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Abstract: Drug discovery is a challenging process, with many compounds failing to progress due
to unmet pharmacokinetic criteria. Lipophilicity is an important physicochemical parameter that
affects various pharmacokinetic processes, including absorption, metabolism, and excretion. This
study evaluated the lipophilic properties of a library of ipsapirone derivatives that were previously
synthesized to affect dopamine and serotonin receptors. Lipophilicity indices were determined using
computational and chromatographic approaches. In addition, the affinity to human serum albumin
(HSA) and phospholipids was assessed using biomimetic chromatography protocols. Quantitative
Structure–Retention Relationship (QSRR) methodologies were used to determine the impact of
theoretical descriptors on experimentally determined properties. A multiple linear regression (MLR)
model was calculated to identify the most important features, and genetic algorithms (GAs) were
used to assist in the selection of features. The resultant models showed commendable predictive
accuracy, minimal error, and good concordance correlation coefficient values of 0.876, 0.149, and 0.930
for the validation group, respectively.

Keywords: ipsapirone derivatives; lipophilicity; QSAR; machine learning

1. Introduction

Numerous drug candidates are dismissed in clinical trials due to insufficient pharma-
cokinetic properties [1,2]. Therefore, optimizing the physicochemical properties of potential
drug molecules at the initial stage of drug development becomes crucial. The optimization
is necessary to attain the desired drug metabolism and pharmacokinetic profile in vivo.
The lipophilicity of a molecule is a well-known factor that affects its toxicity, absorption,
distribution, metabolism, and elimination [3]. Consequently, lipophilicity assessment is one
of the basic tests of drug candidates in early drug discovery. The chromatographic approach
is the most frequently used among available methods since it offers several advantages
compared to the traditional shake-flask procedure. The chromatographic approach requires
minimal amounts of sample while being insensitive to impurities, and it is fully automated.
In addition, the results of the chromatographic analyses are both repeatable and robust.
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Therefore, the solid–liquid partitioning methods are highly convenient in the early stages
of the drug discovery pipeline, prioritizing high throughput over accuracy [1,4].

The chromatographic approach also allows for measuring other bio-physicochemical
properties of given molecules, such as affinity to phospholipids and plasma proteins
(PPs) [5]. Plasma protein binding (PPB) mostly affects drug distribution, half-life, and
clearance. A molecule bound to PP cannot enter organ tissue via passive diffusion through
the physiological barriers. Only unbound drug molecules may interact with therapeutic
targets, which means that molecules with high affinity to PPs (above 95%) will show limited
brain penetration and low clearance and may cause drug safety issues due to serious
drug–drug interactions. Low affinity to PPs, on the other hand, reduces the duration of
drug action.

This work assessed the lipophilicity properties of previously synthesized libraries of
ipsapirone derivatives designed to affect dopamine (D2R) or serotonin receptors (5-HT1AR)
to reduce the symptoms of depression or schizophrenia [6,7]. In the case of drug candidates
targeting the central nervous system (CNS), lipophilicity is an essential property since it
determines passive diffusion through the blood–brain barrier (BBB).

Using a chromatographic method, we experimentally determined lipophilicity indices
of target ipsapirone derivatives. In parallel, we also calculated the lipophilicity of studied
molecules using several computational software. Additionally, the affinity to phospholipids
was determined using immobilized artificial membrane (IAM) chromatography. Quan-
titative Structure–Retention Relationship (QSRR) models were proposed to understand
better which molecular descriptors influence their lipophilicity. Furthermore, the affinity to
human serum albumin (HSA), which is dominantly plasma protein (PP), was determined,
and the relationship between the affinity to HSA and experimental and computational
lipophilicity was examined.

2. Results and Discussion
2.1. Lipophilicity Assessment

Computational approaches for lipophilicity estimation offer several advantages over
experimental methods, including quick calculation times and a reduced use of chemical
reagents. Moreover, computational methods allow for the prediction of lipophilicity before
synthesis, making it relevant to designing potential drug candidates [8]. However, it is
important to note that several studies demonstrated that the calculated LogP can differ
significantly from the actual value [9–11].

In Table 1, calculated lipophilicity indices of functionalized ipsapirone derivatives
are summarized. Discrepancies in the computed LogP values are evident across various
molecules, with notable differences observed in specific instances: molecule 9 exhibits a
substantial variance of 1.87 between the iLogP and Silicos-IT LogP descriptors; molecule
2 shows a difference of 1.75 between iLogP and Silicos-IT LogP; and molecule 19 displays a
disparity of 1.72 between MLogP and WlogP.

