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Abstract: The mechanism of ammonia formation during the pyrolysis of proteins in biomass is
currently unclear. To further investigate this issue, this study employed the AMS 2023.104 software to
select proteins (actual proteins) as the model compounds and the amino acids contained within them
(assembled amino acids) as the comparative models. ReaxFF molecular dynamics simulations were
conducted to explore the nitrogen transformation and NH3 generation mechanisms in three-phase
products (char, tar, and gas) during protein pyrolysis. The research results revealed several key
findings. Regardless of whether the model compounds are actual proteins or assembled amino acids,
NH3 is the primary nitrogen-containing product during pyrolysis. However, as the temperature rises
to higher levels, such as 2000 K and 2500 K, the amount of NH3 decreases significantly in the later
stages of pyrolysis, indicating that it is being converted into other nitrogen-bearing species, such
as HCN and N2. Simultaneously, we also observed significant differences between the pyrolysis
processes of actual proteins and assembled amino acids. Notably, at 2000 K, the amount of NH3

generated from the pyrolysis of assembled amino acids was twice that of actual proteins. This
discrepancy mainly stems from the inherent structural differences between proteins and amino acids.
In proteins, nitrogen is predominantly present in a network-like structure (NH-N), which shields it
from direct external exposure, thus requiring more energy for nitrogen to participate in pyrolysis
reactions, making it more difficult for NH3 to form. Conversely, assembled amino acids can release
NH3 through a simpler deamination process, leading to a significant increase in NH3 production
during their pyrolysis.

Keywords: pyrolysis; protein; ammonia; N migration

1. Introduction

Ammonia (NH3) is a widely employed substance for synthesizing nitrogen fertilizers,
serving as a crucial nitrogen source for plants and promoting crop growth [1,2]. This plays
a vital role in nourishing nearly half of the global population. The conventional method
for NH3 synthesis predominantly relies on the Haber–Bosch (H-B) process. This process
involves the reaction of nitrogen gas (N2) and hydrogen gas (H2) under high-temperature
and high-pressure conditions (673~873 K, 20~30 MPa), consuming a significant amount
of global energy (1–2%) [3–6]. Given these challenges, there is a substantial focus on
researching environmentally friendly, energy-efficient, and sustainable alternatives for
NH3 production.

One promising avenue is the extraction of NH3 from nitrogen-rich biomass [7,8], which
may emerge as a potential sustainable source of nitrogen and hydrogen [9]. Pyrolysis, a
clean and efficient thermochemical conversion technology, entails the high-temperature
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treatment of biomass. This process can effectively convert the nitrogen in biomass into
char, tar, and gaseous nitrogen [10]. At present, Wang et al. [11] have discovered that the
pyrolysis of microalgae can generate a substantial amount of NH3, and this NH3 can be
recovered and reused as a fertilizer. Zhao et al. [12] have also successfully investigated
the impact mechanism of cellulose pyrolysis by elucidating the transformation between
functional groups at high temperatures, thereby further demonstrating the feasibility of
biomass pyrolysis. The prospect of using nitrogen-rich biomass for NH3 production holds
promise for two main reasons: (1) the acquisition of nitrogen-rich biomass is sustainable
and cost-effective; and (2) compared to the traditional Haber–Bosch (H-B) process, NH3
synthesis can be conducted at atmospheric pressure without the need for introducing
hydrogen, simplifying the process and reducing energy consumption.

Nitrogen in biomass primarily exists in the form of proteins (amino acids) [11]. Current
research on NH3 generation from biomass primarily involves nitrogen-containing models of
biomass, such as proteins and amino acids. Wang et al. [9] utilized nitrogen-rich microalgal
biomass microalgae for NH3 production through pyrolysis, revealing that nitrogen in the
microalgae raw material samples primarily exists in the form of proteins. They conducted
pyrolysis experiments using the 17 amino acids contained in microalgae proteins, and the
results indicated that, at a temperature of 800 ◦C, the NH3 yield reached its maximum,
approaching 30%. Guo et al. [13], when investigating the impact of CaO on the formation
of NOx precursors during the pyrolysis of sludge proteins, found that the NH3 yield
reached its maximum at 400 ◦C. The production of NH3 was primarily attributed to the
deamination of small-molecule amines generated by the decomposition of large-molecule
proteins. Li et al. [14], through FTIR spectroscopy, studied the pyrolysis behavior of glycine
and diglycine, finding that their pyrolysis mechanism is similar to the process of protein
pyrolysis, with NH3 being the primary nitrogen-containing substance. Li et al. [15] used
TG-FTIR spectroscopy to investigate the pyrolysis of phenylalanine and tyrosine, revealing
NH3, HNCO, and HCN as the primary gaseous products. However, there is currently
limited theoretical research on the formation of NH3 during protein pyrolysis. Therefore, it
is necessary to explore the nitrogen conversion mechanism and NH3 production mechanism
during protein pyrolysis.

