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Abstract: Abnormal viscosity is closely related to the occurrence of many diseases, such as cancer.
Therefore, real-time detection of changes in viscosity in living cells is of great importance. Fluorescent
molecular rotors play a critical role in detecting changes in cellular viscosity. Developing red emission
viscosity probes with large Stokes shifts and high sensitivity and specificity remains an urgent and
important topic. Herein, a novel viscosity-sensitive fluorescent probe (TCF-VIS1) with a large stokes
shift and red emission was prepared based on the 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-
dihydrofuran (TCF) skeleton. Due to intramolecular rotation, the probe itself does not fluorescence at
low viscosity. With the increase in viscosity, the rotation of TCF-VIS1 is limited, and its fluorescence
is obviously enhanced. The probe has the advantages of simple preparation, large Stokes shift,
good sensitivity and selectivity, and low cytotoxicity, which make it successfully used for viscosity
detection in living cells. Moreover, TCF-VIS1 showed its potential for cancer diagnosis at the cell level
and in tumor-bearing mice by detecting viscosity. Therefore, the probe is expected to enrich strategies
for the detection of viscosity in biological systems and offer a potential tool for cancer diagnosis.

Keywords: viscosity detection; large stokes shift; fluorescent imaging; cancer diagnosis

1. Introduction

Viscosity is an important microenvironmental parameter that plays a crucial role in the
transport and interaction of biomolecules and related life processes [1,2]. As a key indicator
of the biological microenvironment, viscosity is closely related to various physiological and
pathological processes [3,4]. Abnormal changes in viscosity can lead to cellular malfunction
or serve as a biomarker of the occurrence of severe diseases. For example, abnormal cell
viscosity is closely related to many diseases, including inflammation, Alzheimer’s disease,
and cancer [5–8]. Therefore, effective real-time detection of intracellular viscosity changes is
of great significance for cancer diagnosis and treatment [9]. However, it is very challenging
to detect viscosity parameters in living systems because of their complexity and real-time
changes. The traditional viscometer methods mainly contain a rotary viscometer, a falling
ball viscometer, and a capillary viscometer [10–12]. These methods are mainly based on
in vitro viscosity rather than at the cellular level and do not provide the required spatial
and temporal resolution [11–13], so it is necessary to develop a new method to detect
intracellular viscosity.

In recent years, fluorescent probes have become an important tool for the viscosity
monitoring of biological systems [14,15]. For most viscosity probes, the mechanism of
action appears to be twisted intramolecular charge transfer (TICT) [16–18]. These probes
typically consist of two main components: a fluorophore and a rotation group. In such
probes, the fluorescence emission process is effectively quenched by the rotation motion.
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However, the rotation moiety itself is affected by changes in the viscosity of the surrounding
medium, and when the viscosity increases, the rotation is restricted, resulting in enhanced
fluorescence of the probe [19,20]. Although many viscosity-sensitive fluorescent probes
have been reported, these probes sometimes have some shortcomings, including a low
response signal and a small Stokes shift, and most have biological background interference
for imaging due to their short emission wavelength [21–25]. Near-infrared fluorescence
emission and large Stokes shifts could reduce the background interference, reduce the
crosstalk between absorption and emission, and improve fluorescence signal-to-noise
ratios [26]. Therefore, a simple and efficient viscosity-responsive fluorescent probe with a
large Stokes shift and red emission for monitoring viscosity to realize cancer diagnosis is
highly desirable.

To date, a large number of viscosity-sensitive fluorescent probes based on cyanine,
BODIPY, naphthylamine, porphyrin, and other fluorescent dyes have been reported [5].
Moreover, 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5 dihydro-furan (TCF) as an ex-
cellent electron-absorbing fluorophore has attracted significant attention due to its good
photostability and super-resolution imaging [27–30]. Although a variety of TCF-based
fluorescent probes have been reported for biological imaging [31–34], to our knowledge,
the study of TCF-based viscosity-sensitive probes is very limited [35–37]. In this work, a
red-emission fluorescent probe, TCF-VIS1, was designed and prepared based on the TCF
skeleton for viscosity detection (Scheme 1). At low viscosity, the intramolecular rotation
bond of the probe can rotate, and the fluorescence is very weak. However, as the viscosity
increases, the rotation process is blocked to facilitate the intramolecular charge transfer
(ICT) process, so that TCF-VIS1 emits a strong NIR fluorescence signal. Thus, the viscosity
can be monitored by an obvious “turn-on” fluorescence signal. In addition, TCF-VIS1
possesses a large Stokes shift (184 nm) and red emission to better eliminate background
interference. It has the advantages of good sensitivity and selectivity, a large Stokes shift,
and low cytotoxicity, which make it successfully used for viscosity detection in living cells
and in vivo. Therefore, this work may provide a new tool for tracking viscosity-related
pathological processes as well as for cancer diagnosis.
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2. Results and Discussion
2.1. Syntheses of TCF-VIS1

