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Abstract: A new Cu(II) complex, [CuL1L2(CH3COO)2(H2O)]·H2O, was synthesized by the reac-
tion of Cu(CH3COO)2·H2O, 6-phenylpyridine-2-carboxylic acid (HL1), and 4-[5-(pyridin-4-yl)-1,3,4-
oxadiazol-2-yl]pyridine (L2) in ethanol-water (v:v = 1:1) solution. The Cu(II) complex was char-
acterized using elemental analysis, IR, UV-vis, TG–DTA, and single-crystal X-ray analysis. The
fluorescence properties of the copper complex were also evaluated. The structural analysis results
show that the Cu(II) complex crystallizes in the triclinic system with space group P-1. The Cu(II)
ion in the complex is five-coordinated with one O atom (O2) and one N atom (N1) from one 6-
phenylpyridine-2-carboxylate ligand (L1), one N atom (N2) from 4-[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-
yl]pyridine ligand (L2), one O atom (O4) from acetate, and one O atom (O5) from a coordinated water
molecule, and it adopts a distorted trigonal bipyramidal geometry. Cu(II) complex molecules form a
two-dimensional layer structure through intramolecular and intermolecular O-H. . .O hydrogen bond-
ing. The two-dimensional layer structures further form a three-dimensional network structure by π-π
stacking interactions of aromatic rings. The analysis of the Hirschfeld surface of the Cu(II) complex
shows that the H. . .H contacts made the most significant contribution (46.6%) to the Hirschfeld
surface, followed by O. . .H/H. . .O, N. . .H/H. . .N and C. . .H/H. . .C contacts with contributions of
14.2%, 13.8%, and 10.2%, respectively. In addition, the photocatalytic CO2 reduction using Cu(II)
complex as a catalyst is investigated under UV-vis light irradiation. The findings reveal that the main
product is CO, with a yield of 10.34 µmol/g and a selectivity of 89.4% after three hours.

Keywords: 6-phenylpyridine-2-carboxylic acid; 4-[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]pyridine;
Cu(II) complex; synthesis; crystal structure; Hirschfeld surface analysis; photocatalytic CO2 reduction