In recent years, the application of molecular dynamics (MD) simulations based on
the reactive force field (ReaxFF) has proven successful in modeling the combustion and
pyrolysis characteristics of complex compounds such as coal [16], biomass [17], and char-
coal [18,19]. This methodology has provided a deeper understanding of the reaction
processes. Zheng et al. [17] employed molecular dynamics simulations to elucidate the
initial reaction mechanisms of cellulose pyrolysis. Their research indicated that, compared
to a larger model with 7572 atoms, a model with 17,664 atoms exhibited a closer evolu-
tionary trend to the major pyrolysis products observed by Py-GC/MS, thus revealing
crucial reaction pathways which are challenging to capture experimentally. Castro Marcano
et al. [20] conducted a thorough investigation into the combustion of Illinois No. 6 coal char,
consisting of 7458 atoms. The largest molecular model constructed in this study encom-
passed over 50,000 atoms, specifically composed of C26860H20897O2502N412S330, and was
tailored for Illinois No. 6 coal [21,22]. The findings suggest that coupling the reactive force
field with more realistic carbon molecular models can serve as a useful simulation approach
to examine the intricate chemistry involved in structural transformations and chemical
reactions during coal combustion. Additionally, Zheng et al. [23] utilized the ReaxFF-MD
technique to delve deeper into the specific chemical reactions occurring during the pyroly-
sis of a Liulin coal model, comprising 28,351 atoms, marking it as the second coal model to
be investigated using ReaxFF-MD. The results indicate that ReaxFF-MD simulations are
instrumental in gaining profound insights into the chemical reactions occurring within
complex molecular systems. These illustrative research examples further demonstrate the
applicability of the ReaxFF-MD method in the field of macromolecular research.

In summary, the theoretical research on nitrogen transformation during protein py-
rolysis is limited. Therefore, it is necessary to explore the mechanisms underlying the
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conversion of fuel nitrogen to NH3 during protein pyrolysis. To address this, we employed
a method that allows for a detailed examination of nitrogen transfer reactions during
protein pyrolysis at the molecular level—specifically, ReaxFF-MD simulation. We selected
a protein with a nitrogen content of up to 17 wt% as a model compound to elucidate
the evolution of the three-phase products and pathways of nitrogen conversion during
pyrolysis. To further discuss the influence of the intrinsic structure of the protein on ni-
trogen conversion, we disassembled the protein into its assembled amino acid structures
as a comparative model, aiming to comprehensively compare the impact of the intrinsic
interaction of the protein on NH3 generation.

2. Results and Discussion
2.1. Proteins and Amino Acids Are Separately Thermally Decomposed

In previous studies on ReaxFF simulations [24], thermal decomposition products were
categorized into three types—char, tar, and gas—based on the size of the carbon molecules,
specifically, the C40+, C5-C40, and C0-C4 fragments. Taking 2000 K as an example, we
investigated the distribution of nitrogen in char, tar, and gas fragments during the thermal
decomposition of actual proteins and their assembled amino acids in the two simulation
systems, as shown in Figure 1. In the actual thermal decomposition process of the proteins,
the nitrogen content in char decreased from 100% to 0, whereas the nitrogen content in
tar and gas gradually increased. Subsequently, the nitrogen content in the tar showed a
decreasing trend, while gaseous nitrogen continued to increase. Ultimately, in the later
stages of decomposition, the changes in the nitrogen content of the tar and gaseous nitrogen
tended to stabilize. This is consistent with the findings of Chen et al. [25], who indicated that
nitrogen migrates to smaller molecular fragments as large organic molecules decompose.
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Figure 1. The distribution of three-phase products during the pyrolysis process of actual proteins
and assembled amino acids at a temperature of 2000 K.

