most recent advancements in understand-
ing the modulation of NASH and CVD pathogenesis by statins via the intestinal microbiota,
which may provide new potential therapeutic targets for NASH.

2. Hypolipidemic and Pleiotropy of Statins
2.1. Hypolipidemic

Statins are used to treat lipid disorders caused by elevated cholesterol in the world
and are a hallmark of liposuction therapy. As reductase inhibitors of HMG-CoA, statins
curtail cholesterol formation by targeting and impeding a key step in the biosynthesis of
isoprenoids and sterols, effectively lowering the serum cholesterol levels, which signifi-
cantly reduces the morbidity and mortality of CVD [20]. One of the main mechanisms by
which statins exert their therapeutic effect is promoting lipoprotein clearance, primarily by
upregulating low-density lipoprotein receptor (LDL-R) expression without affecting very
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low-density lipoprotein (VLDL) synthesis [21], and reducing the content of low-density
lipoprotein cholesterol (LDL-C) and the risk associated with CVD [22]. This multifaceted ap-
proach places statins at the forefront of interventions combating lipid-related CVD ailments.
Research has shown a link between the impact of statins on reducing LDL-C levels and the
duration of drug usage. In the case of short-acting statins, there was a notable increase in
LDL-C and total cholesterol (TC) reduction during the evening dose when compared to the
morning [23]. In addition to lowering LDL-C, statins exhibit a broader metabolic influence
by reducing the fasting blood cholesterol and triglyceride (TG) concentrations. Notably,
prolonged statin therapy moderates the postprandial TG elevation typically induced by
lipid-rich meals [24]. Statins can raise the high-density lipoprotein cholesterol (HDL-C)
levels, and cause low levels of HDL-C that are associated with an increased risk of coronary
heart disease (CHD) events [25]. Such findings accentuate the relationship between statin
administration and lipid profile optimization, supporting their indispensable status in
contemporary cardiovascular therapeutics.

2.2. Pleiotropy

Statins are increasingly recognized for their multifaceted roles, which extend beyond
their primary function of lowering LDL. This breadth of action, known as ‘statin pleiotropy’,
has catalyzed a burgeoning research interest, deepening our understanding of statins’
comprehensive impact on CVD [26]. High-sensitivity C-reactive protein (Hs-CRP) is an
inflammatory biomarker that predicts vascular risk with an effect estimate paralleling
TC or HDL-C [27]. Statin treatment may reduce vascular inflammation as assessed by
Hs-CRP, and higher Hs-CRP levels appeared to increase the risk of recurrent stroke and
vascular events [28,29]. HMG-CoA reductase inhibition leads to an upsurge in endothelial
nitric oxide (NO) synthase activity, thereby enhancing the bioavailability of NO; thus,
statins may stabilize atherosclerotic plaques by increasing the bioavailability of NO [30,31].
Statins have also been demonstrated to enhance endothelial function and to attenuate
both platelet reactivity and the production of proinflammatory cytokines, facilitating the
recovery of endothelial function after myocardial ischemia–reperfusion injury in a dose-
dependent manner [32,33]. These pleiotropic effects may be attributed to the inhibition of
synthesis of isoprenoids, which are important lipid attachments for intracellular signaling
molecules [34,35]. The accumulating body of research continues to confirm the diverse
benefits of statin pleiotropy, progressively illuminating its efficacy far beyond the confines
of CVD management.

3. Mechanisms Linking NAFLD and CVD
3.1. Insulin Resistance

Over the past 30 years, there have been many new insights into the pathogenesis of
NAFLD. There is a partial relationship of the etiology between NAFLD and CVD, and the
most common cause of death in patients with NAFLD is CVD rather than chronic liver
disease [36]. The precise pathophysiological mechanisms that elevate the CVD risk in
the context of NASH/NAFLD are yet to be fully elucidated. However, current evidence
points to a constellation of potential factors, including dyslipidemia, insulin resistance (IR),
systemic inflammation, coagulopathies, anomalies within the sympathetic nervous system,
and perturbations in the gut microbiome. Among these, dyslipidemia, IR, and systemic
inflammation stand out as conventional risk factors for CVD and as being independent of
NASH/NAFLD in terms of exacerbating the CVD risk (Figure 1) [37].
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Figure 1. Potential risk factors linking NAFLD to the development and progression of CVD. The
arrows indicate that NAFLD and CVD are interconnected.

IR is recognized as a pivotal factor in the evolution from simple fatty liver to NASH
and hepatic cirrhosis, which also poses a significant risk of CVD. IR-induced compensatory
hyperinsulinemia also engenders a spectrum of metabolic and cellular aberrations, includ-
ing dyslipidemia, hypertension, endothelial dysfunction, oxidative stress, and alterations
in cardiac metabolism [38]. Chronically elevated levels of serum glucose, especially post-
prandial glucose spikes, instigate sympathetic hyperactivity and the synthesis of advanced
glycation end products (AGEs). Through their interaction with specific receptors, AGEs
activate proinflammatory signaling cascades and foster oxidative stress, chronic vascular
inflammation, endothelial dysfunction, lipoprotein metabolism disorders, and the accumu-
lation of ectopic fat [39,40]. Hyperinsulinemia alters the transport of intracellular free fatty
acids (FFAs) and transfers fatty acid uptake from adipose tissue to other metabolic organs,
thereby contributing to the association of the ectopic fat distribution with obesity-related
metabolic diseases. Furthermore, impaired insulin metabolism in these organs can lead
to the exacerbation of IR, which in turn triggers a cascade of cardiometabolic dysfunc-
tion in the heart [41]. Consequently, the aggravation of IR in NASH/NAFLD patients
creates favorable conditions for atherosclerotic dyslipidemia, inducing cardiomyopathy
and arrhythmias, ultimately leading to CVD [42].