These variations can be elucidated using the diverse algorithms utilized in the com-
putational methods. In Table 2, the basic descriptors of each algorithm are summarized.
The lowest LogP values are derived from the MLogP, reaching the minimum value in
15 instances, while the remaining 11 compounds achieved their lowest values using the
Silicos-IT LogP descriptor. The MLogP, or Moriguchi octanol-water partition coefficient,
calculated using AlvaDesc software (version 2.0.10), is based on a qualitative structure–logP
relationship utilizing topological indices along with molecular properties. The Silicos-IT
LogP, calculated using SwissADME (http://www.swissadme.ch, accessed on 1 February
2024), is a hybrid method combining a fragmental approach with a topological one.

http://www.swissadme.ch
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Table 1. The calculated LogP values of the ipsapirone derivatives concerning the computational
model.

No. MLogP ALogP LogP99 LogAlvaDesc LogChemicalize iLogP XLogP3 WLogP Silicos-IT LogPSwissADME
CHI

LogP *

1 2.15 2.40 2.04 2.20 2.49 2.92 2.57 1.98 1.59 2.19 3.48
2 1.89 2.38 2.05 2.11 2.33 3.40 2.55 1.99 1.65 2.23 4.44
3 2.86 3.72 3.35 3.31 3.70 3.32 3.83 3.29 2.88 3.18 3.27
4 2.64 3.06 2.70 2.80 3.09 3.27 3.2 2.64 2.23 2.74 3.97
5 2.60 3.43 2.82 2.95 3.45 3.36 3.29 2.76 2.37 2.82 3.70
6 2.32 3.41 2.83 2.86 3.29 3.58 3.26 2.77 2.44 2.81 3.49
7 3.29 4.76 4.13 4.06 4.66 4.03 4.54 4.07 3.66 3.86 4.63
8 3.08 4.10 3.48 3.55 4.06 3.71 3.92 3.42 3.01 3.37 3.98
9 1.86 2.17 1.61 1.88 2.21 3.12 1.90 1.55 1.25 1.78 2.91
10 2.43 2.82 2.22 2.49 2.83 3.18 2.55 2.16 1.81 2.28 3.10
11 3.29 4.34 3.98 3.87 4.44 3.77 4.54 3.92 3.40 3.72 4.55
12 2.81 3.89 3.21 3.30 3.90 3.68 3.65 3.15 2.77 3.16 3.98
13 2.53 3.87 3.22 3.21 3.74 3.86 3.62 3.16 2.84 3.14 3.76
14 2.53 3.87 3.22 3.21 3.74 3.92 3.62 3.16 2.84 3.15 3.92
15 2.53 3.87 3.22 3.21 3.74 3.96 3.62 3.16 2.84 3.16 3.76
16 3.29 4.55 3.87 3.90 4.50 3.94 4.27 3.81 3.41 3.69 4.58
17 3.29 4.55 3.87 3.90 4.50 3.92 4.27 3.81 3.41 3.69 4.49
18 3.50 5.22 4.52 4.41 5.10 4.20 4.90 4.46 4.05 4.17 4.93
19 3.60 4.83 4.23 4.22 4.77 4.01 4.53 5.32 3.86 4.21 4.69
20 3.18 4.09 3.35 3.54 4.04 3.70 3.75 3.71 3.19 3.45 4.19
21 3.49 4.80 4.37 4.22 4.89 4.11 4.90 4.31 3.79 4.06 4.91
22 2.65 3.28 2.61 2.84 3.27 3.47 2.91 2.55 2.20 2.61 3.44
23 2.09 2.63 2.00 2.24 2.65 3.33 2.26 1.94 1.64 2.10 3.37
24 3.00 4.64 3.82 3.82 4.56 4.03 4.38 3.76 3.85 3.70 4.33
25 3.16 4.75 4.43 4.11 4.77 4.09 4.66 4.37 4.42 4.12 4.40
26 2.72 3.84 3.36 3.31 3.92 3.54 3.48 3.00 2.81 3.05 3.93

* CHI LogP was calculated using a linear model based on chromatographically determined CHI on nonionized
forms; CHI LogP = 0.054 × CHI − 1.467.

Table 2. List of software used with information regarding algorithms.

