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Table S1. Modulation of 5-LOX activity and comparison with COX-2 activity by (poly)phenols in cellular models. 1 

Cellular model Metabolite and assay 
conditions 

Biological activity on 5-LOX and(or) 
COX-2 and molecular associated 

events  

Effect on 5-LOX 
enzyme 

Effect on COX-2 
enzyme 

References 

Guinea pig isolated leukocytes NDGA (0.5 – 30 μM) ↓LTB4, 5-HETE and di-hydroxy acids 
formation (IC50 ~ 2 μM) in A23187-
stimulated cells in a dose-dependent 
manner 

Not evaluated Not evaluated [1] 

Isolated peritoneal mouse 
macrophages (prelabelled 
with [14C]-arachidonic acid)  
and rat neutrophils. Cell-fee 
assays with soybean  
15-LOX were also carried out. 
 

Quercetin and NDGA 
(0.01-100 μM). 

Effects in A23187-stimulated rat neu-
trophils: ↓LTB4 and 5-HETE for-
mation in cells treated with quercetin 
(IC50 = 6.2 μM) and NDGA (IC50 = 1 
μM); ↓PGE2 and TxB2 synthesis in 
cells treated with quercetin (IC50 = 6.2 
and 18.0 μM, respectively) and 
NDGA (IC50 = 42.0 and 17.6 μM, re-
spectively). 
Effects in zymosan-stimulated mouse 
macrophages: ↓PGE2 and 6-Keto-
PGF1α formation in cells treated with 
quercetin (IC50 = 8.2 and 8.5 μM, 
respectively) and NDGA (IC50 = 2.4 
and 4.2 μM, respectively). 
Quercetin and NDGA inhibited soy-
bean 15-LOX activity (IC50 = 3.2 and 
3.6 μM, respectively) in a cell-free as-
say. 

 Not evaluated. Not evaluated. [2] 

Mouse mast tumor cells and 
rat-isolated platelets. Enzy-
matic assays with 5-LOX and 

Caffeic acid and its 
phenethyl ester 
(CAPE) isolated from 

↓LTC4 and LTD4 synthesis (only 
caffeic acid at 10 and 100 μM); ↓AA-

↓5-LOX activity 
by caffeic acid 
(IC50 = 3.7) and 

↑COX-2 activity 
by caffeic acid 

[3] 
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COX-2 obtained from cloned 
mastocytoma P-815,2-E-6 cells 
were also carried out. 

Artemisia rubripes 
Nakai (0.1-100 μM).  

induced platelet aggregation; ↓12-
HETE formation (IC50 = 30 μM); no 
effect on HHT and TxB2 formation at 
<10 μM, but at higher doses (100 μM) 
exerted an inhibitory effect (40% HHT 
and 80% 12-HETE); no effect on ADP-
induced platelet aggregation. 

CAPE (IC50 = 
0.48 μM) 
 

(64%) and CAPE 
(188%) 
 

Human and porcine leuko-
cytes and platelets. COX activ-
ity was tested in microsomes 
from ram vesicular glands.  

6,7,4'-trihydroxyisofla-
van (1 μM – 1 mM). 

↓5-HETE, 12-HETE, and LTB4 
formation, while sparing the 
production of HHT (15 μM) in 
activated (human and porcine) 
leukocytes; ↓12-HETE formation 
without inhibiting the synthesis of 
TxB2 and HHT in platelets (at 100 
μM); IC50 values for 12-LOX (human 
platelets) and 5-LOX (leukocytes) 
were 22.0 and 1.6 μM, respectively. 

Not evaluated. ↓HHT, PGF2α, 
PGD2, and PGE2 
synthesis in ram 
seminal vesicle 
microsomes 
(IC50 = 200.0 
μM). Total inhi-
bition at 1 mM. 

[4] 

Human isolated platelets and 
leukocytes 

NDGA ↓5-HETE (IC50 = 0.2 – 0.3 μM), LTB4 

(IC50 = 0.5 μM), LTC4 (IC50 = 0.2 – 0.5 
μM),  
Δ6-trans-LTB4 (IC50 = 0.2 μM), ω-OH-
LTB4 (IC50 = 2 μM), 12-HETE (IC50 = 5 
– 30 μM), 5S,12S-diHETE (IC50 = 0.2 
μM), 15-HETE (IC50 = 30 μM) and 
HHT (IC50 = 5 – 100 μM) 

Not evaluated Not evaluated [5] 

Human isolated platelets and 
leukocytes 

NDGA (0.1 – 100 μM) ↓5-HETE, LTB4, LTC4 and 12-HETE  Not evaluated Not evaluated [6] 

Human-isolated PMNL from 
healthy donors 

Caffeic acid (1 μM) and 
esculetin (10 μM) 

↓5-HPETE and 5-HETE release in 
Streptolysin 0-stimulated PMNLs. 