3.2. Dyslipidemia

Dyslipidemia encompasses a broad spectrum of lipid perturbations and manifests as
increased plasma TG and LDL-C and reduced levels of HDL-C. It may increase the risk of
CVD in patients with NASH/NAFLD [43]. Furthermore, the severity of NASH/NAFLD
is positively correlated with the concentrations of small dense low-density lipoprotein
(sdLDL) and the ratio of sdLDL/LDL. The study also found that the cholesterol content
within sdLDL is linked to an elevated risk of CVD outcomes across various vascular
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territories [44,45]. In NAFLD, the mechanisms of hepatic lipid acquisition, predominantly
through increased fatty acid uptake and DNL, are enhanced even in the presence of steatosis.
While lipid disposal mechanisms may be upregulated, they are ultimately insufficient to
offset the progressive accumulation of intrahepatic fat [46]. These changes lead to lipid
dysregulation, which not only causes hepatocyte apoptosis and necrosis but also increases
the possibility of CVD in patients with NASH/NAFLD.

3.3. Localized and Systemic Inflammation

NAFLD is understood as a systemic metabolic disorder, with its inflammatory triggers
emanating not only from within the hepatic milieu through lipotoxicity, innate immune re-
sponses, and cell death pathways but also from external sources such as adipose tissue and
the gut [8]. The systemic chronic inflammatory state is fueled by the reciprocal exchange
of inflammatory mediators among the liver, adipose tissue, and the gut [47]. Fetuin-
A, synthetized in the liver, is associated with endothelial dysfunction and an increased
risk of ischemic stroke and carotid atherosclerosis, particularly when it provokes mild
inflammation. Furthermore, elevated serum levels of C-reactive protein (CRP) have been
correlated with carotid atherosclerosis, attributable to CRP’s role in enhancing plasminogen
expression, facilitating the adhesion of molecules to endothelial cells, and augmenting
macrophage LDL phagocytosis [48]. Hepatocyte-derived extracellular vesicles (EVs) from
fatty livers notably instigate endothelial inflammation. MicroRNA-1 (miR-1), a critical
component within these EVs, which triggers endothelial cell inflammation by downreg-
ulating Krüppel-like factor 4 (KLF4) and activating the nuclear factor kappa-B (NF-κB)
pathway. Interestingly, inhibiting miR-1 not only reduces endothelial inflammation in vitro
but also mitigates atherogenesis in ApoE-deficient mice [9]. Due to being central to the
nexus between NASH and CVD, the hepatic miRNAs can enter into the bloodstream and
promote CVD through alterations in lipid metabolism and/or the promotion of systemic
inflammation [49].

4. Statin Therapy in Patients with NAFLD: Safety and Efficacy
4.1. Effects of Statins on NAFLD Patients with CVD

NAFLD and CVD have common risk factors. In NAFLD, the increased liver-related
mortality is primarily attributed to complications of advanced liver fibrosis and cirrhosis,
such as HCC and decompensated cirrhosis. Compared to liver-related causes, however,
most patients with NAFLD face a higher risk of early morbidity and mortality from
CVD [50,51]. In addition, the risk of CVD and liver-related mortality rises exponentially
rather than linearly as liver fibrosis progresses [52]. Statins, mimicking HMG-CoA, the
natural substrate, competitively inhibit the HMG-CoA reductase enzyme, thereby reducing
mevalonate production and downstream cholesterol biosynthesis. Considering that most
cholesterol synthesis occurs in hepatocytes, HMG-CoA reductase inhibitors primarily
target the liver [53]. Dyslipidemia and NAFLD usually coexist, and pooled estimates
indicate a 69.16% prevalence of hyperlipidemia/dyslipidemia among NAFLD and NASH
patients [36]; therefore, statins can often be used as primary and secondary prophylaxis
for CVD in patients with NAFLD. The current statin treatments in NASH/NAFLD clinical
trials are summarized in Table 1.
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Table 1. Clinical trials for statins in treating NASH/NAFLD registered at ClinicalTrials.gov.

Study Title Agent Dose/Day
(Statins) Status Major Inclusion

Criteria
Estimated
Completion Trial Number

NAFLD
pharmacological
treatment:
metformin versus
atorvastatin

Metformin and
atorvastatin 20 mg Unknown, N/A

Signs of simple liver
steatosis at
ultrasonography

1 June 2015 NCT01544751

NAFLD influence of
statin therapy Rosuvastatin / Withdrawn, N/A

Cardiology patient
fatty liver in a cohort
of patients

1 September 2009 NCT00375349

Combination of
obeticholic acid
(OCA) and statins
for monitoring of
lipids (control) [54]

Obeticholic acid
and atorvastatin 10 mg Completed,

phase 2
Histologic evidence
of NASH 12 March 2018 NCT02633956

Atorvastatin versus
vitamin E in
treatment of NAFLD

Atorvastatin 20 mg Unknown, N/A

Sign informed
consent before
involvement in any
trial-related activity

1 December 2016 NCT01720719

Phase IV study to
evaluate the effects
of statin
monotherapy or
statin/ezetimibe
combination therapy
on hepatic steatosis
in patients with
hyperlipidemia and
NAFLD

Rosuvastatin 5 mg Completed,
phase 4

Patients diagnosed
with fatty liver or
liver fibroscan

11 September 2019 NCT03434613

Atorvastatin,
L-Carnitine and
NASH

Atorvastatin,
carnitine and
atoral

20 mg Unknown, N/A
NASH diagnosed on
the basis of
established criteria

1 December 2019 NCT01617772

Assessment of
endothelial function
in patients with
NAFLD and the
impact of statin
treatment

Atorvastatin 20 mg Withdrawn, N/A Patients with fatty
liver 1 December 2015 NCT01987310

Statins for the
treatment of NASH Atorvastatin 40 mg Recruiting, phase 2 NASH or fibrosis

stage ≥ 2 1 December 2024 NCT04679376

Effects of
pitavastatin on
insulin sensitivity
and liver fat

Pitavastatin 4 mg Completed,
Unknown

BMI ≥ 27 kg/m2 and
waist circumference
≥ 102 cm, high
probability risk
factors for NAFLD