1. Introduction

With the rapid development of the fossil fuel industry, large amounts of CO2 have
been excessively emitted, causing climate changes, such as droughts, typhoons, acid
rains, cold waves, high-temperature heat waves, and dust storms [1]. Therefore, there is
an urgent need to find highly efficient CO2 conversion technologies. Reducing CO2 by
photocatalytic processes is a promising strategy for achieving sustainability, which not
only diminishes CO2 emissions but also produces valuable chemicals and fuels, making
a substantial contribution to environmental remediation to address the urgent concerns
regarding climate change and the ultimate exhaustion of fossil fuel reserves [2,3]. In ad-
dition, several technologies that transform CO2 into high-value-added products, such
as CO, CH4, CH3OH, ethylene, ethanol, and HCOOH, have been investigated. Various
metal oxide composite catalysts are widely used in photocatalytic CO2 reduction due to
their unique properties, high stability, and low cost [4–8]. Cu catalysts for the synthesis of
multi-carbon products exhibit a series of consistent motifs, such as oxidation, a high surface
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area, nanostructuring, and specific faceting, which promote the production of ethylene
and ethanol at consistently lower over-potentials, with Faradaic efficiencies approaching
50–60%. However, these catalysts have a short lifespan and limitations in terms of the
current density of the substrate [9]. Metal-semiconductor catalysts have been proven
to widen the light absorption range of light-driven catalyst materials, and the presence
of metal particles not only enhances the optical absorption capability but also provides
active sites for the activation of CO2; however, the cost of these catalysts is very high
because many of them contain precious metals [10]. Despite their potential, these systems
have not been widely used because of several limitations that greatly limit their practical
applications, including their inefficiency in converting energy, high charge recombina-
tion, and limited capacity to absorb visible light [11]. Since the initial report on photo-
catalytic CO2 reduction using fac-[ReICl(bpy)(CO)3] [12], researchers have constructed
numerous effective systems for reducing CO2 using noble metal complexes by finetuning
the features of the catalytic systems, and they have developed molecular catalysts, such as
dinuclear rhenium-bipyridine assemblies, trinuclear ruthenium polyazine-GOphen com-
pounds and ruthenium trisphenanthroline assemblies, as photocatalysts for the conversion
of CO2 [13–15]. However, due to the high cost of these noble metal complexes, the use
of earth-abundant metal complexes as catalysts for photocatalytic CO2 reduction has at-
tracted increasing attention from chemists and material scientists. Among these complexes,
Co(II), Mn(II), Fe(II), Cu(I), and rare earth ions containing complexes have been used for
photocatalytic CO2 reduction [16–24]. However, to date, there are very few reports on the
photocatalytic CO2 reduction by Cu(II) complexes [25–27]. 6-Phenylpyridine-2-carboxylic
acid is an excellent ligand and can form structurally stable, coordination-diverse complexes
with many metal ions [28,29]. To further enhance the application of metal complexes in
the photocatalytic reduction of CO2, and to explore the synergistic action of metal ions
and ligands in metal complexes with photocatalytic CO2 reduction (rather than the role of
simple metal ions or the role of simple ligands), we have synthesized a new Cu(II) complex
by one-pot method using Cu(CH3COO)2·H2O, 6-phenylpyridine-2-carboxylic acid (HL1),
and 4-[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]pyridine (L2) in an ethanol-water solution. The
isolated Cu(II) complex was thoroughly characterized using elemental analysis, IR, UV-vis,
TG–DTA, and single-crystal X-ray analysis. In addition, the fluorescence behavior of the
complex was also investigated. Moreover, the Cu(II) ion in the complex is five-coordinated
with one O atom and one N atom from one 6-phenylpyridine-2-carboxylate ligand (L1),
one N atom from 4-[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]pyridine ligand (L2), one O atom
from acetate, and one O atom from coordinated water molecule, and it adopts a distorted
trigonal bipyramid geometry. Furthermore, the photocatalytic reduction of CO2 by Cu(II)
complex was investigated using UV-vis light irradiation, and the results indicated that the
main product formed is CO, with a yield of 10.34 µmol/g and a selectivity of 89.4% after
three hours. CO can be widely used in the metallurgical industry as a reducing agent, gas
fuel, etc. The synthesis of the Cu(II) complex is shown in Figure 1.
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Figure 1. Synthesis of Cu(II) complex.

2. Results and Discussion
2.1. Infrared Spectra

The infrared spectra of the Cu(II) complex and 4-[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]pyridine
(L2) ligand are shown in Figure 2. The free 6-phenylpyridine-2-carboxylic acid (HL1) ligand
shows characteristic bands at 1646 (νasCOO−) and 1575 (νsCOO−) cm−1 [30],
while the free 4-[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]pyridine (L2) ligand shows an im-
portant band at 1388 cm−1 (νC=N). In Cu(II) complex, these bands are observed at
ca. 1660, 1489, and 1371 cm−1, respectively, indicating the coordination of both the
L1 ligand and L2 ligands with the Cu(II) ion. The difference between νasCOO− and
νsCOO−|νasCOO− − νsCOO−| = 171 cm−1 suggests that the COO− group of
6-phenylpyridine-2-carboxylic acid (HL1) ligand in the Cu(II) complex adopts a monoden-
tate coordinated mode. In addition, a broad absorption band at ca. 3481 cm−1 is assigned to
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the ν(OH), indicating the presence of water molecules in the Cu(II) complex. The IR results are
consistent with the X-ray single-crystal diffraction data of the Cu(II) complex.
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Figure 2. The infrared spectra of the Cu(II) complex (black) and 4-[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-
yl]pyridine (L2) ligand (red).