Not evaluated. Not evaluated. [7] 
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Leishmania donovani-infected 
macrophages 

NDGA (3 μM) ↓5-HETE and 12- or 15-HETE in in-
fected cells 

Not evaluated Not evaluated [8] 

Human isolated leukocytes NDGA ↓5-HETE (IC50 = 0.6 μM) and weak ef-
fect on PGE2 formation (IC50 = 119 μM) 
in A23187-stimulated cells 

Not evaluated Not evaluated [9] 

Human colonic mucosa NDGA (10 μg/mL) ↓sulfidopeptide-LTs in A23187-stim-
ulated human colonic mucosa; no sig-
nificant effect on PGE2 formation 

Not evaluated Not evaluated [10] 

Human isolated neutrophils NDGA (10 μM) ↓LTB4 and 5-HETE formation in 
A23187-stimulated neutrophils; no ef-
fect on HHT synthesis 

Not evaluated Not evaluated [11] 

Human isolated leukocytes. Gingerdione, [6]-gin-
gerol, and curcumin. 

↓5-HETE release by [6]-gingerol (14% 
at 20 μM) as well as by shogaol, cap-
saicin, gingerdione and curcumin 
(IC50 = 23, 100, 15.0 and 8.0 μM, re-
spectively); ↓PGE2 release (IC50 = 67, 
73, 18.0, 68.0 and 52.0 μM for shogaol, 
capsaicin, gingerdione, [6]-gingerol, 
and curcumin, respectively) in 
A23187-activated leukocytes.  

Not evaluated. 
 

Not evaluated. [12] 

Human isolated PMNL 3,5-, 4,5-, and 3,4-di-O-
caffeoylquinic acid, 
caffeoylmalic acid, 
caffeoyltartaric acid, 
rosmarinic acid, caffeic 
acid, and chlorogenic 
acid (1 μM – 1 mM). 

↓LTB4 and 5-HETE formation in 
A23187-stimulated PMNLs (IC50 = 
55.6 – 92.5 μM and 214 – 918 μM for 
all compounds, respectively); ↓15-
HETE formation only in the presence 
of rosmarinic acid (IC50 = 455 μM); 
↑PGE2 in the presence of 3,4-di-O-
caffeoylquinic acid, caffeic acid, and 
caffeoylmalic acid; ↓HHT in the pres-
ence of the compounds tested (IC50 = 
80.0 – 90.2 μM); chlorogenic acid was 
inactive. 

Not evaluated. 
 

Not evaluated. [13] 
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Elicited rat peritoneal leuko-
cytes. 

Hypolaetin-8-gluco-
side, hypolaetin, and 
14 other flavonoids (1 
μM – 1 mM). 
 

↓LTB4 and TxB2 production in 
A23187-stimulated leukocytes by var-
ious flavonoids. Glycosides were less 
active than their aglycones (i.e., hypo-
laetin-8-glucoside/hypolaetin; gossy-
pin/gossypetin; rutin/quercetin; nar-
ingin/naringenin), with the exception 
of naringin/naringenin. 
The flavonoids that stimulated DNA 
degradation also showed 5-LOX in-
hibitory activity, whereas those that 
lacked capacity to degrade DNA were 
related to COX inhibition. 

Not evaluated. Not evaluated. [14,15] 

Rabbit peritoneal PMNLs Isoliquiritigenin (10 
and 30 μM). 

↓[14C]5-HETE production in a concen-
tration-dependent manner in A23187-
stimulated PMNLs; no inhibitory ef-
fect on PLA2 activity obtained from 
rabbit platelet sonicates; ↓[14C]12-
HETE formation in rabbit platelet 
sonicates. 