Based on the pyrolysis time, nitrogen migration during the protein pyrolysis process
can be divided into two stages. In the initial stage, primary pyrolysis reactions take prece-
dence, resulting in the gradual transfer of nitrogen from the unstable weak bonds within
the large molecular structure of the protein to the gas and tar fragments. During the second
stage, the predominant process is tar pyrolysis, leading to a substantial migration of nitro-
gen from tar to gas, concurrent with the ongoing pyrolysis reactions. This aligns with the
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observations made by Xu et al. [26], indicating that, during the pyrolysis of sludge and coal,
nitrogen migrates to gases and tar fractions as larger molecules undergo decomposition.
Consequently, in the pyrolysis of amino acids in our study, the primary nitrogen trends
in char nitrogen, tar nitrogen, and gaseous nitrogen differed slightly from those of the
proteins. This difference can be attributed to some limitations of the amino acid model in
the ReaxFF-MD simulation, which did not consider changes in tar nitrogen. Therefore, in
the pyrolysis of amino acids, the main nitrogen migration process included only the conver-
sion of tar nitrogen into gaseous nitrogen, and no aggregation of amino acid molecules to
produce peptides or their derivatives was observed. This observation is consistent with the
findings of Leng et al. [27], who did not observe polymerization (dehydration) of glycine
molecules during their molecular dynamics simulation study to produce peptides, DKP,
or their derivatives. Clearly, through molecular dynamics simulations, utilizing actual
proteins as models for pyrolysis research brings an investigation closer to the experimental
conditions, rendering it more reliable.

In protein pyrolysis, two distinct stages can be discerned: the first stage, occurring
between 0 and 7 ps, and the second stage, occurring after 7 ps. In our study, the first stage
was short, indicating that large protein molecules rapidly decomposed into char at high
temperatures. Moreover, the subsequent thermal decomposition rate of char was faster
than the secondary thermal decomposition rate of tar nitrogen. In the second stage of
protein pyrolysis, tar nitrogen decreased from 58% to 15% and was entirely converted into
gaseous nitrogen. Similarly, in the pyrolysis process of assembled amino acids, from start
to finish, tar nitrogen decreased from 59% to 11%, also entirely converting into gaseous
nitrogen. These results suggest that, in both the actual proteins and in the amino acids they
assemble, nitrogen primarily exists in the form of gaseous nitrogen during pyrolysis, with
gaseous nitrogen being the main source of gaseous nitrogen [28].

2.2. The Influence of Pyrolysis Temperature
2.2.1. The Comparative Impact of Pyrolysis Temperature on the Distribution of
Three-Phase Products

Pyrolysis temperature plays a crucial role in determining the transformation and
distribution of nitrogen. Figure 2a illustrates the impact of pyrolysis temperature on
nitrogen distribution in the pyrolysis products of actual proteins and assembled amino
acids. As the pyrolysis temperature increased from 1000 K to 2500 K, the tar nitrogen content
in the pyrolysis products of the assembled amino acids significantly decreases, while the
yield of gaseous nitrogen continued to increase. Specifically, the yield of gaseous nitrogen
reached 40%, 60%, 69%, and 76% at temperatures of 1000 K, 1500 K, 2000 K, and 2500 K,
respectively. This phenomenon can be explained by the fact that increasing the temperature
favors the decomposition of tar nitrogen molecules into amino acids, causing them to enter
the gaseous phase. As the temperature increased from 1000 K to 1500 K, the yield of char
nitrogen in the actual proteins decreased significantly, dropping from 44% to 0. Tar nitrogen
and gaseous nitrogen exhibited increasing trends. This can be explained by the higher
temperature favoring the conversion of fuel nitrogen from char to volatile substances [29,30].
As the temperature continued to rise, reaching 2000 K and 2500 K, the yield of tar nitrogen
began to decrease, dropping from 42% to 22% and 19%, respectively. This implies that,
with increasing temperatures, the yield of tar nitrogen initially increased, releasing more
nitrogen-containing substances in the form of large molecular volatiles. However, with
a further temperature increase, more tar nitrogen underwent further decomposition into
gaseous nitrogen products, resulting in a reduction in the yield of tar nitrogen [30]. In the
temperature range of 1000~1500 K, the yield of gaseous nitrogen was relatively low but
significantly increased at 2000 K. This can also be attributed to the secondary decomposition
of nitrogen-containing substances in the volatiles.
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When comparing the pyrolysis of actual proteins with that of the assembled amino
acids, there was no discernible trend in char nitrogen in the pyrolysis products of the
assembled amino acids in the temperature range of 1000~2500 K. This discrepancy contra-
dicts the results of the experimental studies. This phenomenon explains the shortcomings
of using amino acid models for molecular dynamics simulations. In agreement with the
results of other experimental studies, the pyrolysis products of actual proteins exhibited a
decreasing trend in char nitrogen. With increasing temperatures, char nitrogen gradually
transformed into tar nitrogen and gaseous nitrogen. However, within the temperature
range of 1000~1500 K, the yield of char nitrogen decreased directly from 44% to 0, and the
changing trend in char nitrogen was not clearly evident. To validate the accuracy of the
protein model, two additional temperature points, 1100 K and 1200 K, were added to this
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section within the temperature range of 1000~1500 K to determine the trend in the char
nitrogen changes. As shown in Figure 2b, the yields of char nitrogen at temperatures of
1000 K, 1100 K, 1200 K, and 1500 K were 44%, 29%, 11%, and 0%, respectively. With an
increase in temperature, the yield of char nitrogen significantly decreased, and the conver-
sion of char nitrogen into tar nitrogen and gaseous nitrogen was evident. The changing
trend in char nitrogen aligns with the experimental results of previous studies [9], further
confirming the accuracy and feasibility of the protein model used in this study.