2.2. UV-Vis Spectrum

The UV-vis spectra of the free 6-phenylpyridine-2-carboxylic acid (HL1) ligand, the
4-[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]pyridine (L2) ligand and the Cu(II) complex are
shown in Figure 3. The free 6-phenylpyridine-2-carboxylic acid (HL1) ligand exhibits two
absorption bands at 249 and 282 cm−1, while the free 4-[5-(pyridin-4-yl)-1,3,4-oxadiazol-
2-yl]pyridine (L2) ligand exhibits one absorption band at 266 cm−1. The Cu(II) complex
shows bands at ca. 253 and 276 cm−1, which may be attributed to the π-π* transitions of L1
and L2 ligands. The variations in the UV absorption peaks between the Cu(II) complex and
L1 and L2 ligands indicate the coordination of L1 and L2 ligands to the Cu(II) ion, which
agrees well with the results of the infrared spectra.
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2.3. Thermogravimetric Analysis

The thermogravimetric analysis of the Cu(II) complex was performed in the air atmo-
sphere with a heating rate of 5 ◦C/min (room temperature to 700 ◦C). The thermal stability
curve of the Cu(II) complex is shown in Figure 4, and it shows that its decomposition went
through two distinct phases: The first stage occurs at 25–200 ◦C, corresponding to a weight
loss of 6.20%, which is likely attributed to the loss of two water molecules (6.19%). The
second stage occurs at 200–700 ◦C, corresponding to a weight loss of 15.30%, which may
be due to the continuous decomposition of 6-phenylpyridine-2-carboxylate (L1) ligand,
4-[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]pyridine (L2) ligand, and acetate. The final residue
identified was CuO (Found: 15.30%, Calculated: 13.77%).
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2.4. Structural Description of Cu(II) Complex

The Cu(II) complex crystallizes in a triclinic system with space group P-1. Its struc-
ture comprises one Cu(II) ion, one 4-[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]pyridine (L2)
ligand, one 6-phenylpyridine-2-carboxylate (L1) ligand, one acetate, one coordinated water
molecule, and one uncoordinated water molecule. The molecular structure of the Cu(II)
complex is shown in Figure 5. The selected bond lengths (Å) and angles (◦) for the Cu(II)
complex are listed in Table 1. The two-dimensional layered structure of the Cu(II) com-
plex formed by hydrogen bonds is shown in Figure 6. Additionally, a three-dimensional
network structure of Cu(II) complex stacked by a two-dimensional layered structure is
shown in Figure 7. As shown in Figure 5, the Cu(II) ion exhibits a five-coordinated ge-
ometry, surrounded by one N atom (N1) and one carboxylate O atom (O2) from the same
6-phenylpyridine-2-carboxylate (L1) ligand, one N atom (N2) from 4-[5-(pyridin-4-yl)-1,3,4-
oxadiazol-2-yl]pyridine (L2) ligand, one O atom (O4) from one acetate, and one O atom
(O5) from one coordinated water molecule, and they form a trigonal bipyramidal geometry
with an O4-Cu1-O2 bond angle of 172.04(7)◦. The bond angles around the Cu(II) ion are
N1-Cu1-N2 (165.99(7)◦), N1-Cu1-O5 (103.25(6)◦), N2-Cu1-O5 (86.56(7)◦), with a total sum
of 355.8◦, showing that the N1, N2 and O5 atoms are at the equatorial plane. The dihedral
angle of ring 1 (N1-C2-C3-C4-C5-C6-N1) and ring 2 (C7-C8-C9-C10-C11-C12-C7) is 49.97◦,
indicating that the 6-phenylpyridine-2-carboxylate (L1) ligand is not coplanar, and that of
ring 3 (N2-C15-C16-C17-C19-C18-N2) and ring 4 (O6-C20-N3-N4-C21-O6) is 5.05◦ while
that of ring 5 (N5-C24-C23-C22-C25-C26-N5) and ring 4 (O6-C20-N3-N4-C21-O6) is 9.49◦,
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indicating that the 4-[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]pyridine (L2) ligand is almost
coplanar. The results of the dihedral angles show that the Cu(II) complex molecule is
not coplanar. The bond distances of Cu1-N1, Cu1-N2, Cu1-O2, Cu1-O4, and Cu1-O5 are
2.1179(17), 2.0832(18), 1.9216(16), 1.9203(14), and 2.2628(16) Å, respectively, consistent with
literature reports [29,31]. In the Cu(II) complex, both the 6-phenylpyridine-2-carboxylate
(L1) ligand and acetate adopt a monodentate coordinated mode, which is in agreement with
the infrared spectra results. The Cu(II) complex molecules form a two-dimensional layered
structure by O-H. . .O through hydrogen bonds including uncoordinated water molecules,
coordinated water molecules, carboxylate O atoms of 6-phenylpyridine-2-carboxylate (L1)
ligand, and O atoms of acetate (Figure 6). These two-dimensional layer structures further
form a three-dimensional network structure by π-π stacking interactions of aromatic rings
(Figure 7). The hydrogen bonds of the Cu(II) complex are listed in Table 2.
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Table 1. Selected bond lengths (Å) and bond angles (◦) for Cu(II) complex.