Not evaluated. Not evaluated. [16] 

Porcine leukocytes Isoflavonoids such as 
isoflavans and isofla-
vones (0.5 – 200 μM) 

↓5-LOX products (5-HETE, 5-HPETE, 
LTB4 and stereoisomers of LTB4); 
structure-activity investigation 
showed more effective inhibition in 
the presence of isoflavans 

Not evaluated Not evaluated [17] 

Rat peritoneal neutrophils and 
human platelets 

Curcumin (1–50 μM). ↓LTB4 synthesis in stimulated (cal-
cium/A23187) rat peritoneal neutro-
phils (IC50 = 30 μM; NDGA = 0.5 μM). 
↓COX-1 (IC50 = 2 μM) and 12-LOX ac-
tivity (30 μM) in platelets. 

Not evaluated. Not evaluated. [18] 

Rat resident peritoneal macro-
phages. 

Baicalein (1, 10 and 100 
μM). 

↓LTC4 synthesis in A23187-stimulated 
macrophages (IC50 = 9.5 μM) 

Not evaluated. Not evaluated. [19] 
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Murine resident peritoneal 
macrophages. 

Genistein (1–100 μM). ↓PGE2 production (IC50 = 20.0 μM) in 
response to zymosan, calcium iono-
phore A23187, and phorbol myristate 
acetate (PMA) stimulation; ↓LTC4 
production in response to zymosan 
and calcium ionophore A23187 (IC50 = 
15.0 and 10.0 μM, respectively). 
These effects were not exerted via in-
hibition of PLA2, COX or LOX en-
zymes. 

Not evaluated. 
 

Not evaluated. [20] 

Rat peritoneal leukocytes Tanetin, fisetin, 3-hy-
droxy-flavone (1 – 100 
μM) 

↓LTB4, TxB2 and PGE2 in A23187-stim-
ulated cells in the presence of tanetin 
(IC50 = 11 and 6-11 μM for 5-LOX and 
COX-2, respectively), fisetin (IC50 = 11 
and 50 μM for 5-LOX and COX-2, re-
spectively) and 3-hydroxyflavone 
(IC50 = 80 and 6-8 μM for 5-LOX and 
COX-2, respectively) 

Not evaluated Not evaluated [21] 

Human isolated PMNL RSV, piceid, 2,3,4’,5-
tetrahydroxystilbene-
2-O-D-glucoside,  
α-(3,4-dihydroxy-phe-
nyl)-cinnamic acid, α-
(3,4-dihydro-xy-
phenyl)-3-hy-
droxycinnamic acid, α-
(3,4-dihydro-xy-
phenyl)-4-hy-
droxycinnamic acid, α-
(3,4-dihydro-xy-
phenyl)-3,4-dihy-
droxycinnamic acid, 
3,3’,4-trihydroxystil-
bene 

↓5-HETE, 5,12-diHETE, 15-HETE, 
HHT and PGE2 in A23187-stimulated 
cells in the presence of RSV (IC50 = 8.9, 
6.7, 275, 4.4, 9.6 μM, respectively) and 
3,3’,4-trihydroxystilbene (IC50 = 5.9, 
0.63, 6.77, 19, 49 μM, respectively). 
Piceid only affected 5-HETE (IC50 = 
267 μM) and 5,12-diHETE (IC50 = 201 
μM) biosynthesis; no effects observed 
in the presence of the rest of com-
pounds 
↓LTC4 in A23187-stimulated cells in 
the presence of RSV (IC50 = 1.37 μM) 
and 3,3’,4-trihydroxystilbene (IC50 = 
0.88 μM); ↓β-glucuronidase release 

Not evaluated Not evaluated [22] 
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and ↑cAMP concentration in the pres-
ence of RSV and 3,3’,4-trihydroxystil-
bene 

RBL-1 and RBL-2H3 cells Honokiol ↓LTB4 and LTC4 formation in A23187-
stimulated RBL-1 and IgE-treated 
RBL-2H3 cells; no effect on PLA2, 
LTC4 synthase and LTA4 hydrolase 
activity 

↓LTB4 and LTC4 

in cell-free as-
says 

Not evaluated [23] 

Isolated rat Kupffer cells and 
human phagocytic liver cells. 
 

Silibinin (10, 25, 100 
and 200 μM). 

↓LTB4 formation (IC50 = 15 μM) and no 
effect on PGE2 formation in A23187-
stimulated Kupffer cells. 
↓Dose-dependent of O2- and NO pro-
duction (IC50 = 80 μM). No effect on 
TNF-α formation. 
↓LTB4 formation in freshly isolated 
human phagocytic liver cells (10 and 
25 μM). 