30 April 2018 NCT02290106

Liver cirrhosis
network rosuvastatin
efficacy and safety
for cirrhosis in the
United States

Rosuvastatin 20 mg Recruiting, phase 2

Cirrhosis due to
NASH,
alcohol-associated
liver disease, or
chronic viral
hepatitis or
cryptogenic cirrhosis

1 November 2026 NCT05832229

Clinical effects of
new approach on
patients with NASH

Rosuvastatin,
vitamin E, and
N-acetyl cysteine

20 mg Not yet recruiting,
early phase 1

NASH diagnosis
using fibroscan
detecting the degree
of steatosis and
fibrosis

17 January 2025 NCT06105060

Comparative clinical
study to evaluate the
efficacy and safety of
rosuvastatin vs
CoQ10 on NASH

Coenzyme Q10
and rosuvastatin 20 mg Not yet recruiting,

phase 3

Patients have
established
diagnosis of NASH

1 April 2024 NCT05731596

A search of the keyword “NAFLD” or “NASH” in the item “Condition or disease” at https://clinicaltrials.gov/
(accessed on 5 November 2023) yielded 1404 listed studies, 12 of which are listed in this table that are related to
statins. N/A, not available. NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis.

ClinicalTrials.gov
https://clinicaltrials.gov/
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Three post hoc analyses of randomized controlled trials (n = 1600, n = 1123, n = 8864)
indicate that atorvastatin is beneficial for NASH/NAFLD on the basis of a reduction in liver
enzymes and improvements in ultrasonography. Moreover, statin treatment halved the
CVD morbidity and mortality, as well as reduced the CVD events by two-thirds, compared
to NASH/NAFLD patients not receiving statins [55]. Another large-scale cross-sectional
analysis within a population-based cohort study found that statin-naive individuals with
suspected NAFLD (Fatty Liver Index ≥ 60) and suspected advanced fibrosis (NAFLD
fibrosis score > 0.676) face a significantly elevated cardiovascular risk, thereby warranting
a higher consideration for statin therapy. The proportion of NASH subjects requiring
statin treatment increases with increasing LDL-C levels and higher CVD risk prediction
categories [30].

In summary, statin therapy has a significant ameliorative effect in patients with
NASH/NAFLD. Most importantly, statins are beneficial for their concurrent CVD. As
the disease worsens, statins may have the potential to save the lives of patients with severe
liver disease complicated by CVD.

4.2. Safety Assessment of Statins in the Treatment of NASH/NAFLD

Many lipid-lowering drugs have side effects, including elevated liver function and hep-
atotoxicity. Statins, as lipid-lowering drugs, have also gained significant attention for their
potential toxicity. A systematic examination and meta-analysis of over 90,000 participants
in randomized studies revealed that statins markedly elevate both the relative and absolute
risks of myopathy, kidney, and liver dysfunction [56]. Myotoxic effects caused by statins
rank among the most frequent side effects, presenting as exhaustion, muscle pain, muscle
weakness, nocturnal cramping, and more, with occurrence rates varying between 7% and
29% [57]. Furthermore, randomized studies indicate that moderate-intensity statins elevate
the risk of type 2 diabetes by approximately 11%, and there is a potential additional 12%
risk increase when moving to high-intensity statins [58]. Research indicates that statin pre-
scription is sometimes limited in NASH/NAFLD patients due to the concern of physicians
about hepatotoxicity [59]. In fact, statins have only a slight effect on aminotransferases, and
they even have a decreasing effect on these enzymes. The Greek Atorvastatin and Coronary
Heart Disease Evaluation (GREACE) study revealed that of 437 patients presenting with
moderately abnormal liver tests at baseline, potentially indicative of NAFLD, 227 treated
with a statin (predominantly atorvastatin) exhibited significant improvements in the liver
function tests. In contrast, the 210 patients not receiving statin treatment experienced
further elevations in the liver enzyme concentrations [60].

Different clinical studies have consistently demonstrated that the serum aminotrans-
ferase levels are reduced significantly in NAFLD patients with dyslipidemia by atorvastatin
and simvastatin treatment [61,62]. Although prolonged use of certain drugs, such as ro-
suvastatin, can cause liver enzyme abnormalities, none of the subjects exhibited more
than a threefold increase in these enzymes, and they showed significant improvements
in lipid parameters [63]. A recent meta-analysis scrutinized variations in the liver func-
tion tests, specifically alanine transaminase (ALT), aspartate transaminase (AST), and
gamma-glutamyl transpeptidase (γ-GGT), in 22 studies with 2345 NAFLD patients treated
with statins. The results reveal a significant diminution in the liver enzyme levels in the
statin-treated NAFLD patients [64]. Another meta-analysis similarly indicated that statins
reduced the liver enzyme levels and improved liver histology [65]. The prospective study
investigating statin therapy’s impact on liver enzyme in the very elderly (≥80 years old)
included 515 patients aged 80 to 98 with hypercholesterolemia (LDL-C levels ≥3.4 and
<5.7 mmol/L), atherosclerosis, CHD, or a CHD-risk equivalent. The findings indicate that
24 patients (4.7, 95% CI 2.7–6.6) experienced increased hepatic aminotransferase levels [66],
implying that treatment with statins is safe, even in elderly patients. Statins are deemed
safe for patients with cirrhosis. A retrospective cohort study of veterans demonstrated that
statin therapy reduced the risk of acute-on-chronic liver failure in cirrhotic patients [67].
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Furthermore, statin therapy significantly reduces the risk of HCC in patients with diabetes,
NASH, and cirrhosis [68,69].