The synthesis route of TCF-VIS1 (Scheme S1) as well as structural characterization by
NMR and HRMS (Figures S11–S13) are described in Supplementary Materials.
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2.2. Spectroscopic Response of TCF-VIS1 to Viscosity

The photophysical properties of the probe were investigated. As shown in Figure 1A,
the absorption of TCF-VIS1 in PBS was at 405 nm, and in glycerol, it was red shifted to
460 nm. As expected, TCF-VIS1 showed little fluorescence in PBS, whereas an obvious fluo-
rescence enhancement was obtained in glycerol (Figure 1B), indicating that the probe had a
good fluorescence response to viscosity. At the same time, the Stokes shift reaches 184 nm,
which could effectively reduce the interference of excitation light. We then assessed the UV-
Vis absorption and fluorescence properties of TCF-VIS1 in different solvents (Figure S1A,B
and Table S1). The results showed that TCF-VIS1 exhibited relatively weak fluorescence
emission in all solvents except glycerol, with fluorescence quantum yields ranging from 0
to 0.4. In glycerol, TCF-VIS1 displayed strong fluorescence, and the quantum yield was
0.97, indicating that TCF-VIS1 was more sensitive to viscosity than polarity.
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(C) Fluorescence spectra of TCF-VIS1 at different glycerol fractions in the glycerol–water system.
(D) Linear relationship between log I644 nm and log η in the viscosity range of 2.15 cp–163.6 cp.
(E) Fluorescence intensity of 10 µM TCF-VIS1 for different species (100 µM) at 644 nm: (1) PBS;
(2) NO2

−; (3) K+; (4) Mg2+; (5) Ca2+; (6) HCO3
−; (7) Fe2+; (8) Glu; (9) Cys; (10) BSA; (11) GSH;

(12) Urea; (13) H2S; (14) H2O2; (15) Glycerol. (F) The photostability of the probe TCF-VIS1 in glycerol
and PBS. λex = 460 nm, λem = 644 nm.

Next, fluorescence titration of the probe TCF-VIS1 with viscosity was performed in
a water–glycerol system. As shown in Figure 1C, the fluorescence intensity of TCF-VIS1
increased as the glycerol fraction (f G) gradually increased from 0 to 99%. Moreover, with the
viscosity increasing from 0.89 cP to 856 cP, the fluorescence intensity of TCF-VIS1 at 644 nm
is enhanced by 78 times, indicating that TCF-VIS1 is highly sensitive to viscosity. In the
range of 2.15–163.6 cP, the fluorescence intensity (log I644) and viscosity (log η) of TCF-VIS1
show a good linear relationship (R2 = 0.9961, x = 0.9241) by fitting the Förster−Hoffmann
equation (log I = 0.5868 + 0.9241 logη) (Figure 1D). Thus, the probe TCF-VIS1 can be used
for the quantitative measurement of viscosity.

2.3. Selectivity and Photostability of TCF-VIS1 to Viscosity

To assess the selectivity of TCF-VIS1, we tested whether other constituents might
potentially influence the response signals. Thirteen other species, including NaNO2, KCl,
MgCl2, CaCl2, NaHCO3, FeCl2, Glu, Cys, BSA, GSH, Urea, H2S, and H2O2, were separately
measured using fluorescence spectroscopy. As shown in Figure 1E, except for glycerol,
TCF-VIS1 showed little response to other biologically relevant substances, indicating that
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TCF-VIS1 has a high viscosity selectivity and is not interfered with by other substances,
which confirms the potential application of TCF-VIS1 for sensing viscosity changes in
complex biological environments. In addition, we further tested the fluorescence response
of TCF-VIS1 under different ions with varying concentrations (Figure S2). The results
showed that, except in a high-viscosity glycerol environment, different ions did not cause
remarkable changes in the fluorescence intensity of TCF-VIS1.

Next, the photostability of TCF-VIS1 under continuous laser irradiation was measured.
As shown in Figure 1F, the fluorescence intensity of probe TCF-VIS1 in glycerol was stable
at 644 nm with continuous irradiation for 60 min, indicating that the probe had good
photostability and has the potential to be used for bioimaging applications.

