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Abstract: Energy-level alignment is a crucial factor in the performance of thin-film devices, such as
organic light-emitting diodes and photovoltaics. One way to adjust these energy levels is through
chemical modification of the molecules involved. However, this approach may lead to unintended
changes in the optical and/or electrical properties of the compound. An alternative method for
energy-level adjustment at the interface is the use of self-assembling monolayers (SAMs). Initially,
SAMs with passive spacers were employed, creating a surface dipole moment that altered the work
function (WF) of the electrode. However, recent advancements have led to the synthesis of SAM
molecules with active spacers. This development necessitates considering not only the modification
of the electrode’s WF but also the ionization energy (IE) of the molecule itself. To measure both the IE
of SAM molecules and their impact on the electrode’s WF, a relatively simple method is photo-electric
emission spectroscopy. Solar cell performance parameters have a higher correlation coefficient with
the ionization energy of SAM molecules with carbazole derivatives as spacers (up to 0.97) than the
work function of the modified electrode (up to 0.88). Consequently, SAMs consisting of molecules
with active spacers can be viewed as hole transport layers rather than interface layers.

Keywords: photoelectron emission spectroscopy; self-assembling monolayer; ionization energy;
work function

1. Introduction

The utilization of thin-film devices, such as organic light-emitting diodes (OLEDs),
photovoltaic (PV) cells, and field-effect transistors, has experienced significant growth in
recent years, with some of these devices even reaching commercialization. These devices
comprise multiple thin layers, either organic or inorganic, with each serving a specific
purpose [1–3]. The selection of materials depends on the type of device and the desired
function, whether it involves charge generation, light emission, or charge carrier transport.
However, regardless of their specific functions, all these devices rely on the flow of electricity.
Therefore, it is crucial to minimize resistivity in order to ensure optimal device performance.

The flow of electrons and holes is primarily influenced by two factors: the mobility of
charge carriers in the material and the alignment of energy levels between the layers in the
solar cell [4–6]. Both factors are dependent on the chosen compounds. The properties of
the compounds can be changed by molecule structure modifications, which in turn change
both the energy levels and the mobility of charge carriers [7,8]. However, it is challenging
to modify each of these properties separately, and alterations in charge carrier mobility
often lead to shifts in the energy levels of the molecule. This makes it difficult to create
an efficient device with well-matched energy levels between the layers. Alternatively, the
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interface can be modified by using a self-assembling monolayer (SAM) [9–11]. SAMs are
typically applied to the electrode, modifying its work function by increasing or decreasing
it through the generated electric field. This reduces the energy barrier for charge carriers.
To achieve this, the SAM molecules should possess a dipole moment to generate an internal
electric field that facilitates the transfer of charge carriers through the interface [12,13].
Various types of molecules have been employed for such interface modification. SAM
molecules usually consist of anchoring groups (-SH, -PO3H2, -COOH, -Si(OH)3, -COCl, and
-PO2Cl2), which covalently bond to a modifiable layer; spacers (such as mercaptobi-phenyls,
n-alkylene, p-phenylene, terpyrimidine, and phenylethynyl benzene); and terminal groups
(H-, Cl-, CF3-, F-, Br-, and others) [14–16]. The spacer typically acts as a distance provider
between the anchoring and terminal groups, thereby altering the dipole moment, and it
does not actively participate in the transportation of charge carriers between the two layers.
However, there exist SAM molecules with active groups like fullerene, tri-phenylamine,
carbazole, and others, which function as spacers [17–19]. In this context, it is imperative to
consider not only the impact of the dipole moment on the interface but also the ionization
or electron affinity energy of the molecules. Consequently, an SAM can be perceived as
a layer that serves as a conduit for either hole or electron transport, rather than merely a
surface modifier.