Name Description Software

MLogP Based on quantitative structure–logP relationships, using topological indexes. AlvaDesc

ALogP Ghose–Crippen octanol–water partition coefficient AlvaDesc

LogP99 Wildmann–Crippen octanol–water partition coefficient—atom-based method AlvaDesc

LogPconsAlvaDesc Consensus model of LogP from AlvaDesc AlvaDesc

LogPChemicalize Atomic correction using the contribution of individual molecular fragments Chemicalize

iLogP
In-house physics-based method relying on free energies of solvation in n-octanol
and water calculated using Generalized Born and solvent-accessible surface area

(GB/SA) model—atomic- and knowledge-based method
SwissADME

XLogP3 Atomistic method including corrective factors and knowledge-based
library—atomistic- and knowledge-based method SwissADME

WLogP Implementation of a purely atomistic method based on 27 fragments and 7
topological descriptors—hybrid fragmental/topological method SwissADME

Silicos-IT Hybrid method relying on 27 fragments and 7 topological descriptors—hybrid
fragmental/topological method SwissADME

Consensus LogPSwissADME
The arithmetic mean of the values predicted using the five propose
methods—average of all predictions calculated using SwissADME SwissADME

Among the considered chemical compounds, molecule 9 was identified as the most
hydrophilic substance according to each algorithm. The most lipophilic compound accord-
ing to six descriptors was molecule 18 the LogP value was the highest for the following
specified descriptors: ALogP, LogP99, LogPcons(AlvaDesc), LogPChemicalize, LogP, iLogP, and
XLogP3. According to three other descriptors, molecule 19 emerged as the most lipophilic,
based on MLogP, WLogP, and LogPcons(SwissADME), and for one descriptor, Silicos-IT LogP,
compound 25 proved to be the most lipophilic.
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Considering the significant differences in the calculations obtained, the next step of
our investigation considered the determination of lipophilicity using a chromatographic
approach. Among the available protocols, the fast gradient approach developed by Valko
was chosen because it enables the assessment of lipophilicity from a single chromatographic
measurement [2,4,12–14]. In addition, this approach enables the determination of the
acid/basic properties of molecules through the addition of experiments under different pH
conditions. A summary of all the chromatographic data is presented in Table 3.

Table 3. The summarized values of the chromatographic and biochromatographic indices of the
target functionalized ipsapirone derivatives.

No. CHIC18 pH = 2.6 CHIC18 pH = 7.4 CHIC18 pH = 10.6 CHIIAM LogKHSA %HSA

1 48.96 88.07 91.64 36.93 0.74 85.32
2 60.08 110.90 109.41 46.90 1.72 99.13
3 49.19 78.80 87.69 35.71 0.52 77.60
4 56.31 100.82 100.70 42.61 1.32 96.38
5 52.20 89.50 95.60 39.09 0.84 88.23
6 52.94 79.45 91.77 38.03 0.68 83.59
7 72.79 112.26 112.92 48.28 1.77 99.31
8 97.99 101.36 100.81 44.30 1.53 98.11
9 48.71 74.93 81.12 34.40 0.58 79.78

10 38.96 76.74 84.51 35.73 0.72 84.71
11 63.51 104.83 111.43 47.26 1.67 98.90
12 55.26 93.84 100.78 41.59 1.00 91.87
13 54.89 84.12 96.78 40.54 0.42 73.28
14 55.41 94.73 99.75 41.42 0.93 90.46
15 55.04 87.50 96.78 40.04 0.65 82.67
16 61.89 108.61 111.92 46.73 1.71 99.06
17 61.34 106.56 110.38 46.32 1.57 98.36
18 65.39 119.04 118.39 50.19 2.27 <99.80
19 63.86 113.75 114.05 46.84 1.85 99.61
20 57.21 97.64 104.68 42.69 1.00 91.90
21 65.07 109.08 118.03 48.85 1.75 99.25
22 43.25 82.33 90.87 38.48 0.55 78.60
23 41.03 80.76 89.54 34.77 −0.05 47.66
24 60.18 102.90 107.33 45.78 1.23 95.36
25 60.65 101.68 108.64 45.96 1.57 98.37
26 55.76 100.20 100.01 41.48 1.19 94.87

The results show that the investigated ipsapirone derivatives have a rather high
lipophilicity when considering the CHI scale from 0 to 100 (extrapolation is allowed). In
considering that lipophilicity is a known factor influencing passive diffusion across the
BBB, this is an important observation. The affinity to phospholipids can also be determined
using one-gradient protocols and the IAM column. CHIIAM can be used as a cut-off point
to indicate the potential for promiscuous binding and interference with phospholipids.
Among the target structures, only molecule 18 had a slightly higher CHIIAM value of 50.19.