In 2006, the Liver Expert Panel of the National Lipid Association (NLA), in a series
of special reports on the safety of statins, indicated that elevated liver enzymes do not
necessarily lead to hepatotoxicity. Additionally, patients with suspected NAFLD and
elevated liver enzymes do not exhibit an increased risk of developing liver injury when
using statins compared to those with normal liver enzymes prior to recruitment [70]. The
2020 Evidence-Based Clinical Practice Guidelines for NAFLD/NASH also advocate for
the consideration of statins in NAFLD/NASH patients with hypercholesterolemia [71]. A
large amount of evidence in recent years suggests that statin therapy for NASH has a low
risk of causing serious hepatotoxic reactions, prompting an increase in the use of statins for
primary prevention over time [59,72].

5. Effects of Statins on Liver Histology—From Animal Models to Human Studies
5.1. Improvement of Steatosis

NAFLD is typified by hepatic steatosis, marked by over 5% parenchymal fat accumu-
lation, without hepatocyte injury [7]. Statins, as efficacious lipid-lowering agents, reduce
LDL-C by 20–60%, TG by 10–33%, and increase HDL-C by 5–10% in NAFLD patients [73].
Statins may potentially contribute to blocking NAFLD progression by controlling lipid
status. Specifically, atorvastatin has been shown to effectively ameliorate NAFLD-related
hyperlipidemia in rats, reducing liver steatosis and modulating the expression of lipid
metabolism-regulating genes [74]. Likewise, the treatment of NAFLD rats with simvas-
tatin and fluvastatin reduced their liver weight, hepatic index, ALT, AST, and regulated
abnormal lipid metabolism [75,76].

In an open-label trial, 70 participants with NAFLD were randomized to receive either
ezetimibe combined with rosuvastatin or rosuvastatin alone for a duration of up to 24 weeks,
and the effectiveness of ezetimibe plus rosuvastatin was assessed compared to rosuvastatin
alone in reducing hepatic fat by utilizing magnetic resonance imaging-derived proton
density fat fraction (MRI-PDFF) in patients. The results demonstrated that hepatic steatosis
was reduced by the combination or individual use of rosuvastatin [77]. Another study
found that during 12 weeks of continuous treatment with either pitavastatin (2–4 mg/day)
or atorvastatin (10–20 mg/day), CT scans showed no significant elevation in ALT and a
significant reduction in hepatic fat accumulation (pitavastatin group: p = 0.014; atorvastatin
group: p = 0.021) during treatment [78]. In 2015, Kargiotis et al. examined patients treated
with rosuvastatin (10 mg/d) monotherapy for 12 months, with repeat liver biopsy and
ultrasound at the end of treatment. It was found that the NASH was improved in 95% of
the patients [79]. Several studies have indicated that statins can reduce hepatic steatosis in
patients [80–82]; however, partial statin use, such as pitavastatin, has no significant effect
on liver steatosis [83]. Long-term treatment with statins (18 months) did not translate into a
histologic improvement in the NAFLD Activity Score (NAS), despite a reduction in liver fat
(13 ± 2 vs. 8 ± 2%, p < 0.001) [84]. The results and potential hepatoprotective mechanisms
of statins used in NASH/NAFLD are listed below (Figure 2 and Table 2).
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Figure 2. Potential mechanisms by which statins may favorably affect liver histology in
NASH/NAFLD. This cartoon emphasizes the pleiotropic effects of statins on the liver and the
potential mechanisms that may combine to ameliorate the primary pathological conditions of
NASH/NAFLD, such as steatosis, inflammation, and fibrosis. The downward pointing arrow signifies
downregulation. ACO, acyl-CoA oxidase; PON1, paraoxonase 1; PPAR, peroxisome proliferator-
activated receptor; CPT, carnitine palmitoyltransferase; LKB1/AMPK, AMP-activated protein kinase;
ALE-RAGE, advanced lipoxidation end product-receptors of advanced glycation end products; TNF,
tumor necrosis factor; NLRP3, NOD-like receptor family pyrin domain-containing 3; IL-1β, cytokines
interleukin (IL)-1β; GTPases, small guanine triphosphate-binding proteins; eNOS, endothelial nitric
oxide synthase; iNOS, inducible nitric oxide synthase; LSECs, liver sinusoidal endothelial cells; KCs,
Kupffer cells; HSCs, hepatic stellate cells; RAS/ERK; Ras-extracellular signal-regulated kinase.
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Table 2. Summary of studies evaluating the effects of statin use in NASH/NAFLD.

Type of Statin Study
Design Diseases Dose/Day Results Comments Reference

Atorvastatin
Rat NAFLD 30 mg/kg

Atorvastatin
up-regulated the
expression of PPARα,
liver fatty acid
β-oxidation, and
reduced the liver TG

Atorvastatin
treatment effectively
improved
NAFLD-related
hyperlipidemia and
inhibited liver
steatosis,
accompanied by
modulating the
expression of genes
for regulating lipid
metabolism

[74]

Mice NAFLD-NASH 4.5 mg/kg

Atorvastatin
prevents cholesterol
crystal formation,
thereby precluding
NLRP3
inflammasome
activation to prevent
further development
of NAFLD

Atorvastatin
prevents
development of
hepatic steatosis,
inflammation and
fibrosis in mice

[85]

Human Hypercholesteremia 10 mg

Atorvastatin reduced
LDL-C
concentrations and
the severity of
hepatic steatosis

Atorvastatin
effectively and safely
reduces elevated
hepatic enzyme
concentrations in hy-
percholesterolemic
patients

[78]

Fluvastatin Rat NASH 5 mg/kg or
10 mg/kg

Fluvastatin reduced
steatosis and fibrosis
scores, α-SMA
protein expression,
mRNA expression of
pro-inflammatory
and pro-fibrogenic
genes in livers

Fluvastatin
alleviated
steatosis-induced
HSCs activation and
hepatic fibrogenesis
through mitigating
inflammation and
oxidative stress

[75]

Rosuvastatin Human NASH 10 mg

Rosuvastatin
resulted in complete
resolution of NASH
in 19 patients, and
lipid values
were normalized

Rosuvastatin could
ameliorate
biopsy-proven
NASH and reduce
the risk of vascular
and liver morbidity
and mortality in
NASH patients

[79]

Simvastatin Mice NAFLD 20 mg/kg

Simvastatin restored
antioxidant enzyme
activity and
decreased lipid
peroxidation and
ALE-RAGE pathway
activation

Simvastatin
improved
microcirculatory
function in NAFLD
by downregulating
oxidative and
ALE-RAGE stress
and attenuated
steatosis,
inflammation
and fibrosis.