2.4. Effect of pH on TCF-VIS1 Response Viscosity

The effect of pH on the fluorescence of TCF-VIS1 was also evaluated in PBS and
40% PBS + 60% glycerol, respectively. As shown in Figure S3, the fluorescence intensity of
TCF-VIS1 hardly varied in the pH range of 4.0~10.0 in both low-viscosity and high-viscosity
media, suggesting that TCF-VIS1 could be used to monitor the viscosity in a wide pH range.
Thus, TCF-VIS1 could be further applied in biological systems.

2.5. Density Functional Theory Calculations

To further understand the optical properties of probe TCF-VIS1, the DFT/TDDFT
calculation was performed using the B3LYP/def2tzvp em = gd3bj method via Gaussian 09.
As shown in Figure 2, when the dihedral angle at around C8−C13−C14−C15 was either
0◦ or 90◦, the HOMO was centered at 4-PP, and the LUMO was centered at the TCF core.
These phenomena suggest that TCF-VIS1 undergoes an intramolecular charge transfer (ICT)
process when it is excited from the ground state to the excited state. Furthermore, when
the dihedral angle at around C8−C13−C14−C15 was 0◦, the probe TCF-VIS1 maintained a
planar conformation with an oscillator strength (f) of 1.3868. However, when the dihedral
angle at around C8−C13−C14−C15 was 90◦, the probe kept the orthogonal conformation
in a twisted intramolecular charge transfer (TICT) state, and the oscillator strength was
only 0.0005. These results showed that the probe TCF-VIS1 could form a TICT state through
intramolecular rotation, which had a weak fluorescence emission. Therefore, considering
the rotation of the single bond in the π system of the probe TCF-VIS1, the TICT state of TCF-
VIS1 would be formed by intramolecular rotation in a low-viscosity environment, resulting
in a decrease in fluorescence. However, when the viscosity increases, limiting the rotation
of the intramolecular single bonds, the ICT effect within the molecule causes the probe to
emit fluorescence. Therefore, TCF-VIS1 could be used to detect changes in viscosity.
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2.6. Cytotoxicity and Localization

Based on the above results, we further evaluated the ability of TCF-VIS1 to detect
viscosity in living cells. Firstly, the cytotoxicity of the probe was evaluated in living
HepG-2 cells and HeLa cells by MTT assay. As displayed in Figure S4, the survival
rate of cells at a 40 µM concentration was more than 83%, indicating that the probe had
low cytotoxicity. Furthermore, the photostability of TCF-VIS1 in cells was studied. The
imaging results showed that there was no significant change in fluorescence imaging under
continuous light irradiation (Figure S5), suggesting that TCF-VIS1 has good photostability
in fluorescence imaging.

Next, the distribution of TCF-VIS1 in lysosomes and mitochondria was studied using
commercial Lyso-Tracker Green and Mito-Tracker Green dyes. As shown in Figure 3,
the Pearson colocalization coefficients (P) of TCF-VIS1 with mitochondria and lysosomes
in HepG-2 cells were 0.695 and 0.556, respectively, indicating that TCF-VIS1 has similar
moderate colocalization imaging with mitochondria and lysosomes. Similar distribution
results were further confirmed in HeLa cells (Figure S6). These results showed that TCF-
VIS1 can be distributed in both mitochondria and lysosomes but cannot remain in specific
subcellular organelles.
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λex = 488 nm, λem = 600~750 nm. Tracker: λex = 488 nm, λem = 500~520 nm. Merge: the merged
images of the green channel and the red channel. Colocalization scatter plots: the scatter plot of the
green channel and the red channel. Scale bar: 20 µm.

2.7. Monitoring the Cellular Viscosity

Subsequently, TCF-VIS1 was used to detect cellular viscosity changes. Dexamethasone
and nystatin are well known to enhance the viscosity of lysosomes and mitochondria [10].
Since TCF-VIS1 can be distributed in lysosomes and mitochondria, dexamethasone and
nystatin were used as stimulators of cellular viscosity. As displayed in Figure 4, HepG-2
cells pretreated with nystatin and dexamethasone, respectively, before TCF-VIS1 staining
showed significantly enhanced fluorescence in the red channel compared with the control
cells only incubated with TCF-VIS1. Similarly, TCF-VIS1 was also able to monitor viscosity
changes in HeLa cells after nystatin or dexamethasone treatment (Figure S7). These results
suggest that TCF-VIS1 can be used to monitor changes in intracellular viscosity.