The significantly lower value of CHI under acidic conditions indicates that all ip-
sapirone derivatives have basic character. Therefore, the CHI under pH10.6 can be consid-
ered and converted to chromatographically determined LogP, called CHI LogP. A cluster
analysis (CA) was performed to compare chromatographically determined and calculated
lipophilicity. A CA can be used for the visualization of similarities and differences between
studied objects, in this case, lipophilic parameters. The obtained results clearly indicate
that significant differences between theoretical and experimental data occurred, and they
formed two separate groups (Figure 1). The differences are also visible on the calculated
correlation matrix (Figure 2). Moreover, even the more complex algorithms or calculations
based on 3D optimized structures do not have significant improvement, and all theoretical
descriptors are similarly correlated with CHI LogP (r between 0.77 to 0.83).
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2.2. QSRR Modeling of Chromatography Determined Lipophilicity and Phospholipophilicity

The following step of our study focuses on QSRR modeling. The QSRR approach,
introduced by Kaliszan [15], is currently one of the most widely used and powerful com-
putational methods in the analytical field of chemistry. Numerous QSRR studies have
been reported, mainly focused on retention prediction [16], supporting the identification
of molecules, mostly in untargeted metabolomics [17], or on the comparison of chromato-
graphic columns and systems [18].

Another advantage of the QSRR approach is the possibility of obtaining insights into
the molecular mechanism of retention in the utilized chromatographic system, which can be
directly transformed for the relationship between molecule structure and a physicochemical
endpoint measured chromatographically [19,20].

Our work focused on the application of QSRR to gain insight into the descriptors
that determine the lipophilicity of ipsapirone derivatives. The goal was achieved using
a hybrid approach of a genetic algorithm (GA) and multiple linear regression (MLR). In
summary, a GA is a stochastic method that assists in solving variable selection problems.
Therefore, integrating a GA and MLR may benefit the development of a highly accurate
and predictive QSRR model. Table 4 presents a summary of the derived QSRR models
together with statistical figures.

Table 5 lists the whole name of each employed molecular descriptor, with its descrip-
tion and assigned block.

The obtained QSRR models indicated some similarities between chromatographically
measured lipophilicity and phospholipophilicity. First, in both cases, the LLS_01 descriptor,
referring to the local lipophilicity of molecules based on a score derived from the rules
proposed by Congreve et al., plays an important role [21]. Furthermore, both models contain
CATS descriptors. The CATS descriptors were created by Schneider and are members
of the correlation-vector descriptor class, related to the atom-pair descriptor class [22].
The CATS descriptors code the frequencies of atom-type pairings, which may represent
possible pharmacophoric locations and are adjusted using the topological characteristics
of molecules. The CATS descriptors cover five potential pharmacophore points (PPPs):
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lipophilic (L), positively charged (P), negatively charged (N), hydrogen-bond acceptor (A),
and hydrogen-bond donor (D). Although, in the case of the IAM model, the percentage of
N atoms completed the model, and it should be highlighted that all molecules have the
same chemical characteristics and are typical organic bases.
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Table 4. Obtained QSRR models with statistical figures.

Model Equation

1 CHIC18 pH = 7.4 = 3.375(±1.761)RDF020i + 3.262(±0.456)CATS3D_12_LL − 141.299(±0.842) LLS_01 + 90.055(±20.430)

2 CHIIAM = 0.872(±0.269)CATS3D_07_AL − 33.834(±0.565)LLS_01 − 1.615(±0.425) N% + 58.328(±6.162)

3 LogKHSA = 0.114(±0.952) CHIIAM − 0.857(±0.141)GATS2e − 0.050(±0.274) RDF155u − 2.751(±0.994)

R2 RMSEtr Q2
LOO R2

EXT RMSEP CCCExt

1 0.838 5.561 0.748 0.751 6.687 0.770

2 0.844 1.944 0.736 0.852 2.019 0.863

3 0.946 0.138 0.910 0.876 0.149 0.930
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Table 5. Full name and block for molecular descriptors applied in QSRR analysis.