Ultraviolet photoelectron spectroscopy (UPS) is the prevailing method employed to
investigate the modification of the work function and ionization energy of SAMs. The
cut-off binding energy is associated with the modification of the electrode’s work function,
while the difference between the excitation photon energy and the width of the UPS
spectrum provides the ionization energy of the SAM [20]. However, the UPS measurement
system is relatively expensive and not very suitable for sample screening, as it requires
high-vacuum conditions for measurement. In our previous work, we have demonstrated
that photoelectric emission spectroscopy (PES) could serve as a viable alternative to UPS,
as it has lower requirements for experimental systems [21]. UPS uses monochromatic UV
radiation with a photon energy of 21.2 eV, and the kinetic energy distribution of the emitted
electrons is measured. In the PES method, the photon energy is varied, and the number of
emitted electrons depending on the photon energy is registered. As the photon energy is
close to the ionization energy of the material, the kinetic energy of the emitted electrons
is relatively low. This means that the scanning depth of PES can reach a couple of tens of
nanometers, compared to 1–2 nm in the case of UPS [22].

This research paper delves into the investigation of six carbazole-based self-assembled
monolayer (SAM) molecules. Our primary objective was to accurately measure the modi-
fied work function and ionization energy of these SAM molecules by using the photoelectric
emission spectral dependence method. To the best of our knowledge, the utilization of
the PES method for determining work function changes and ionization energy in a self-
assembly monolayer has not been previously explored. Therefore, we conducted a compara-
tive analysis of our results with the ionization energy of the bulk system formed by the SAM
molecules, as well as scanning Kelvin probe (SKP) measurement of the electrode/SAM
layer system. In addition to experimental measurements, we also performed quantum
chemical calculations to determine the highest occupied molecular orbital (HOMO) and
dipole moment of the molecules. These calculations were crucial to providing a compre-
hensive explanation for the results obtained from our experiments. Furthermore, we took
our research a step further by establishing a correlation between the parameters obtained
from the PES measurements and the performance of previously fabricated solar cells. This
insightful analysis allowed us to gain a deeper understanding of the relationship between
the measured parameters and the overall performance of the solar cells. By combining ex-
perimental measurements, quantum chemical calculations, and performance analysis, this
research paper aims to contribute to the existing knowledge in the field of self-assembled
monolayers and their potential applications in solar cell technology.
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2. Discussion

An investigation of current dependence on irradiation photon energy reveals two
distinct regions that exhibit a rapid increase in signal (see Figure 1a). The first surge is
observed close to the energy corresponding to the work function of indium tin oxide (ITO),
while the second surge at higher energy can be attributed to the photoelectron emission
generated by the SAM compound. The advantage of the PES method is found in cases
when the photoelectron emission signal originates from two separate sources, and the
photoemission yield can be expressed as a combination of these distinct signals. In this
particular scenario, the photoemission yield can be represented as follows:

Y(hν) = x(hν − ΦITO)
2H(hν − ΦITO) + y(hν − ISAM)

5/2 H(hν − ISAM), (1)

where x and y are constants indicating the intensity of the signal originating from ITO and
the SAM, respectively [23]; hν represents the photon energy; ΦITO represents the work
function of ITO; ISAM represents the ionization energy of the studied SAM; and H(E) is the
Heaviside step function, with a value of H(E) = 0 for E < 0 and H(E) = 1 for E > 1 [23]. The
aforementioned observation suggests the feasibility of isolating and examining the signals
from each layer independently. Through the subtraction of the ITO-originating signal,
we can extract the photoelectron emission spectrum exclusively generated by the SAM
(see Figure 1b). Supplementary Information Figures S1 and S2 present the photoelectron
emission yield spectra for all SAM compounds and bulk films, respectively.
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Figure 1. Photoelectron emission yield spectra of 2PACz (black squares), Cl-2PACz (red circles), and
ITO (blue triangle) in (a) SAM films, (b) SAM films without ITO signal, and (c) bulky samples. Cross
point of green lines represents the obtained energy.

The position of the initial signal increase is dependent on the self-assembled mono-
layer (SAM) that covers the electrode (see Figure 1a). Consequently, this change can be
attributed to the alteration in the work function of the indium tin oxide (ITO) electrode.
This demonstrates the practical application of a straightforward technique, namely, PES,
in investigating self-assembled monolayers. It enables the identification of modifications
of the electrode and provides valuable insights into the SAM energy levels. The modified
work function for each SAM compound can be found in Table 1, along with the results of
SKP measurements for the corresponding samples.