[86]

NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; PPAR, peroxisome proliferator-
activated receptor; TG, triglycerides; NLRP3, NOD-like receptor family pyrin domain-containing 3; LDL-C,
low-density lipoprotein cholesterol; α-SMA, alpha-smooth muscle actin; HSCs, hepatic stellate cells; ALE-RAGE,
advanced lipoxidation end product-receptors of advanced glycation end products.

5.2. Reduction of Inflammation

Statins have some anti-inflammatory activity, with evidence showing their ability
to attenuate the inflammatory and pathogenic activities of T cells via KLF2-dependent
mechanisms [87]. Simvastatin prevented microcirculatory dysfunction and NAFLD by
downregulating oxidative stress and advanced lipoxidation end product-receptors of
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advanced glycation end product (ALE-RAGE) stress, thus ameliorating steatosis, fibrosis,
and inflammatory parameters [86]. Atorvastatin notably inhibits the activation of the
NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome pathway
triggered by cholesterol crystals, subsequently reducing the expression of pro-inflammatory
cytokines IL-1β and IL-18, which are implicated in NAFLD progression. Atorvastatin has
been found to inhibit the activation of the NOD-like receptor family, NOD-like receptor
family pyrin domain-containing 3 (NLRP3) inflammasome pathway induced by cholesterol
crystals, thereby reducing the expression of pro-inflammatory cytokines interleukin (IL)-1β
and IL-18, which are implicated in NAFLD progression [85]. Additionally, atorvastatin
also impedes NASH progression, partly by reducing tumor necrosis factor-α (TNF-α). The
study enrolled 42 biopsy-proven nonalcoholic steatohepatitis patients with dyslipidemia.
A 12-month treatment with atorvastatin (10 mg/day) resulted in significant decreases in
the levels of AST, γ-GGT, LDL-C, TG, type IV collagen, and TNF-α, and it revealed that
the extent of the LDL-C reduction by atorvastatin was independently associated with the
increase in the liver to spleen density ratio [88]. Another study similarly found that NAFLD
patients taking statins had a significant reduction in the necro-inflammatory phase of the
liver [72]. Long-term statin therapy has been shown to improve steatosis, hepatocellular
ballooning degeneration, and diffuse lobular mixed acute and chronic inflammation in 95%
of patients based on repeat liver biopsy [79].

5.3. Improvement of Fibrosis

Advanced liver fibrosis serves as a pivotal prognostic determinant for end-stage liver
disease, cardiovascular, and overall mortality [89]. Some studies have found that statins
can be an effective antifibrotic agent in hepatic fibrosis [90–92]. For instance, simvastatin
has been observed to enhance the prognosis of NASH-related fibrosis by modulating the
expression of endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase
(iNOS) while inhibiting the activation of HSCs [93]. Fluvastatin alleviates steatosis-induced
activation of HSCs and hepatic fibrogenesis by mitigating inflammation and oxidative
stress in vitro and in vivo [75]. In addition, a clinical investigation, utilizing liver stiffness
measurements (LSM) as an index of fibrosis, discerned that statin administration correlates
with a reduced likelihood of advanced liver fibrosis (OR 0.35, 95% CI 0.13–0.90, p = 0.03) [94].

In a cross-sectional analysis involving 346 diabetics with biopsy-confirmed NAFLD,
statin use was independently and inversely correlated with both NASH (OR 0.57, 95%
CI 0.32 to 1.01, p = 0.055) and significant fibrosis (SF) (OR 0.47, 95% CI 0.26 to 0.84,
p = 0.011) [95]. Sfikas et al. studied 604 military personnel with NASH/NAFLD to as-
sess the effects of diet–exercise, and one year of treatment with atorvastatin, rosuvastatin,
or pitavastatin, on NASH/NAFLD. The results showed that all three statins reduced NASH
and the Fibrosis-4 score (FIB-4) [96]. Previous studies have indicated that statins may not
improve liver fibrosis [81,97,98]; however, a recent study found that statin use reduced
the risk of significant liver fibrosis (AOR 0.43; 95% CI 0.42–0.44) in a national case-control
study [99], and the risk of HCC was lower in patients with NASH and advanced fibrosis
after statin use [100,101].

6. Mechanisms of Statins in the Treatment of NASH/NAFLD
6.1. KCs, HSCs and LSECs

In atherosclerosis and NASH, the inflammatory response is primarily driven by lysoso-
mal cholesterol accumulation in macrophages rather than the overall amount of intracellular
lipids [102]. In animal models, dietary cholesterol can activate hepatic injury by promoting
the M1 phenotype in KCs, leading to the activation of HSCs, oxidative stress, and inflam-
mation [103]. The KCs can be activated by free cholesterol (FC), cholesteryl esters and TG
around dead hepatocytes to form coronary structures, and a liver with these activated KCs
progresses into inflammation and fibrosis distinct from simple steatosis [104]. Paracrine sig-
naling from various resident and inflammatory cells, including hepatocytes, LSECs, hepatic
macrophages, natural killer/natural killer T cells, biliary epithelial cells, hepatic progenitor
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cells, and platelets, exerts a direct or indirect regulatory influence on the differentiation and
activation of HSCs. Activated HSCs are pivotal in the initiation and progression of liver
fibrosis [105]. Furthermore, altered LSECs contribute to hepatic angiogenesis, inflammation,
fibrosis and HCC during the stages of NASH. Multiple pieces of evidence indicate that
the dysfunction of LSECs in fatty livers is associated with increased intrahepatic vascular
resistance related to steatosis [106].