Besides, HepG-2 cells were incubated with nystatin at different concentrations (0, 10,
40, and 80 µM) for 30 min and then incubated with TCF-VIS1. As shown in Figure S8,
the fluorescence of the red channel was enhanced gradually with the increase in nystatin
concentration. In addition, as lipopolysaccharide (LPS) is a classic inflammatory inducer
that can induce cellular inflammation and lead to increased cellular viscosity [38], we
selected LPS as a stimulus to further verify the ability of TCF-VIS1 to monitor viscosity
changes in cells. HepG-2 cells were preincubated with different concentrations of LPS and
then treated with TCF-VIS1. As can be seen from Figure S9, the fluorescence of the red
channel was gradually enhanced with the increase in LPS concentration. These results
further suggest that TCF-VIS1 is an effective tool for detecting cellular viscosity changes.
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by Image J (Fiji).

2.8. Monitoring the Viscosity during Ferroptosis

We further investigated the viscosity changes during ferroptosis, as studies have
shown that during ferroptosis, the conversion of unsaturated lipids to lipid peroxides
increases the cell viscosity [39,40]. As displayed in Figure 5, HepG-2 cells pretreated with
erastin (a ferroptosis activator) showed an obvious 4.5-fold fluorescence enhancement in
the red channel, indicating a significant increase in viscosity during ferroptosis. In addition,
when HepG-2 cells were simultaneously pretreated with erastin and Fer-1 (a ferroptosis
inhibitor), the fluorescence in the red channel showed little change compared with the
control group, indicating that the change in viscosity was correspondingly reduced during
the inhibition of ferroptosis. Therefore, the probe is expected to be used to monitor the
physiological and pathological processes related to viscosity.
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2.9. Differentiation of Normal Cells and Tumor Cells

Previous studies have shown that cancer cells are more viscous than normal cells [41].
Therefore, both normal cells (L929, HL-7702) and cancer cells (HeLa, H596, HepG-2) are
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stained with TCF-VIS1. As shown in Figure 6, the probe showed significantly enhanced red
fluorescence in tumor cells and weaker fluorescence in normal cells, indicating that TCF-
VIS1 can successfully distinguish tumor cells from normal cells. In addition, fluorescence
imaging was also performed on L929 cells and mouse breast cancer cells (4T1), and it
was found that the probe TCF-VIS1 had obvious red fluorescence in 4T1 cells, while it
was difficult to observe fluorescence in L929 cells (Figure S10). Therefore, these results
suggest that TCF-VIS1 has the potential for cancer diagnosis by detecting differences in
intracellular viscosity.
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2.10. Cancer Diagnosis In Vivo

We further prepared a 4T1 tumor-bearing mouse model to study the response of TCF-
VIS1 to viscosity in vivo. As displayed in Figure 7, in normal mice, the probe TCF-VIS1
exhibited only slight fluorescence. In contrast, the fluorescence at the tumor site of 4T1
tumor-bearing mice with different days was significantly enhanced, demonstrating that
TCF-VIS1 could be a useful tool for visualizing tumors by monitoring viscosity in vivo.
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3. Materials and Methods
3.1. Reagents and Apparatus

All solvents and reagents used were reagent-grade and were used without further
purification. Nystatin, dexamethasone, and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetra-
zolium bromide (MTT) were purchased from Aladdin (Shanghai, China). Lipopolysac-
charides (LPS) were obtained from Macklin (Shanghai, China). Lyso-Tracker Green and
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Mito-Tracker Green were obtained from Beyotime Biotechnology (Shanghai, China). Dul-
becco’s Modified Eagle Medium (DMEM) was purchased from Thermo Fisher (Gibco,
Billings, MT, USA). Fetal bovine serum (FBS) was purchased from Gemini (New York,
NY, USA). Trypsin with EDTA and penicillin/streptomycin were obtained from Solarbio
(Beijing, China).

1H NMR and 13C NMR spectra were measured on an Agilent 400 MHz DDZ spec-
trometer. Mass spectrometric data were recorded in positive mode with a Thermo Scientific
Exactive LC-MS instrument (Waltham, MA, USA). Absorption spectra were measured
and recorded on an Agilent Cary 60 UV-Visible Spectrophotometer (Agilent Technologies,
Santa Clara, CA, USA). Fluorescence spectra were obtained with an LS-55 fluorescence
spectrophotometer (Perkin-Elmer, Waltham, MA, USA). Fluorescence imaging was carried
out on a LSM710 confocal laser scanning microscope (Zeiss, Oberkochen, Germany). The
MTT assay was made on an EL × 800 Microplate Reader (BioTek, Shoreline, WA, USA).
Human cervical cancer cells (HeLa), human lung squamous cell carcinoma (H596), human
liver cancer cells (HepG-2 cells), human normal liver cells (L02 cells), mouse fibroblast
cells (L929), and mouse breast cancer cells (4T1) were supplied by the Committee on Type
Culture Collection of the Chinese Academy of Sciences (Shanghai, China).