Observing the redistribution of charge carriers at the ITO/SAM interface, caused
by the dipole moment of organic molecules, is possible through the measurement of the
surface potential of the sample by using SKP. This measurement was conducted for both
uncovered and SAM-covered ITO. In most cases, the results were found to be nearly
identical, within the margin of error, to the PES results, providing evidence that the initial
signal observed in photoelectron spectroscopy (PES) is indeed linked to changes in the
work function of the ITO electrode. However, slight discrepancies (such as in the case of
Cl-2PACz) can be explained by variations in experimental conditions. PES measurements
were carried out in a vacuum while scanning Kelvin probe measurements were performed
in an air environment.
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Table 1. Measured energy-level values of the studied materials on ITO, calculated energy of highest
occupied molecular orbital, and dipole moment.

Ionization Energy, eV ITO Work Function, eV

Method PES
(Thin Film)

PES
(SAM)

HOMO
(eV) PES SKP Dipole Moment (D)

Material

ITO 4.30 4.30

2PACz 5.75 5.74 5.42 4.50 4.41 1.89

MeO-2PACz 5.14 5.13 4.92 4.36 4.33 1.54

F-2PACz 6.04 6.02 5.52 4.70 4.66 3.78

Cl-2PACz 6.12 6.10 5.73 4.80 4.64 4.55

Br-2PACz 6.08 6.11 5.70 4.95 4.91 4.70

I-2PACz 6.06 6.05 5.95 4.78 4.75 3.86

±0.03 ±0.03 ±0.03 ±0.02

In all cases, there is an increase in the work function, resulting in easier extraction of
holes from the electrode. The molecules without halogen atoms as the terminal group, such
as 2PACz and MeO-2PACz, show the smallest changes.

On the other hand, the molecules with halogen atoms, where the original 2PACz
molecule was modified with electronegative atoms like F, Cl, Br, and I in the terminal group,
have a significant impact on the shift in the work function. As the number of atoms in
the terminal group increases, the work function also increases (see Table 1). However, the
molecule with iodine is an exception, as it shows lower values.

The dipole moment directly influences the changes in the work function of the elec-
trode. A higher dipole moment leads to larger changes. Interestingly, the molecule with
iodine exhibits a similar dipole moment to F-2PACz, which explains why the work function
changes are smaller for I-2PACz compared with the molecules with attached halogen atoms
with a lower atom number.

In summary, the presence of halogen atoms in the terminal group and the dipole
moment of the molecule play crucial roles in the shift in the work function of the electrode.

The ionization energy values of the materials examined in thin films were determined
by analyzing the spectra of photoelectron emission. The threshold energy, which marks
a significant increase in the yield of photoelectron emission, was utilized to calculate the
ionization energy. As depicted in Figure 1c, the 2PACz and Cl-2PACz thin-film samples
serve as an example.

Upon comparing the ionization energy values obtained with the PES method with
the highest occupied molecular orbital level of the molecules, a similar trend (see Table 1)
that proves the electron origin from the highest occupied molecular orbital (ionization
energy) was observed. The slight discrepancy between the ionization energy of the SAM
and thin film can be attributed to measurement errors and molecule interactions in the case
of thin films. However, no evidence of Fermi level alignment between the semiconductor
and metal interface was detected, which would typically result in a shift in the ionization
energy of the organic semiconductor [21,24]. This suggests that during the formation of
a monolayer, there is no transfer of charge carriers, and the monolayer remains isolated
from the electrode. Quantum chemical calculations further support this observation, as
the HOMO is not present on the phosphonic acid group, which would typically form a
covalent bond with ITO (refer to Figure 2 for 2PACz and F-2PACz). The highest occupied
molecular orbitals for all compounds can be seen in Supplementary Information Figure S3.