Bond d Angle (◦)

Cu1-O2 1.9216 (16) O2-Cu1-O5 96.77 (8)
Cu1-O4 1.9203 (14) O2-Cu1-N1 81.18 (7)
Cu1-O5 2.2628 (16) O2-Cu1-N2 87.83 (7)
Cu1-N1 2.1179 (17) O4-Cu1-O2 172.04 (7)
Cu1-N2 2.0832 (18) O4-Cu1-O5 91.10 (7)

O4-Cu1-N1 98.22 (6)
O4-Cu1-N2 91.47 (6)
N1-Cu1-O5 103.25 (6)
N2-Cu1-O5 86.56 (7)
N2-Cu1-N1 165.99 (7)
C1-O2-Cu1 118.87 (16)
C2-N1-Cu1 107.96 (14)
C6-N1-Cu1 132.89 (13)
O1-C1-O2 124.7 (2)

C20-O6-C21 102.67 (16)
C15-N2-Cu1 120.08 (15)
C18-N2-Cu1 122.95 (15)
C20-N3-N4 105.93 (18)
C21-N4-N3 106.40 (18)
C14-O4-Cu1 115.06 (12)
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Table 2. Hydrogen bonds in Cu(II) complex.

Donor-H Acceptor D-H (Å) H. . .A (Å) D. . .A (Å) D-H. . .A (◦)

O5-H5A O3 #1 0.84 1.92 2.7516 (1) 172
O5-H5B O7 #1 0.85 2.02 2.8221 (1) 159
O7-H7A O1 #2 0.85 2.18 2.9809 (1) 157

Symmetric operation code: #1: 1 + x, 1 − y, 1 − z; #2: 1 + x, y, z.

2.5. Hirschfeld Surface Analysis of Cu(II) Complex

The Hirschfeld surface of the Cu(II) complex was analyzed using the Crystal Explorer
software 21.5. Figure 8 displays the original crystal structure unit (a), the Hirschfeld
surfaces mapped over dnorm, di and de of the crystal (b–d), and the two-dimensional (2D)
fingerprint plots representing the overall and top four interactions (H. . .H, O. . .H/H. . .O,
N. . .H/H. . .N and C. . .H/H. . .C) (e–h). Based on the calculations, it can be concluded that
the H. . .H contacts represented the largest contribution (46.6%) to the Hirschfeld surface,
followed by O. . .H/H. . .O, N. . .H/H. . .N and C. . .H/H. . .C contacts with contributions of
14.2%, 13.8% and 10.2%, respectively. It is worth noting that the π-π stacking interactions
play a minor role in the formation, representing 6.6% of the Hirschfeld surface contribution
for the C. . .C contacts.
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2.6. Fluorescence Studies

The fluorescence behavior of the Cu(II) complex, along with the ligands 4-[5-(pyridin-4-
yl)-1,3,4-oxadiazol-2-yl]pyridine and 6-phenylpyridine-2-carboxylic acid, were explored in
ethanol. The excitation and emission slit widths were 2.5 nm. The emission spectra for each
compound are illustrated in Figure 9. In the case of the Cu(II) complex, a weak luminescent
emission peak was observed at 486 nm upon excitation at 296 nm. Meanwhile, the ligands
4-[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]pyridine and 6-phenylpyridine-2-carboxylic acid
exhibited luminescent emission peaks at 384 nm and 365 nm, respectively, under the same
excitation conditions. It is worth mentioning that the maximum emission peak for each
compound was observed to be red-shifted in comparison to the free ligands.
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2.7. Photocatalytic CO2 Reduction Activity of Cu(II) Complex