2.2.2. The Impact of Pyrolysis Temperature on the Generation of NH3

NH3 is considered the primary pyrolysis gas [31]. Figure 3a,b illustrate the evolution of
the evolving trends of NH3 over time at different temperatures during pyrolysis. The NH3
yield was defined as the maximum amount of NH3 in the pyrolysis products divided by
the total nitrogen content. As the temperature increased from 1000 K to 1500 K, the quantity
of NH3 increased over time. This can be attributed to the elevated temperature conditions
promoting the secondary cracking of tar nitrogen, thereby releasing NH3. Nevertheless, as
the temperature rose to 2000 K, there was an initial increase in the concentration of NH3,
followed by a subsequent decline over time. Furthermore, at 2500 K, the decreasing trend
became more pronounced. The substantial release of NH3 observed in the ascending trend
may have originated from the decomposition of the unstable protein derivatives [32,33].
Regarding the descending trend, the literature [34] suggests that the variation in the quantity
of NH3 produced from the pyrolysis of phenylalanine over time initially shows a slight
increase, followed by a mild decrease. In our scenario, the significant reduction in NH3
quantity could be ascribed to intense interactions taking place under high-temperature
conditions between NH3-N and other small molecular fragments produced from the
pyrolysis of actual proteins or their assembled amino acids. This interaction accentuated
the conversion of NH3-N into other nitrogen-containing small molecules. This implies that,
during the pyrolysis process, NH3 not only existed as a product but also acted as a reactant
in different reaction stages. At elevated temperatures, specifically 2000 K and 2500 K, the
enhancing effect of the temperature on the consumption reaction of NH3 outweighed its
positive impact on the generation reaction of NH3. Consequently, this led to a decreasing
trend in net NH3 gas production over time.

During the thermal decomposition of proteins and their constituent amino acids, the
maximum conversion rate of nitrogen into NH3 refers to the ratio of the maximum amount
of NH3 produced to the total nitrogen content in the models. This metric enabled us to
evaluate the impact of temperature on the selectivity of nitrogen conversion to NH3 in the
two models. Figure 3c illustrates how the maximum conversion rate of nitrogen to NH3
varies with temperature for both models of proteins and their constituent amino acids.
The maximum conversion rate of nitrogen to NH3 increased with temperature for both
the actual proteins and the constituent amino acids, following a similar trend. However,
there were significant quantitative differences. At a high temperature of 2000 K, the NH3
maximum conversion rates for the constituent amino acids and actual proteins reached
44% and 22%, respectively, indicating a high conversion efficiency. This disparity may
have stemmed from the relatively simple amino structure of the constituent amino acids,
which generally facilitates the deamination process [35]. In contrast, the nitrogen atoms
in actual proteins are often embedded in complex networks, requiring the overcoming of
higher energy barriers and decomposition into smaller molecules before the outermost
nitrogen can be exposed and converted into NH3. This process is much more challenging
than generating NH3 from its assembled amino acids. Given that both models exhibited
high NH3 conversion rates at 2000 K and there was a relatively small decrease in NH3
production during the later stages of pyrolysis, we chose 2000 K as the representative
temperature for our subsequent studies. This choice aimed to further explore the specific
pathways of NH3 production from actual proteins and their constituent amino acids.
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2.3. Comparison and Analysis of the NH3 Production Pathways for Actual Proteins and Their
Assembled Amino Acids