The ionization energy level of 2PACz is initially measured at 5.75 eV. However, when
the molecule is modified with halogen atoms, the ionization energy decreases to a range of
6–6.1 eV, as shown in Table 1. Generally, molecules with higher-electronegativity atoms
tend to have higher ionization energy, with one exception being the fluorine atom, which
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has the highest electronegativity but the lowest ionization energy. The presence of oxygen
at the same positions as the halogen atoms results in a decrease of approximately 0.6 eV in
ionization energy.
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Figure 2. Highest occupied molecular orbital of (a) 2PACz and (b) F-2PACz. Ball colors represent
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The correlation (utilizing the correlation coefficient described in Supplementary Information)
between the performance of solar cells and both the modified work function and ionization
energy of self-assembled monolayer (SAM) molecules was calculated. The four performance
parameters (open-circuit voltage, short-circuit current, fill factor, and power conversion efficiency)
were utilized as performance indicators of the solar cells. The performance values of the solar
cells were obtained from the literature, utilizing the same bulk heterojunction photoactive layer
consisting of PM6 and BTP-eC9 [25–27]. The data from the solar cells are presented in Table
S1. The ionization energy of the molecule exhibited strong correlation coefficients with the
open-circuit voltage, power conversation efficiency, and fill factor of the solar cells of 0.97, 0.94,
and 0.89, respectively (see Figure 3). All three parameters depend on the interface quality of
the solar cells. Short-circuit current has the smallest correlation coefficient due to being possibly
less impacted by the interface and more affected by the processes in the layer. In all cases, the
correlation with the work function was found to be much weaker.
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Based on these findings, it can be inferred that in the case of SAM molecules, where
the active molecule derivative is located in the spacer, the ionization energy of this molecule
plays a significantly more influential role in determining the device’s performance com-
pared with the work function of the modified electrode. Consequently, such an SAM can
be regarded as a hole transport layer.

3. Materials and Methods
3.1. Studied Materials

Six self-assembling monolayer materials were studied. The chosen materials are based
on a carbazole core with an attached phosphonic acid anchoring group (see Figure 4)
that binds to indium tin oxide (ITO) and fluoride, chloride, bromide, iodide, carbon, and
methoxy as terminal groups. The synthesis procedure of these SAMs has been published
previously [24,25,28].
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3.2. Sample Preparation

Two sets of samples were prepared: monolayers and thin films. All of the films were
deposited on ITO-covered glass substrates (20 Ω/sq; Präzisions Glas & Optik GmbH,
Iserlohn, Germany) by using the spin-coating method.

To create the monolayers, the studied material was dissolved in tetrahydrofuran (THF)
(Sigma Aldrich, St. Louis, MI, USA; 99.9%, inhibitor-free) at a concentration of 0.5 mg/mL.
The spin-coating parameters were set as follows: rotation speed of 3000 rpm, acceleration
of 3000 rpm/s, and rotation duration of 30 s. Subsequently, the samples were annealed on
a hotplate at 100 ◦C for 10 min, and any excess material was washed off with THF. The
thickness of the self-assembled monolayers (SAMs) was approximately 1 nm [29].

For the thin films, a solution was created in THF with a concentration of 5 mg/mL.
The spin-coating parameters were adjusted to a rotation speed of 600 rpm, acceleration of
600 rpm/s, and rotation duration of 30 s. The samples were then dried on a hotplate at
100 ◦C for 10 min. The resulting films had a thickness of approximately 85–90 nm. The
thickness was obtained by profilometer Profiler Dektak 150.

3.3. Film Characterization

In order to determine the ionization energy levels, the PES method within a vacuum
environment of approximately 1 × 10−5 mBar was employed. The experimental setup
consisted of the ENERGETIQ Laser-Driven Light Source (LDLS EQ-99) white light source,
the Spectral Products DK240 1/4 m monochromator, and the Keithley 617 electrometer.
The UV radiation was focused on a 5 × 5 mm2 area on the sample surface. By maintaining
a distance of around 2 cm between the sample and the electrode responsible for collecting
electrons, we ensured accurate measurements. Additionally, we applied a voltage of
50 V between the sample and electrode to amplify the obtained signal amplitude. Our
measurement range spanned from 3.5 to 6.5 eV, with a precise step size of 0.05 eV. The
power of UV radiation was from 6 µW/cm2 at 3.5 eV photon energy (354 nm wavelength)
to 0.1 µW/cm2 at 6.5 eV photon energy (191 nm wavelength). In PES measurements, the
photoemission yield Y(hν) can be calculated as

Y(hν) =
J(hν)