Statins reduce hepatocellular cholesterol uptake, effectively preventing or revers-
ing cholesterol accumulation in hepatocytes, and they inhibit the activation of KCs and
HSCs, which slows down liver fibrosis [107]. A study showed that atorvastatin reduced
hepatic steatosis and inflammation induced by a high-saturated fat, high-fructose, and high-
cholesterol diet in animals with NASH and significantly regulated bile acid metabolism by
altering intestinal reabsorption and hepatic synthesis in NASH mice [108]. The separation
of the components in an atherogenic diet has revealed that liver damage and fibrosis may
be attributed to the initial accumulation of bile acid. Bile acids play a role in the transdif-
ferentiation of HSCs into myofibroblasts, ultimately resulting in fibrosis, which suggests
that hepatic cholesterol and bile acid homeostasis may influence fibrosis caused by HSCs
proliferation [109].

Moreover, combination therapy with lipid-lowering drugs has proven more efficacious
in treating NASH compared to individual drug use. In multiple animal model studies,
investigators have evaluated the roles of different interventions in NASH, confirming that
an ezetimibe/atorvastatin combination normalized the hepatic FC levels, although it had
a minimal impact on saturated FFAs and other lipids. Lipid-lowering drugs can break
down cholesterol crystals, crown-like structures of activated KCs and improve fibrosis. In
contrast, ezetimibe and atorvastatin alone yield similar but less pronounced effects [110,111].
Increased activation of KCs and HSCs due to the dysfunction of LSECs may be modulated
by statins. A study of rats treated with simvastatin or atorvastatin demonstrated that statins
not only improve NASH histology but also restore healthy LSECs and HSCs phenotype,
leading to decreased portal pressure and, consequently, an improved prognosis for the
disease [112].

In summary, statins counteract hepatic lipotoxicity by processing cholesterol crystals
and KCs with a coronal structure, further preventing inflammation and fibrosis formation,
restoring healthy LSECs, and inhibiting HSCs activation, thus antagonizing the develop-
ment of fibrosis in NASH.

6.2. PON1

PON1 is an antioxidant enzyme of hepatic origin. The structure activity of three
groups of known substrates of PON1 (phosphotriesters, esters, and lactones) has been
verified and PON1 is, in fact, a lactonase [113]. PON1 hinders oxidative modification
of LDL through the elimination of lipid peroxides from LDL. PON1 is recognized as an
essential component of the antioxidant and anti-inflammatory functions of HDL. The
serum activity of PON1 correlates with systemic lipid peroxidation (LPO) stress and
potential cardiovascular risk [114,115]. A meta-analysis found that paraoxonase activity,
which is related to PON1, was markedly diminished in patients with NAFLD compared
to those without the condition. This suggests that the paraoxonase levels may impact
the pathophysiology of NASH/NAFLD and could serve as a useful biomarker for the
condition [116].

Statins have been demonstrated to restore the serum PON1 levels in NASH/NAFLD
patients. Increased PON1 activity attenuates NASH/NAFLD-induced LPO. In a clinical
trial, 50 NAFLD patients were bifurcated into 2 cohorts, 1 with an 8-month intervention
of 40 mg tablet atorvastatin and 1 without atorvastatin. Various investigations were con-
ducted, including abdominal ultrasonography, serum PON1 activity level, liver function
tests, serum lipid profile, and serum levels of malondialdehyde (MDA), an indicator of
oxidative stress. The results showed that after atorvastatin treatment, the serum PON1
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activity was significantly increased, the blood lipids, especially LDL-C, were decreased,
hepatic oxidative stress was reduced and the progression of NAFLD was reversed [117].

However, whether statins can ameliorate NASH by increasing serum PON1 activity
has not been reported in animals, and there are only a few studies even in clinical trials. If
it is found in animal models that PON1 is the therapeutic target of statin action in NASH, it
will be better established.

6.3. GTPases

The Rab family GTPases are quintessential controllers of vesicle transport and mem-
brane trafficking in eukaryotic cells. They interact with various effectors, such as molecular
motors, scaffolding proteins, and lipid kinases, orchestrating virtually every aspect of
vesicular trafficking across cellular compartments [118]. The regulation of intracellular
trafficking and the interactions with regulators and effectors of Rho proteins rely heavily on
the post-translational isoprenylation of small G proteins. Statins impede the production of
isoprenoid intermediates by restraining mevalonate synthesis, thus hindering the isopreny-
lation of small GTPases and consequently inhibiting their signaling. Statins also attenuate
hepatic inflammation and fibrosis by inhibiting signaling downstream of the Rho family
small G proteins (RhoA, RAS). The cause of this effect can be attributed to the multiple
actions of statins rather than their ability to lower cholesterol [119–122].

Researchers fed 12-week-old ApoE−/− mice a Western-style diet for 7 weeks to induce
NASH, while treating the mice with simvastatin for 6 weeks. The results revealed that the
antifibrotic and anti-inflammatory effects of simvastatin were dependent on the inhibition
of two specific pathways: the Ras/ERK1/2 (Ras-extracellular signal-regulated kinase)
pathway and the RhoA/Rho kinase pathway. These findings highlight the potential
therapeutic benefits of statins in the treatment of NASH and provide insights into the
underlying mechanisms of its action [123].