We are concerned here with exploring the potential application of the Cu(II) complex
as a catalyst in the photocatalytic reduction of CO2. The experimental findings shown in
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Figure 10 clearly exhibit the performance of the Cu(II) complex as a catalyst ((a) photocat-
alytic CO2 reduction performance and (b) product selectivity of Cu(II) complex catalyst).
The main product is CO, and as the reaction period extended, the yield gradually increased.
Specifically, after three hours of UV-Vis light irradiation, the yield reached 10.34 µmol
(CO)/g (catalyst). Moreover, methane products have been detected in trace amounts, with
an approximate output of 1.22 µmol (CH4)/g (catalyst) after three hours of UV-vis light
irradiation. The CO selectivity is high, at 89.4%. To prove whether the Cu(II) complex
catalyst changed before and after the catalysis, we also tested the elemental analysis of the
Cu(II) complex catalyst after the catalytic reaction, and the results showed that the catalyst
did not change (Found: C, 53.49%, H, 4.12%, N, 11.71%). Our investigation involved
the use of two metal complexes as catalysts for the photocatalytic CO2 reduction: one is
a dinuclear Gd(III) complex constructed by 6-phenylpyridine-2-carboxylic acid (L) and
1,10-phenanthroline ligands, [Gd2(L)4(Phen)2(H2O)2(DMF)2]·2H2O·2Cl (1) [24], and the
other is a Gd(III) coordination polymer constructed using 6-phenylpyridine-2-carboxylic
acid (L1) and 4,4′-bipyridine ligands, {[Gd(L1)3(H2O)2]·L2}n (2) [29]. The results indicate
that the primary catalytic products using complex (1) and complex (2) as catalysts were all
CO, with yields and a selectivity of 22.1 µmol/g and 78.5% and of 60.3 µmol/g and 100%,
respectively. A comparison of the catalytic activity among the three complexes reveals that
the yield follows the following order: complex (2) > complex (1) > Cu(II) complex (this
work); meanwhile, the selectivity follows the following order: complex (2) > Cu(II) complex
(this work) > complex (1). This suggests that both the central metal ion and the ligand play
crucial roles in influencing the catalytic activity of the complex.
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3. Experimental Section
3.1. Materials and Measurements

Cu(CH3COO)2·H2O, 6-phenylpyridine-2-carboxylic acid (HL1), 4-[5-(pyridin-4-yl)-
1,3,4-oxadiazol-2-yl]pyridine (L2), and NaOH were purchased commercially from Jilin
Chinese Academy of Sciences-Yanshen Technology Co., Ltd. (Jilin, China) and used as
received without further purification. C, H and N analyses were performed using a Vario III
EL elemental analyzer (Elementar, Hanau, Germany). IR spectra were recorded on a Tianjin
Gangdong FTIR-850 spectrophotometer (Tianjin, China) (KBr discs, 4000–400 cm–1). UV-vis
spectra in the 190–700 nm region were carried out with a PERSEE T9 spectrophotometer
(Beijing, China) in water with quartz cuvettes of 1 cm path length. TG–DTA was recorded
by a HENVEN HCT-2 thermal analyzer (Beijing, China). The Hirschfeld surface of the Cu(II)
complex was calculated by the Crystal Explorer software [32]. Fluorescence measurements
were made on a PE LS-55 fluorescence spectrophotometer equipped with quartz cuvettes
of 1 cm path length (PerkinElmer, Waltham, MA, USA). The excitation and emission slit
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widths were 2.5 nm. X-ray diffractions of the Cu(II) complex were collected on a Bruker
CCD area detector (SuperNova, Billerica, MA, USA, Dual, Cu at zero, 296.15 K, multi-scan).
Samples of the compounds are available from the authors.