Model Name Description Block

1

RDF020i Radial Distribution Function—020/weighted using
ionization potential RDF descriptors

CATS3D_12_LL CATS3D Lipophilic-Lipophilic BIN 12
(12.000–13.000 Å) CATS 3D

LLS_01 modified lead-like score Drug-like indices

2

CATS3D_07_AL CATS3D Acceptor-Lipophilic BIN 07 (7.000–8.000 Å) CATS 3D

LLS_01 modified lead-like score Drug-like indices

N% percentage of N atoms Constitutional indices

3

CHI IAM CHIIAM values from the experiment Experiment

GATS2e Geary autocorrelation of lag 2 weighted using
Sanderson electronegativity 2D autocorrelations

RDF155u Radial Distribution Function—155/unweighted RDF descriptors

The models obtained are well fitted, as indicated by the statistical figures of the training
and testing sets, including the R2, Q2L

OO, and RMSETR, and exhibit appropriate predictive
parameters, such as the RMSEP. Furthermore, as confirmed through a Williams plot, the
proposed model’s applicability domain (AD) indicated good predictions (Figure 3).

2.3. Interaction between Plasma Protein

Utilizing columns modified by plasma proteins, such as human serum albumin (HSA),
allows for estimating binding to plasma protein (PPB). Generally, PPB affects drug phar-
macokinetics, including distribution, half-life, and clearance [23–25]. While lipophilicity
is a well-known factor in determining PPB, it should also be considered in early drug
discovery. In general, more lipophilic compounds tend to have higher percentages of
PP due to nonspecific interactions with proteins. However, hydrophilic compounds can
also bind strongly to PP through spherical and electrostatic interactions by binding in
protein pockets.

Chromatographically determined HSA affinity can be expressed as logKHSA, ranging
from −0.8 to 1.9, or recalculated to a more informative % of HAS binding. Analyzing the
structures showed moderate affinity to HAS, except for molecule 23, which is relatively
low-binding to HAS (logKHSA − 0.05 and %HSA = 47.66), and molecule 18, which showed
a higher affinity to reference diclofenac.

The next step of our investigation focused on finding molecular properties of ip-
sapirone derivatives that influence the affinity to HSA. Based on computational descriptors,
the model yielded predictive statistics above 0.7 (Table S1 in the Supplementary Materials).
This can be considered an acceptable model; however, an attempt was made to achieve
a model with a more satisfactory result. To model this endpoint, chromatographically
determined lipophilicity and phospholipophilicity were used. The CHIIAM descriptor was
selected as a significant descriptor based on a GA. The statistics of this model significantly
improved, providing more satisfactory results (Figure 4).
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The results suggest that the experimental phospholipophilicity data align more closely
with the predicted interactions with PP. The correlation matrix, PCA, and HCA (Figure 1)
were used to check this suggestion, which indicate that experimental data were more
effective for estimating certain biological properties, such as interactions with PP. All
investigated methods indicated that experimentally measured lipophilicity or phospho-
lipophilicity are better for predicting interactions with PP since these experiments were
grouped together in the CA results.
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3. Materials and Methods
3.1. Solvents

Buffer solutions (polar solvents for HPLC experiments) were prepared by dissolv-
ing HPLC-grade ammonium acetate (VWR International, Leuven, Belgium) in ultrapure
water obtained from a Milli-Q water purification system (Merck Millipore, Darmstadt, Ger-
many). To adjust the buffer solutions’ pH, two concentrated solutions were used: ammonia
(Avantor Performance Materials Poland S.A., Gliwice, Poland) and acetic acid (Chempur,
Piekary Śląskie, Poland). HPLC-grade acetonitrile (Chempur, Piekary Śląskie, Poland) and
isopropanol (VWR International, Leuven, Belgium) were used as non-polar solvents for
HPLC experiments.

3.2. Analytes

The compounds studied were the ipsapirone derivatives described in the articles on
their pharmacological activity and synthesis [6,7]. All investigated molecules are are listed
in the Supplementary Materials (Table S2).

Calibration Sets

The reference substances constituting calibration mixtures for HSA-HPLC, RP-HPLC,
and IAM-HPLC experiments were obtained from four commercial sources: Alfa Aesar
(Haverhill, MA, USA), Sigma-Aldrich (Steinheim, Germany), Cayman Chemical (Ann
Arbor, MI, USA), and Acros Organic (Pittsburg, PA, USA) as reported in Table S3.

3.3. Chromatographic Analysis

All experiments were performed using a high-performance liquid chromatography
system (Shimadzu Prominence LC-2030C 3D) equipped with a DAD detector and controlled
through a LabSolution system (version 5.90, Shimadzu, Tokyo, Japan).