6.4. PPARs

Peroxisome proliferator-activated receptors (PPARs), which bind fatty acids and their
metabolites and control inflammatory and metabolic pathways, are also essential regulators
of lipid and glucose metabolism, inflammation and fibrogenesis in various tissues [124].
PPARα is a key factor in regulating fatty acid metabolism and ketogenesis. It has the ability
to regulate the transportation of fatty acids, oxidation of peroxisomes or mitochondria,
and lipolysis, ultimately impacting the production of apolipoproteins [125]. Deletion of
hepatocyte PPARα in NAFLD mice disrupted liver and systemic fatty acid homeostasis,
leading to hepatic lipid accumulation [126]. Mice treated with different PPAR agonists
improved both their steatosis and hepatitis [127]. Previously, statins have been found to
exert anti-inflammatory effects via PPARα. The study found that the liver PPARα, acyl-CoA
oxidase (ACO), and carnitine palmitoyltransferase I (CPTI) mRNA levels and hepatic fatty
acid β-oxidation activity were increased by atorvastatin at 30 mg/kg [128]. Rosuvastatin
treatment attenuated hepatic steatosis in NAFLD mice by modulating PPAR homeostasis.
This effect was accompanied by a reduction in insulin resistance, an improvement in the
anti-inflammatory adipokine profile, and a decrease in HSC activation [129]. Different
types of statins (fluvastatin, pravastatin, simvastatin, atorvastatin, and rosuvastatin) can
prevent NASH by inducing PPARα and increasing mitochondrial and peroxisomal fatty
acid oxidation (FAO) [130].

6.5. AMPK

AMPK plays an essential role in controlling a variety of metabolic pathways. Its signif-
icance lies in its ability to regulate glucose uptake, uphold mitochondrial equilibrium, avert
lysosomal harm, and facilitate autophagy. Furthermore, AMPK hinders the production
of fatty acids and cholesterol [131,132]. AMPK, adept at inhibiting various enzymes and
transcription factors pivotal for lipid biosynthesis, plays a critical role in metabolic regula-
tion. Diminished AMPK activity impairs FAO and augments adipogenesis by attenuating
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ACC phosphorylation [133]. Fluvastatin was found to act as an SIRT6 agonist and inhibit
lipid synthesis in hepatocytes by activating the LKB1/AMPK pathway to regulate the
transcriptional factor Srebp1 [134]. In another study, atorvastatin also mitigated hepatic
fat accumulation through AMPK-dependent upregulation of PPARα and PGC1α in the
high-fat diet-induced NAFLD hamster model [135]. Additionally, simvastatin treatment
led to the suppression of oncoproteins STAT3 and Skp2 and activation of the energy sensor
AMPK, culminating in reduced tumor growth in HepG2 xenograft mice [136].

6.6. Ferroptosis

Ferroptosis represents an iron-dependent, non-apoptotic mode of cell death, char-
acterized by large levels of LPO [137]. The liver plays a pivotal role in regulating the
systemic iron balance through the synthesis and secretion of hepcidin, a major regulator
of iron homeostasis [138]. Ferroptosis has been proposed to be implicated in the develop-
ment and progression of NASH/NAFLD [139]. Knockout of the iron chaperone protein
PCBP1 in hepatocytes resulted in defects in liver iron homeostasis and led to reactive
oxygen species (ROS) production, which caused LPO and hepatic steatosis in mice [140].
Statins can induce ferroptosis and suppress tumor growth [141]. Subsequent research has
elucidated that simvastatin could suppress the expression of HMG-CoA, consequently
downregulating the mevalonate pathway and glutathione peroxidase 4 (GPX4), which in
turn triggers ferroptosis in cancer cells [142]. Simvastatin also mediates the activation of
HSCs through the mevalonate pathway, reducing the intracellular cholesterol levels in
HSCs and inducing iron prolapse, and may be an potential therapeutic agent for treating
hepatic fibrosis [143]. Although the effects of statins on the iron death pathways have
been reported [144], whether one of the pathological mechanisms by which statins are
favorable to the progression of NASH/NAFLD is linked to the inhibition of iron death
requires further investigation.

6.7. Intestinal Microbiota

In 2011, Arumugam M and colleagues first proposed the concept of ‘enterotypes’ [145].
Later, scientists further proposed that the microbial composition of the human gut can be
divided into four distinct enterotypes, such as Bacteroidetes1 (Bact1), Bacteroidetes2 (Bact2),
Prevotella (Prev) and Ruminococcaceae (Rum) [146–148]. Sara et al. [148] indicated that less
than 6% of obese individuals treated with statins had a Bact2 gut phenotype, which is com-
parable to non-obese individuals. It also suggests that statins may play a role in modulating
the harmful inflammatory microbiota of the gut and alleviating the systemic inflammation
levels in obese patients. These findings indicate that commonly used cholesterol-lowering
statin drugs may be a potential therapeutic option for microbiota modulation (Table 3).

Table 3. Summary of the effects of statins on the intestinal microbiota in different diseases.

Disease Type of Statin Study Design Dose/Day Intestinal Microbial
Changes Results Reference

Hypercholesteremia Atorvastatin
Rat 10, 15, 20 mg/kg

Proteobacteria
increased, Firmicutes
decreased

Intestinal microbial
diversity increased [149]

Human 20 mg

Faecalibacterium
prausnitzii,
Akkermansia
muciniphilaa and
Oscillospira increased
Desufovibrio decreased

Reduced
pro-inflammatory
bacteria and taxa
associated with
atherosclerosis
formation and CVD
progression

[150]
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Table 3. Cont.