3.2. Synthesis of Cu(II) Complex

A mixture of 6-phenylpyridine-2-carboxylic acid (HL1) (0.0996 g, 0.5 mmol), 4-[5-
(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]pyridine (L2) (0.1000 g, 0.5 mmol), NaOH (0.020 g,
0.5 mmol), and Cu(CH3COO)2·H2O (0.0998 g, 0.5 mmol) was added to the solution of
20 mL water-ethanol (v:v = 1:1) with stirring. The mixture was heated at 76 ◦C for 4 h and
stirred continuously for 2 h at room temperature. The blue block crystals of the Cu(II)
complex grew out from the filtrate after 10 days by evaporation. Elemental analysis calcd
for [CuL1L2(CH3COO)2(H2O)]·H2O: C, 53.70%, H, 3.96%, N, 12.05%; Found: C, 53.46%, H,
4.19%, N, 11.76%.

3.3. Crystal Structure Determination

X-ray diffraction data for the single crystal (dimensions of 0.15 mm× 0.13 mm× 0.11 mm)
of the Cu(II) complex were collected and mounted on a SuperNova, Dual, Cu at zero
Bruker Smart CCD diffractometer. Data were collected at 296.10(10) K by using a graphite-
monochromator with MoKα radiation. Data collection and absorption correction were
carried out by the Olex2 [33]. The structure was solved by the SHELXS program [34] and
refined by the Least-Squares minimization techniques SHELXL [35] program. The crystal
structural parameters for the Cu(II) complex are listed in Table 3.

Table 3. The crystal structural parameters for Cu(II) complex.

Empirical Formula C26H23CuN5O7

Formula weight 581.03
Temperature/K 296.10 (10)
Crystal system triclinic

Space group P-1
a/Å 7.11322 (11)
b/Å 11.62617 (17)
c/Å 16.2290 (3)
α/◦ 96.8735 (13)
β/◦ 98.3307 (13)
γ/◦ 92.0443 (12)

Volume/Å3 1316.50 (4)
Z 2

ρcalc, mg/mm3 1.466
µ/mm−1 1.643

S 1.058
F (000) 598

Index ranges
−8 ≤ h ≤ 7,
−14 ≤ k ≤ 14,
−20 ≤ l ≤ 20

Reflections collected 37,707
Independent reflections 5238 [R (int) = 0.0485]

Data/restraints/parameters 5238/4/363
Goodness-of-fit on F2 1.058
Refinement method Full-matrix least-squares on F2

Final R indexes [I ≥ 2σ (I)] R1 = 0.0410, wR2 = 0.1218
Final R indexes [all data] R1 = 0.0463, wR2 = 0.1158

Crystallographic data for the structure reported in this paper have been deposited in
the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC
2333570. The CIF file can be obtained conveniently from the website: https://www.ccdc.
cam.ac.uk/structures (accessed on 19 February 2024).

https://www.ccdc.cam.ac.uk/structures
https://www.ccdc.cam.ac.uk/structures
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3.4. Photocatalytic CO2 Reduction Test

A total of 7 mg of Cu(II) complex catalyst and 50 mL deionized water were mixed
into a quartz reactor. Then, the high-purity CO2 gas was passed into the suspension and
maintained at a temperature of 20 ◦C. After 15 min, the reactor was sealed, and a xenon
lamp was turned on (Beijing Trusttech Co., Ltd., Beijing, China). The gas analysis was
conducted using a gas chromatograph equipped with a FID detector and Propark Q column
(Shandong Huifen Instrument Co., Ltd., Zaozhuang, China).

4. Conclusions

A newly designed Cu(II) complex has been successfully synthesized and thoroughly
characterized using various analytical techniques, including elemental analysis, infrared
spectroscopy (IR), UV-visible spectroscopy (UV-vis), thermogravimetric–differential ther-
mal analysis (TG–DTA), and single-crystal X-ray analysis. The fluorescence properties
of the copper complex were also studied. Additionally, Hirschfeld surface analyses have
been conducted on the Cu(II) complex. Furthermore, the photocatalytic activity of the
Cu(II) complex in CO2 reduction under UV-visible light irradiation was investigated. The
results revealed that CO is the primary product, with yields of 10.34 µmol/g and a selectiv-
ity of 89.4% after three hours. The findings presented here serve as a valuable reference
for the potential design and synthesis of metal complex catalysts for photocatalytic CO2
reduction applications.
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