Not evaluated. Not evaluated. [24] 

Human platelets, white blood 
and endothelial cells. 
 

Silibinin (1–25 μM to 
determine LOX prod-
ucts and 1–100 μM to 
determine COX prod-
ucts).  
 

↓LTB4 formation (IC50 = 15 μM) and 
Cys-LT formation (IC50 = 14.5 μM) in 
A23187-stimulated human granulo-
cytes, but no effect on PGE2 for-
mation. 
↓PGE2 formation in LPS-activated hu-
man monocytes (IC50 = 45 μM). 
↓TxB2 and 6-keto-PGF1α formation 
(IC50 = 69 and 52 μM, respectively), in 
human platelets and A23187-stimu-
lated endothelial cells, respectively. 
↓Hypochlorite production (IC50 = 7 
μM), but not of O2- production in 
PMA-activated human granulocytes. 

Not evaluated. Not evaluated. [25] 
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Rat platelets and rat PMNL 2-(3,4-Dihydroxy-
phenyl) ethanol (DPE), 
2-(4-Hydroxyphenyl) 
ethanol, 2-(3,4-dihy-
droxyphenyl) acetic 
acid, caffeic acid, pro-
tocatechuic acid, p-cou-
maric acid, o-coumaric 
acid, vanillic acid, and 
syringic acid (0.1 μM – 
1 mM) 

↓LTB4 production in A23187-stimu-
lated PMNLs and 12-HETE produc-
tion in intact platelets (IC50 of DPE = 
26.0 and 50.0 μM, respectively). 
DPE showed the highest inhibitory 
(compared with the rest of the com-
pounds) activity against 5- and 12-
LOX, especially in intact cells. 

↓5-HETE syn-
thesis (IC50 of 
DPE = 13.0) (5-
LOX isolated 
from PMNLs) 

↓12-HETE syn-
thesis (IC50 of 
DPE = 4.2 μM), 
and no effect on 
TxB2 synthesis 
(COX-1 and 12-
LOX isolated 
from platelets) 

[26] 

PMNL from healthy donors. Hydroxytyrosol (0.1 
μM – 1 mM). 

↓LTB4 production (IC50 = 1.2 μM) and 
its ω-oxidized metabolites (20-hy-
droxy and 20-carboxy-LTB4) in 
A23187-stimulated PMNLs 

Not evaluated. Not evaluated. [27] 

RBL-1 cells YPE-01 (derived from 
yakuchinones), yaku-
chinone B, dimethyl-
yakuchinone B; NDGA 
was used a control of 5-
LOX inhibition 

↓LTB4 and LTC4 biosynthesis in 
A23187-treated RBL-1 cells in the 
presence of YPE-01 (IC50 = 0.035 and 
0.046 μM, respectively), yakuchinone 
B (IC50 = 0.49 and 0.61 μM, respec-
tively), dimethyl-yakuchinone B (IC50 
= 1.14 and 2.11 μM, respectively) and 
NDGA (IC50 = 0.27 and 0.5 μM, respec-
tively) 

↓5-LOX activity 
by YPE-01 (IC50 = 
0.28 μM), yaku-
chinone B (IC50 = 
0.37 μM), dime-
thyl-yaku-
chinone B (IC50 = 
0.22 μM) and 
NDGA (IC50 = 
0.49 μM) in cell-
free assay 

↓COX-1 and 
COX-2 activity 
by yakuchinone 
B and dimethyl-
yakuchinone B 
in cell-free as-
says 

[28] 

Human PMNL from healthy 
donors. 

trans-RSV (0.44 – 440 
μM). 

↓LTB4, 6-trans- and 12-trans-epi-LTB4 
production in A23187-stimulated 
PMNLs (IC50 = 48.2±7.0 μM); for-
mation of 5-LOX-derived metabolites 
was virtually abolished at 220 μM. 

Not evaluated. Not evaluated. [29] 

Bovine PMNL Hyperoside, rutoside, 
and chlorogenic acid 
(25 – 100 μM). 

No effect on LTB4 or 12(S)-HETE bio-
synthesis at concentrations ≤100 μM 
in A23187-stimulated PMNLs. 