In this section, we conducted a thorough analysis of the reaction networks during
the pyrolysis process of actual proteins and their constituent amino acids, utilizing the
advanced WF module of the AMS 2023.104software [36] and the ChemTraYzer 2.0 tool.
The primary objective of this analysis was to explore the specific pathways leading to NH3
production in two distinct models at 2000 K. These findings have been comprehensively
presented in Figure 4. The three forms of nitrogen present in proteins—NH3-N, NH2-N,
and NH-N —are closely associated with three distinct pathways of NH3 formation, as
illustrated in Figure 4a–c. Specifically, the NH3-N structure, naturally present at the edges
of proteins, can directly detach to produce NH3, as depicted in Figure 4a. On the other
hand, the NH2-N structure within protein molecules detaches its amino group at 3.875 ps
and subsequently attaches to other small molecular structures produced during protein
pyrolysis at 5.05 ps, combining with a H atom to form NH3 at 8.075 ps. This detailed
process is shown in Figure 4b1. In another scenario, the H atom from the NH2 group is
attracted by small molecular fragments generated during protein pyrolysis at 16.375 ps,
converting the NH2 structure into an NH group. This free NH group then combines with H2
at 19.45 ps to produce NH3, as depicted in Figure 4b2. Given the complex macromolecular
network structure of proteins, the NH groups located between carbon bonds are particularly
abundant. These groups can form NH3 through a two-step hydrogenation process [37],
as illustrated in Figure 4c. This discovery aligns with the research findings of Tan and
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Li [38–40], further confirming that the H radicals generated during pyrolysis can attack
heterocyclic nitrogen to produce NH3.
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In contrast, in assembled amino acids, the pathways of NH3 production are relatively
simpler due to the presence of only two forms of nitrogen—NH2-N and NH-N—as shown
in Figure 4d1–e. At 3.425 ps, the amino group on an amino acid can directly combine with
a H atom to form NH3 at 3.5 ps, as depicted in Figure 4d1. Another pathway involves
direct interactions between amino acids, with each providing an NH2 group and a H atom,
ultimately leading to NH3 formation at 12.6 ps, as shown in Figure 4d2. Additionally, the
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NH groups in amino acids can also form NH3 through a two-step hydrogenation process,
as illustrated in Figure 4e.

After examining the pathways of NH3 production in actual proteins and their as-
sembled amino acids, it was observed that, in the actual proteins, the majority of NH3-N
formation, specifically NH-N, was situated within their network structure. Overcoming
the energy barrier of breaking down large molecular structures into smaller molecules
was required to expose the nitrogen on the outermost layer. In contrast, the amino acids
predominantly formed NH3-N through their inherent NH2-N structure, allowing direct
deamination to form NH3. This was the primary reason why the proteins produced less
NH3 than their assembled amino acids under the same conditions.

Based on the above analysis, the pathways for NH3 production from the pyrolysis of
assembled amino acids were similar to those of the actual proteins. However, due to the
simple structure of amino acids, nitrogen is more easily converted into gaseous nitrogen
during their thermal decomposition process [41], thereby contributing to an increased
maximum conversion rate of nitrogen to NH3. This further confirmed the earlier finding
that the NH3 gas maximum conversion rate was higher during the pyrolysis of amino
acids. Therefore, a simple architecture improves selectivity for NH3. However, it is worth
noting that, in the later stages of pyrolysis, for both the actual proteins and their assembled
amino acids, NH3 served as both a product and a reactant. The analysis of the reconversion
pathways of NH3 revealed that its decrease in quantity during the later stages of pyrolysis
was primarily due to the action of H radicals, leading to the conversion of NH3 into HCN,
N2, and other nitrogen-containing compounds. Because the NH3 reconversion pathways
for both models were similar and NH3 had been converted into HCN and N2 in significant
quantities, we used the NH3 reconversion pathway of the actual proteins as a representative
and analyzed the pathways leading to the formation of HCN and N2, as shown in Figure 5.
The pathways for the conversion of NH3 into N2 are illustrated in Figure 5a,b. In this
process, the H on NH3 can be attracted by small molecules resulting from the actual protein
or the breakdown of its assembled amino acids, forming NHi radicals. Subsequently, these
NHi radicals are adsorbed onto nitrogen-containing small molecules during pyrolysis or
interact directly with another NH3 molecule, progressively eliminating the H atoms around
the nitrogen atom, ultimately forming N2. The pathway for the reconversion of NH3 into
HCN is shown in Figure 5c,d. The H atoms on NH3 combine to form NH structures, which
then detach in the form of H2. Alternatively, the surrounding H atoms are progressively
attracted and adsorbed onto the carbon atoms of the pyrolysis’ small molecules, resulting
in the detachment of HCN.
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2.4. Mechanistic Analysis of the Actual Protein’s Generation of NH3