3.2. Synthesis of the Florescent Probe TCF-VIS1
3.2.1. Synthesis of Compound 1

To a solution of 4-bromobenzaldehyde (3.0 g, 16.2 mmol) and (4-hydroxyphenyl)boronic
acid (2.7 g, 19.5 mmol) in 60 mL of THF, 2M K2CO3 (15 mL) and tetra-(triphenylpho
sphine)palladium (940 mg, 5% mmol) were added. The mixture was stirred at 60 ◦C
under a nitrogen atmosphere for 8 h. After that, the reaction mixture was poured into
30 mL of water, and the resulting mixture was extracted with DCM (50 mL × 3). The
combined extracts were washed with brine, dried over anhydrous Na2SO4, and evaporated
to afford crude, which was purified by column chromatography (EA/PE = 1/20~1/10) to
yield compound 1. Yield: 2.4 g (75%). 1H NMR (400 MHz, CDCl3) δ 9.92 (s, 1H), 7.91 (d,
J = 8.2 Hz, 2H), 7.73 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 8.8 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 4.95
(s, 1H).

3.2.2. Synthesis of Compound 2

In absolute ethanol (20 mL), there was dissolved Na (200.0 mg, 8.6 mmol). The mix
was stirred for 0.5 h at room temperature. Then, the 3-hydroxy-3-methylbutan-2-one (5.0 g,
58.6 mmol) and malononitrile (8.0 g, 120 mmol) were added, and the mixture was stirred at
room temperature for 1.5 h. In the next step, the absolute ethanol (20 mL) was added, and
the mixture was refluxed for another 1 h. After the reaction was completed, the mix was
cooled, filtered off, washed with cold ethanol, and dried in a vacuum to obtain compound
2. Yield: 6.3 g (65%). 1H NMR (400 MHz, CDCl3) δ 2.46 (s, 3H), 1.79 (s, 6H).

3.2.3. Synthesis of TCF-VIS1

To a solution of compound 1 (2.2 g, 11 mmol) and compound 2 (2.0 g, 10 mmol) in the
THF/EtOH (4:1, 20 mL), ammonium acetate (780 mg, 10 mmol) was added. The mixture
reacted at room temperature for 1.5 h. As soon as the reaction was completed, the solvent
was concentrated under reduced pressure to obtain the residue, which was purified by
column chromatography on silica gel with eluent dichloromethane/methanol (v/v, 100:1)
to produce compound TCF-VIS1. Yield: 2.1 g (55%). 1H NMR (400 MHz, DMSO-d6) δ 9.81
(s, 1H), 7.98 (d, J = 8.0 Hz, 2H), 7.94 (d, J = 16.0 Hz, 1H), 7.77 (d, J = 8.0 Hz, 2H), 7.65 (d,
J = 8.0 Hz, 2H), 7.24 (d, J = 16.0 Hz, 1H), 6.89 (d, J = 8.0 Hz, 2H), 1.81 (s, 6H). 13C NMR
(101 MHz, DMSO-d6) δ 177.60, 175.67, 158.65, 147.61, 144.20, 132.85, 130.70 (2C), 129.76,
128.60 (2C), 126.81 (2C), 116.41 (2C), 115.04, 113.23, 112.39, 111.47, 99.83, 99.21, 54.63, 25.62
(2C). ESI-HRMS Calc. for C24H17N3O2, 379.1321, found [M − H]−: 378.1248.
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3.3. Determination of Viscosity and Fluorescence Spectral Analysis

First, a TCF-VIS1 solution (1.0 mM) was prepared in DMSO. Viscosity determination
was performed in the 1 mL incubation mixture containing the stock solution (10 µL) and
solvent mixture (990 µL, water–glycerol solvent systems) to obtain the final TCF-VIS1 con-
centration (10.0 µM). These solutions were measured with a fluorescence spectrophotometer.
λex = 460 nm.