Not evaluated. Not evaluated. [30] 
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Human isolated PMNLs and 
rat basophilic leukemia cells 
RBL-1 

Myr-3-glur and NDGA 
 

↓LTB4 formation in A23187-stimu-
lated PMNLs treated with Myr-3-glur 
for 2 h (IC50 = 2.2 μM) or with NDGA 
for 5 min (IC50 = 0.5 μM); no effect of 
Myr-3-glur in cells incubated for 5 
min. 
Myr-3-glur inhibited AA-induced 
platelet aggregation and ↓PGE2, 
PGD2, and PGI2 biosynthesis ex vivo 
(to a similar extent as indomethacin) 
↓COX-1 activity obtained from plate-
lets (IC50 = 0.5 μM) and ram seminal 
vesicle (IC50 = 10 μM) 

↓5-LOX activity 
in a crude en-
zyme prepara-
tion from RBL-1 
(IC50 = 0.1 μM for 
Myr-3-glur and 
IC50 = 0.26 μM 
for NDGA) 
 

↓COX-2 activity 
(IC50 = 0.26 μM) 
obtained from 
sheep placenta 

[31] 

Rat peritoneal leukocytes. Gnaphalin, quercetin 
and galangin (20 – 160 
μM). 

Gnaphalin effects: ↓LTB4 production 
in A23187-stimulated rat peritoneal 
leukocytes (IC50 = 81.8±12.9 μM; ↓TxB2 
production in rat peritoneal leuko-
cytes stimulated with A23187 (IC50 = 
39.9±3.9 μM), chemotactic peptide 
fMLP (IC50 = 12.0 μM) and AA (IC50 = 
57.7±5.1 μM); no effect on the secre-
tion of lysozyme, myeloperoxidase 
and  
β-glucuronidase pro-inflammatory 
enzymes from neutrophil secretory 
granules; no scavenging effect against 
hydrogen peroxide or hypochlorous 
acid. 
Quercetin effects: inhibition of LTB4 
(100%) and TxB2 (55%) at 160 μM.  
Galangin effects: inhibition of LTB4 

(11%) and TxB2 (84%) at 40 μM. 

Not evaluated. Not evaluated. [32] 

Rat peritoneal leukocytes. Oleuropein, tyrosol, 
hydroxytyrosol, and 

↓LTB4 production in A23187-stimu-
lated rat peritoneal leukocytes treated 

Not evaluated. Not evaluated. [33] 
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caffeic acid (40, 100 and 
200 μM). 
 

with hydroxytyrosol, oleuropein, caf-
feic acid, and tyrosol (IC50 = 15, 80, 
200, and 500 μM, respectively); ↓ROS 
production in PMA-stimulated rat 
leukocytes; no substantial inhibition 
on TxB2 exerted by the compounds 
tested 

Human isolated PMNLs 3-methylcatechol, 4-
methylcatechol, 4-ni-
trocatechol, guaiacol, 
pyrogallol, propylgal-
late, 1,2,4-trihy-
droxybenzene, 1,3,5-
trihydroxybenzene (1.8 
nM – 1800 μM) 

↓LTB4 (IC50 = 5 – 900 μM) and PGE2 
(IC50 = 45 – 900 μM) synthesis in 
A23187-stimulated cells (at concentra-
tions higher than 18 μM); 1,3,5-trihy-
droxybenzene exerted no inhibition 
on LTB4 formation (IC50 >> 1800 μM) 

Not evaluated Not evaluated [34] 

Human erythroleukemia K562 
cells. 

RSV (30 μM). ↓LTB4 and PGE2 synthesis in H2O2-
treated K562 cells; ↓purified 15-LOX 
(IC50 = 25.0±3.0 μM) activity. 

↓purified 
5-LOX (IC50 = 
2.5±0.3 μM) ac-
tivity. 