Figure 6 details the reaction mechanism for the generation and transformation of NH3
during the pyrolysis process of macromolecular proteins at a temperature of 2000 K. Within
proteins, nitrogen predominantly exists in three forms: NH3-N, NH2-N, and NH-N. The
presence of hydrogen radicals significantly facilitates the conversion of these three nitrogen
forms into NH3. The pathways for NH3 generation can be divided into three categories:
direct shedding (Pathway 1⃝); NH2-N attracts a hydrogen atom from small molecular
fragments resulting from protein decomposition, or NH2-N loses a hydrogen atom to small
molecular fragments, forming NH-N, which then combines with H2 (Pathway 2⃝); and
NH-N combines with hydrogen atoms from small molecular fragments twice (Pathway
3⃝). However, in the later stages of the pyrolysis reaction, the amount of NH3 produced

decreases over time. Through our reaction network analysis, it was found that this phe-
nomenon is primarily due to the conversion of NH3 into N2 and HCN. Specifically, small
molecular fragments from protein decomposition attract hydrogen atoms from NH3, or
two hydrogen atoms from NH3 are directly shed to form H2, thereby converting NH3 into
NHi radicals. Subsequently, NHi radicals combine with nitrogen atoms from nitrogen-
containing compounds, resulting in the formation of N2 (Pathway 4⃝), or they combine
with carbon atoms from small molecular fragments to form HCN (Pathway 5⃝).
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of NH3.

3. Materials and Methods

In this study, proteins served as models for the pyrolysis of tobacco biomass sourced
from Huamei Bio [42]. The preliminary preparation proceeded as follows: Initially, the orig-
inal model consisted of 20 basic amino acids including 40 glycines, 43 alanines, 37 valines,
45 leucines, 28 isoleucines, 14 phenylalanines, 19 prolines, 7 tryptophans, 22 serines,
13 tyrosines, 10 cysteines, 16 methionines, 17 asparagines, 15 glutamines, 36 lysines,
30 aspartic acids, 32 glutamic acids, 35 arginines, 16 histidines, and 10 histamines, to-
taling 485 amino acids. The proportions of these amino acids to the total number of amino
acids in the protein are presented in Table 1. Since hydrogen atoms were absent from the
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original model, we utilized the quantum chemical visualization software Gaussian View
5.0 to automatically add hydrogen to the selected model, ensuring the acquisition of a com-
plete protein model. After successfully obtaining the complete model, in order to further
investigate the pyrolysis simulation, we employed the ReaxFF-HE2 force field in the AMS
software package [43–45] to carry out a precise and meticulous simulation analysis [46].
The potential energy function of the ReaxFF, given by (Equation (1)), encompassed terms
for the total system energy, bond energy, penalty energy, valence angle energy, torsional
angle energy, van der Waals energy, Coulomb energy, and bond-stretch energy. For more
detailed information on ReaxFF, please refer to the literature [47].

ESystem = Ebond + Eover + Eangle + Etors + EvdWaals + ECoulomb + ESpecific (1)

Table 1. Content of amino acids in the protein.