Disease Type of Statin Study Design Dose/Day Intestinal Microbial
Changes Results Reference

Ischemic stroke Atorvastatin Mice 20 mg/kg
Firmicutes and
Lactobacillus increased,
Bacteroidetes decreased

Increased fecal
butyrate level,
promoted intestinal
barrier function

[151]

Acute coronary
syndrome Statins Human /

Parabacteroides merdae
decreased
Bifidobacterium longum
subsp. longum,
Anaerostipes hadrus
and Ruminococcus
obeum increased

Specific changes in
bacterial taxa were
associated with
disease severity or
outcomes either
directly or by
mediating metabolites
such as fatty acids
and prenol lipids

[152]

Obesity Atorvastatin
Mice

10 mg/kg

Bacteroides,
Butyricimonas, and
Mucispirillum
increased

Statins improved the
inflammation
associated microbiota
in elderly obese mice

[153]

Rosuvastatin 3 mg/kg
9.3 mg/kg

Lachnospiraceae,
Rikenella and
Coprococcus increased
Akkermansiaceae,
Proteobacteria
decreased

[153,154]

NASH/NAFLD Atorvastatin Mice
20 mg/kg

Mucispirillum,
Desulfovibrio,
Anaerotruncus and
Desulfovibrionaceae
decreased

Increased serum TCA
and depleted 3-IPA [155]

20 mg/kg Ruminococcaceae
increased

Promoted the
formation of
deoxycholic acid and
lithocholic acid

[156]

CVD, cardiovascular disease; NASH, nonalcoholic steatohepatitis; NAFLD, nonalcoholic fatty liver disease; TCA,
taurocholic acid; IPA, indolepropionic acid.

Cholesterol is oxidized in hepatocytes via cytochrome P450 to synthesize bile acids.
The intestinal microbiota can biotransform these BAs into their unconjugated forms via bile
salt hydrolase (BSH) activity, subsequently producing secondary BAs through reactions
such as 7α-dehydroxylation or isopropylation [157]. Several bacterial genera, including
Bacteroides, Bifidobacterium, Clostridium, Lactobacillus, and Listeria, have been identified as
containing BSHs [158]. Increasingly, studies are focusing on the regulatory effects of statins
on cardiovascular and other diseases by the intestinal microbiota. Such research found
that the treatment of hypercholesterolemic mice with atorvastatin resulted in elevated
levels of the anti-inflammatory bacteria [149]. Similarly, statins can significantly modify
inflammation-associated bacterial flora, such as Butyricimonas and Mucispirillum [153].
Diminished populations of intestinal Lactobacillus and Bifidobacterium, leading to transport
defects, may significantly impair the efficacy of rosuvastatin in reducing the serum levels
of TC and LDL-C in rats [159]. Studies have also found that the hypolipidemic effect
of simvastatin was related to the composition of the intestinal microbiota. Simvastatin
stimulates hepatic Farnesoid X receptor (FXR) and increases Cyp7a1 gene expression in mice
on an HFD diet, which was impaired by antibiotic treatment [160]. This further supports the
therapeutic effect of statins on disease via the intestinal microbiota. The same was found
in studies of ischemic stroke, showing that atorvastatin not only increased abundance
of Firmicutes and Lactobacillus and increased the fecal butyrate level but also regulated
intestinal immune function, significantly reduced the level of circulating endotoxin, and
promoted intestinal barrier function [151]. Cross-sectional studies have also shown that
long-term, regular oral administration of aspirin in conjunction with atorvastatin modulates
the human gut microbiota, contributing to the prevention of ischemic stroke [161].
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Development of fibrosis, cirrhosis and HCC in NASH/NAFLD patients is strongly as-
sociated with hepatic cholesterol metabolism [107,162]. Statins can prevent further progres-
sion of NAFLD by modulating the disorders of the intestinal microbiota and its metabolites,
improving bile acid metabolism. A study proposed that an interaction of the intestinal
microbiota and cholesterol metabolism leads to increased levels of adiposity in mice [163],
and the presence of cholesterol-metabolizing bacteria correlates with reduced levels of TC
in both the stool and serum in human cohorts [164]. There have been researchers who
have associated statins with NAFLD through the intestinal microbiota [155]. They have
found that high-fat/high-cholesterol (HFHC) led to intestinal microbiota in mice, such as
Mucispirillum, Desulfovibrio, Anaerotruncus and Desulfovibrionaceae increased sequentially,
while Bifidobacterium and Bacteroides were depleted, and impaired microbial tryptophan
metabolism. Atorvastatin treatment reversed the abundance of disturbed intestinal micro-
biota, with increased serum taurocholic acid (TCA) and depleted 3-indolepropionic acid
(IPA). The results revealed that atorvastatin completely prevented HFHC diet-induced
NAFLD-HCC development [155]. In another study, atorvastatin was also found to be
effective in reducing hepatic fat deposition in NASH mice by enhancing the percentage
of 7α-dehydroxylase-expressing bacteria (Ruminococcaceae) in the intestine, which pro-
motes the formation of deoxycholic acid and lithocholic acid, both of which are GPBAR1
agonists [156].

Despite this, there is still a deficiency of articles investigating the link between statins
and NASH via the intestinal microbiota, and how statins ameliorate NASH through the
intestinal microbiota and its metabolites still needs to be further explored.

7. Conclusions

NASH/NAFLD form part of a multisystemic disease that is considered to be the
hepatic manifestation of metabolic syndrome and is a significant contributor to hepatic
cirrhosis and HCC. Resmetirom received FDA approval on 14 March 2024. This marks it as
the first medication approved for the treatment of NASH with liver fibrosis, providing a
treatment option for these patients, in addition to diet and exercise. It also serves as a crucial
reference for creating additional medications to treat NASH. As a lipid-lowering drug,
statins have consistently demonstrated in several clinical trials having no significant effect
on hepatotoxicity in patients, further encouraging the use of statins in NASH patients. Here,
we propose that statins may be a core coordinator in orchestrating the lipids, inflammation,
and fibrosis implicated in conditions associated with NASH. Multiple in vivo and in vitro
research studies suggest that statins might prevent or treat NASH via HSCs, LSECs, PON1,
GTPase, PPARs, AMPK, and ferroptosis. An increasing number of studies show that statins
can improve CVD through the intestinal microbiota and have a protective effect on NASH
(Figure 3). In this context, we need more clinical trials to explore the impact of statins on
NASH patients and the cardiovascular risk mediated by the intestinal microbiota. The
mechanism of statins in the treatment of NASH needs to be further delineated in view of
the fact that more and more statin therapies have recently been identified.
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