P(hν)
(2)

where J(hν) is the measured current (the number of emitted electrons) and P(hν) is the
number of incident photons with the energy of hν [30]. The relation between photoemission
yield and ionization energy (Eioniz) or work function can be expressed as a power law:

Y(hν) = a(hν − Eioniz)
n (3)

where a is a constant showing the amplitude of the signal and n = 1 . . . 3 depending on the
studied materials [31]. In the case of metals, n = 2 [30], while n = 2.5 . . . 3 is used in the case
of semiconductors [32,33]. In this work, we used n = 2.5, as it gave a better approximation
than n = 3. To obtain the ionization energy level of the material, Y1/n(hν) is calculated
and its dependence on photon energy is plotted. The linear part of the Y1/n(hν) curve is
extrapolated till Y1/n(hν) = 0. The obtained value is considered the ionization energy of
the material.

To assess the work function of both ITO and ITO/SAM samples, we utilized the Kelvin
probe Technology SKP5050. The vibration frequency of the probe was kept constant at
79 Hz. Highly oriented pyrolytic graphite (HOPG) was used as a reference material with
the known work function of 4.93 ± 0.03 eV. To determine the absolute value of the ITO
work function (WF), the difference between the measured surface potential of the HOPG
sample (SPHOPG) and the surface potential of ITO (SPITO) was subtracted from the known
HOPG work function value:

WFITO = 4.93 − SPHOPG − SPITO
1000

(4)
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As the system registers the surface potential in mV, the factor of 1000 in Equation (4)
allows for the conversion of the data from mV to V.

The surface potential measurements with SKP were performed in air at room tempera-
ture. The data were obtained at ten different spots for each sample.

3.4. Quantum Chemical Calculations

Density Functional Theory (DFT) calculations were carried out by using the B3LYP
functional together with a 6–31G(d,p) basis set. For molecules with iodine, C was used.
The highest occupied molecular orbital energy and dipole moment of the molecules were
calculated for optimized molecule geometry of the ground state. All calculations were
carried out with the Gaussian 09W program [34]. Molecules and their respective HOMOs
were drawn with the Avogadro program.

3.5. Solar Cell Performance Parameters

Solar cell performance can be characterized by four parameters: short-circuit current
(Jsc), open-circuit voltage (VOC), fill factor (FF), and power conversion efficiency (PCE).
Short-circuit current is the current passing through the solar cell when the voltage across
the solar cell is zero. Open-circuit voltage is the maximum voltage a solar cell can provide
to an external circuit. Fill factor is the ratio of maximum obtainable power to the product of
open-circuit voltage and short-circuit current. Power conversion efficiency is the percentage
of the solar energy shining on a PV device that is converted into usable electricity.

4. Conclusions

In this study, we present the PES method as a highly effective tool for investigating
both organic materials and the ITO/SAM interface simultaneously. Our findings reveal that
the SAMs’ highest energy level closely aligns with the thin-film ionization energy, indicating
a lack of Fermi level alignment at the ITO/SAM interface. Moreover, we observed that the
presence of halogen atoms at the third and sixth positions in the carbazole moiety leads to
an increase in the ionization energy of the molecule, while the presence of oxygen at the
same positions results in a decrease in energy.

Furthermore, the low energy values obtained from PES measurements closely corre-
spond to the values obtained through surface potential measurements by using SKP. These
values are associated with the molecules’ dipole moment at the interface. It is worth noting
that all SAMs were found to increase the work function of ITO, with the increase being
directly proportional to the dipole moment of the molecules.

Importantly, our study highlights that the impact of SAM molecules’ ionization energy
on device performance outweighs the modification of the electrodes’ work function by the
SAMs. Therefore, SAM molecules that possess an active moiety in the spacer can be better
characterized as hole transport materials.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules29091910/s1, Figure S1: Photoelectron emis-
sion yield spectra of SAM films, Figure S2: Photoelectron emission yield spectra of bulky sam-
ples, Figure S3: Highest occupied molecular orbital of SAMs, Table S1: Photovoltaic parameters of
bulk heterojunction solar cells from references [25–27]. Voc—open-circuit voltage; FF—fill factor;
Jsc—short-circuit current; PCE—power conversation efficiency.
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