For RP-HPLC experiments, a C18 Hypersil GOLDTM (50 mm × 4.6 mm; 5.0 µm with a
guard column; Thermo Scientific, Waltham, MA, USA) column was applied. The column
temperature was set to 40 ◦C. Three water solutions were used as mobile phase A: acetic
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acid at pH 2.6, mM ammonium acetate at pH 7.4, and 50 mM ammonium acetate at pH
10.5. Mobile phase B was acetonitrile (ACN). The linear gradient from 2 to 98% ACN was
applied from 0 to 5.25 min and held at 98% ACN for 1.75. The mobile phase flow rate was
1.5 mL/min throughout the experiment.

The immobilized artificial membrane column (IAM.PC.DD2, 10 × 4.6 mm × 10.0 µm
with a guard column (Regis Technologies; Morton Grove, IL, USA) was used for IAM-HPLC
experiments. The column temperature was set to 30 ◦C. Similar to RP-HPLC, mobile phase
A was a 50 mM ammonium acetate at pH 7.4, and mobile phase B was acetonitrile. The
linear gradient from 0 to 85% ACN was applied from 0 to 5.25 min and held at 98% ACN
for 0.5 min at a constant flow rate of 1.5 mL/min.

For HSA-HPLC experiments, the column was Chiralpak® HSA (100 × 4 mm; 5 µm
with safety guard column; Daicel Chiral Technologies, West Chester, PA, USA). The column
temperature was set to 30 ◦C. The same phase A as in the IAM-HPLC case was used, and
the mobile phase B was isopropanol (i-PrOH). The linear gradient from 0 to 20% i-PrOH
was applied from 0 to 15 min, held at 20% i-PrOH for 12 min, and then returned to pure
ammonium acetate solution. The mobile phase flow rate was 0.9 mL/min throughout the
experiment. Three minutes of column recalibration was applied between each run. The
retention times were collected at wavelengths between 190 and 300 nm, and the injection
volume was 10 µL.

3.4. Theoretical Descriptors

Theoretical descriptors were calculated using Chemicalize software (https://chemicalize.
com, accessed on 1 February 2024) and alvaDesc software (version 2.0.10, Alvascience,
Lecco, Italy) based on geometry optimization using Baker’s EigenFollowing method using
MOPAC software (version 3.0). Then, constant, almost constant, and highly correlated
(r = 0.95) descriptors were removed. The final number of descriptors was 3170. In addition,
several lipophilicity indices were calculated for each compound using the SwissADME
web application (http://www.swissadme.ch, accessed on 1 February 2024) based on the
SMILES notation.

3.5. CA Analysis

A CA was performed on databases that included chromatographic data and in silico-
calculated lipophilicity indices. In order to eliminate the impact of various lipophilicity
scales, data were standardized before analysis. The CA was conducted using Ward’s
agglomeration rule and the Euclidian distance measure using a self-written R script.

3.6. QSRR Analysis

The process of choosing descriptors was facilitated through the utilization of a genetic
algorithm (GA), while a multiple linear regression (MLR) method was applied for a regres-
sion analysis using QSARINS version 2.2.4 software, developed by Gramatica et al. [26,27].
The parameters governing the genetic algorithm were determined by specifying a popula-
tion size of 10, a mutation rate of 20, and 500 generations per size. Prior to the computation
of GA-MLR for each modeled endpoint, the target solutes were allocated into distinct
groups, comprising a training group (n = 19) and a validation group (n = 7). An analysis of
the LogKHSA endpoint was conducted, incorporating two previously considered endpoints,
namely CHIC18 and CHIIAM, as descriptors.

4. Conclusions

In summary, our study employed a combined experimental and computational ap-
proach to investigate the lipophilicity of ipsapirone derivatives. We observed significant
disparities between calculated LogP values from computational methods. Additionally, the
differences between calculated and chromatographically established results were observed
through a CA. Relatively high lipophilicity indices suggest that the investigated structure
should be useful for crossing the BBB. Our QSRR modeling efforts identified key molecular

https://chemicalize.com
https://chemicalize.com
http://www.swissadme.ch
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descriptors influencing lipophilicity, phospholipophilicity, and binding to HSA. The models
related to lipophilicity and affinity to phospholipids present CATS 3D and drug-like indices
as investigated descriptors. What is important is the integration of experimental data into
predictive models for plasma protein binding, which improved the model performance,
emphasizing the importance of chromatographic assessments.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules29081862/s1: Table S1. Summary of QSRR model of
HSA based on the theoretical descriptors; Table S2. List and SMILE notation of target structures;
Table S3. Calibration mixtures for biomimetic chromatography.
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