Amino Acids Ratio%

Glycine 8.25
Alanine 8.87
Valine 7.63

Leucine 9.28
Isoleucine 5.77

Phenylalanine 2.89
Proline 3.92

Tryptophan 1.44
Serine 4.54

Tyrosine 2.68
Cysteine 2.06

Methionine 3.30
Asparagine 3.51
Glutamine 3.09
Threonine 7.42

Aspartic acid 6.19
Glutamic acid 6.60

Lysine 7.22
Arginine 3.30
Histidine 2.06

∑ 100

The overall simulation process was as follows: Firstly, we imported the complete
model file of the protein into the AMS software and constructed two separate systems.
System 1 represented the protein model with a specific molecular formula, while System 2
consisted of 485 basic amino acids of 20 types (building blocks). Both systems were placed
in a cubic box with a side length of 65Å, and their densities were set to 0.32 g/cm³ and
0.37 g/cm³, respectively. Subsequently, a relaxation process of 200 ps was performed at a
temperature of 400 K to obtain an equilibrated initial structure. The energy distribution
during this process is shown in Figure 7. After relaxation, using the NVT ensemble,
high-temperature pyrolysis simulations were conducted on the final stable structures
obtained after relaxation, at various target temperatures (1000 K, 1500 K, 2000 K, 2500 K).
To precisely control the simulation temperature and delve deeper into its influence on
the distribution of pyrolysis products, we selected a damping constant of 0.1 ps and the
Berendsen thermostat. Regarding the setting of temperature, some literature [23] has
adopted a programmed temperature increase method, which involves gradually heating
the system from an equilibrium temperature to the desired simulation temperature at
a specific heating rate. On the other hand, other literature [33] has chosen a constant
temperature setting, which means setting the temperature directly to the target temperature
without going through a heating process. In this study, we also adopted this method of
isothermal pyrolysis. To accelerate the reaction kinetics, the simulation temperatures were
set higher than the experimental temperatures to simulate sufficient reaction events within
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a shorter time frame [48]. During the high-temperature simulations, the time step was set
to 0.25 fs, and the total simulation time was 1000 ps. This setup aided us in capturing the
microkinetics of the pyrolysis reactions, providing a reliable simulation basis for a thorough
analysis of system behavior. Finally, we utilized the WF module in the AMS software
along with the ChemTraYzer 2.0 tool to analyze the reaction networks during the pyrolysis
process of the protein and its constituent amino acids. This enabled a detailed investigation
of the nitrogen transformation processes and NH3 production mechanisms in the pyrolysis
of both systems.
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4. Conclusions

In this study, a protein was chosen as a model for a molecular dynamics simulation.
All the amino acid structures within the protein were utilized as comparative models
to scrutinize the nitrogen conversion process during protein thermal decomposition in
these two states. This study aimed to explore the impact of different interaction forms of
amino acid structures within proteins on nitrogen transformation, ultimately revealing the
mechanism of NH3 production during protein thermal decomposition. The conclusions are
as follows:

1. Protein thermal decomposition occurs in two stages. The first stage involves the ther-
mal rupture of unstable weak bonds in the protein’s large molecular structure, causing
the gradual transfer of carbon and nitrogen to gas and tar fragments. The second stage
is characterized by the thermal decomposition of tar, resulting in a notable migration
of nitrogen from tar to the gas phase during the decomposition reaction.

2. In our study, the actual protein and its assembled amino acids exhibited significant
temperature-dependent variations in their maximum conversion rate during thermal
decomposition. Specifically, at 1000 K, 1500 K, 2000 K, and 2500 K, the maximum
conversion rates of the actual protein were 5%, 16%, 22%, and 21%, respectively.
In contrast, the maximum conversion rate from the thermal decomposition of the
assembled amino acids was relatively high, measuring 3%, 29%, 44%, and 47% at
the corresponding temperatures. This phenomenon can be explained by the fact that
the actual protein must overcome an energy barrier to break weak bonds, thereby
exposing nitrogen and forming NH3. This process is more challenging than the direct
deamination of the assembled amino acids to produce NH3.

3. Under conditions of 2000 K, the formation of NH3 was primarily influenced by
hydrogen radicals, causing the conversion of the nitrogen in the protein (NH3-N,
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NH2-N, NH-N) into NH3. Furthermore, the decrease in the quantity of NH3 in the
later stages of thermal decomposition was attributed to its reconversion as a reactant,
predominantly forming HCN and N2.

During the exploration process, the yield of NH3 generated from the thermal decom-
position of the actual proteins was relatively low. To enhance the maximum conversion rate,
we plan to increase the selectivity of nitrogen conversion to NH3 in proteins by introducing
a hydrogen atmosphere or catalysts in the future. The aim of this study is to provide
a theoretical reference for the generation of NH3 during the thermal decomposition of
proteins in biomass.
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