3.4. The Förster–Hoffmann Equation

The relationship between the fluorescence emission intensity of the probe and the
solvent viscosity could be formulated by the Förster–Hoffmann equation as follows:

log I = C+ xlogη

where η is the viscosity, I is the emission intensity, C is a constant, and x is the sensitivity of
the probe to viscosity [19].

3.5. Computational Methods

All molecular configurations were modeled using chemdraw, and initial structural
optimization was performed using chem3D under the MM2 force field and saved in mol2
format. Thereafter, the gaussian software (Gaussian 09) is used to calculate the structure
optimization and frequency at the level of B3LYP/6-31G** em = gd3bj based on density
functional calculation, and then the energy calculation is carried out by B3LYP/def2tzvp
em = gd3bj. Finally, based on time-dependent density functional theory (TDDFT), states
were set as 20 in B3LYP/def2tzvp em = gd3bj to calculate the structure of excited states
and fluorescence spectrum information. All data were processed using Multiwfn software
(Multiwfn 3.7) [42] and VMD software (Version 1.93).

3.6. Colocalization Imaging Experiments

Cells were treated with TCF-VIS1 (10 µM) for 10 min and washed with PBS. Mito-
Tracker Green and Lyso-Tracker Green were employed to stain cell mitochondria and
lysosomes, respectively. Then, fluorescence images were recorded on a confocal laser
scanning microscope (CLSM).

3.7. Fluorescence Imaging in Living Cells

HepG-2 cells and HeLa cells were cultured in DMEM and 1640 medium supplemented
with 10% FBS at 37 ◦C under a 5% CO2 atmosphere, respectively. The cells were then seeded
in a glass bottom dish and incubated overnight. Then, it was cultured with dexamethasone
or nystatin (10 µM) for 30 min, treated with the TCF-VIS1 (10 µM) probe at 37 ◦C for 10 min,
and washed with PBS 3 times. Fluorescence imaging was performed on the CLSM.

Cancer cells (HeLa, H596, HepG-2, 4T1) and normal cells (HL-7702 cells, and L929)
were treated with TCF-VIS1 (10 µM) for 10 min, washed with PBS, and imaged on CLSM
(λex = 488 nm, λem = 600~750 nm).

3.8. In Vivo Fluorescence Imaging

All animal experiments were conducted in accordance with the guiding principles of
the Experimental Animal Ethics Committee of Guangxi Normal University (No. 202203-
003). Moreover, 1 × 106 4T1 cell suspensions were implanted subcutaneously in the left
hind flank of each mouse. TCF-VIS1 (50 µM, 50 µL) was intratumorally injected into
4T1 tumor-bearing mice. Fluorescence imaging was performed using the FXPRO in vivo
imaging system (λex = 470 nm, λem = 700 nm).

4. Conclusions

In summary, we prepared a novel red emission viscosity-sensitive fluorescence probe,
TCF-VIS1, with a large Stokes shift (184 nm) based on the TCF skeleton. The fluorescence
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intensity of the probe increased significantly with the increase in viscosity, and the response
mechanism of TCF-VIS1 toward viscosity was verified by TDDFT calculation. The probe
has the advantages of simple preparation, excellent photostability, good sensitivity and
selectivity, and low cytotoxicity, which make it successfully used for sensing viscosity in
living cells. The results demonstrated that there is an increase in the cellular viscosity of the
cells upon treatment with nystatin and dexamethasone (stimulators of cellular viscosity),
respectively. In addition, TCF-VIS1 was successfully used to indicate ferroptosis and
distinguish cancers from normal cells by detecting viscosity in living cells. Moreover,
TCF-VIS1 showed its potential for cancer diagnosis in tumor-bearing mice. These findings
suggest that TCF-VIS1 is expected to enrich strategies for the detection of viscosity in
biological systems and offer a promising tool for cancer diagnosis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29091993/s1. Scheme S1: Synthesis routes of probe
TCF-VIS1. Figure S1: UV–Vis and fluorescent response of TCF-VIS1 towards different solvents.
Table S1: The spectroscopic property data of TCF-VIS1 in different solvents. Figure S2: Fluorescence
spectra of TCF-VIS1 in the presence of different ions. Figure S3: Fluorescence spectra of TCF-VIS1 at
different pHs. Figure S4: Cytotoxicity of TCF-VIS1. Figures S5–S10: Fluorescent imaging experiments.
Figures S11–S13: 1H NMRS, 13C NMRS and HRMS of TCF-VIS1. Table S2: Previous viscosity probes
and this work. Refs. [8–11,18,43–47] are cited in the Supplementary Materials.
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