↓PGH synthase 
(IC50 = 20.0±2.0 
μM) activity 

[35] 

Rat isolated peritoneal leuko-
cytes 

6-hydroxy-kaempferol 
3,6-dimethyl ether; 6-
hydroxy-kaempferol 
3,6,4’-trimethyl ether; 
quercetagenin 3,6,3’-
trimethyl ether; 6-hy-
droxy-luteolin 6-me-
thyl ether; 6-hydroxy-
luteolin 6,3’-dimethyl 
ether  

↓TxB2 (IC50 = 22 – 182 μM) and LTB4 
(IC50 = 58 – 182 μM) biosynthesis in 
A23187-stimulated cells 

Not evaluated Not evaluated [36] 

RBL-2H3 Magnolol (0.1 – 20 μM) ↓LTB4 and LTC4 formation (at 10 and 
20 μM); no effect on IgE-induced β-
hexosaminidase release; ↓AA release 
at 10 μM; ↓[Ca+2] release in IgE-
treated cells 

↓LTB4 and LTC4 
(using AA or 
LTA4 as sub-
strates) for-
mation at 10 and 

Not evaluated [37] 



Int. J. Mol. Sci. 2021, 22, 7937 10 of 33 
 

 

25 μM in cell-
free assays 

Monocytic leukemia cells 
MM6, human platelets and 
PMNLs isolated from healthy 
donors. 

Hyperforin (0.1 – 100 
μM). 

↓LTB4 and 15-HETE formation in 
A23187-stimulated PMNLs (IC50 = 1.0-
2.0 and >10 μM, respectively); ↓HHT 
production in thrombin- or A23187- 
and exogenous AA-stimulated hu-
man platelets (IC50 = 0.3, 3.0 and 3.0 
μM, respectively) as well as in platelet 
lysates (IC50 = 3 μM). 
Hyperforin could not interfere with 
COX-2 product formation (6-keto-
PGF1α) in MM6 cells; and did not sig-
nificantly inhibit 12-LOX or 15-LOX 
in intact platelets or leukocytes, re-
spectively.  

↓purified 
5-LOX (IC50 = 90 
nM) activity act-
ing via uncom-
petitive mecha-
nisms. 

Not evaluated. [38] 

Rat peritoneal leukocytes Erycristagallin (≤100 
μM) 

↓LTB4 formation in A23187-stimu-
lated leukocytes (IC50 = 23.4 μM) with-
out cytotoxic effects; no effect on 
COX-1 from platelets at 100 μM  

Not evaluated. Not evaluated. [39] 

RAW264.7 macrophages and 
HT-29 human colon cancer 
cells. 
 

Curcumin and THC 
(10, 20 and 50 μM). 

↓LTB4 and PGE2 formation as well as 
AA release in LPS-stimulated 
RAW264.7 cells at 10 μM; ↓AA release 
in A23187-stimulated HT-29 cells at 
10 μM; ↓cPLA2 activity from microso-
mal fraction of HT-29 cells; ↓cPLA2 
level and cPLA2 phosphorylation in 
LPS-treated RAW264.7 cells at 50 μM; 
↓PGF2α, PGE2, PGD2, HHT, 15-HETE 
and 11-HETE in LPS-stimulated 
RAW264.7 cell lysates treated with 
0THC at 50 μM; at the same concen-
tration curcumin reduced the biosyn-
thesis of PGD2, 15-HETE and 11-

↓Human recom-
binant  
5-LOX expres-
sion in LPS-
treated 
RAW264.7 cells 
(IC50 = 
0.7 and 3 μM for 
curcumin and 
THC, respec-
tively). 
 

↓COX-2 expres-
sion in LPS-
treated 
RAW264.7 cells 
(curcumin at 20 
μM), but in-
crease  
COX-2 levels 
without LPS 
stimulation. 
 

[40] 
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HETE; higher inhibitory effect on the 
peroxidase activity of COX-1 than 
that of COX-2 

Rat peritoneal leukocytes. Sigmoidin A and sig-
moidin B (5 – 100 μM). 

↓LTB4 in calcium/A23187- stimulated 
rat peritoneal leukocytes treated with 
sigmoidin A (IC50 = 31 μM), sigmoidin 
B (44% inhibition at the same concen-
tration); apigenin used as reference 
compound also showed inhibitory ac-
tivity (IC50 = 14 μM). 
No inhibition of COX-1 activity; no re-
duction of 12-HHT synthesis at 100 
μM of both compounds. 

Not evaluated. Not evaluated. [41] 

PMNLs from healthy donors. Curcumin, eugenol, 
cinnamaldehyde and 
quercetin (1 – 150 μM). 

↓5-HETE production in PMNLs (IC50 
= 30.0, 26.0, 35.0 and 25.0 μM for cur-
cumin, eugenol, cinnamaldehyde and 
quercetin, respectively); NDGA (IC50 
= 28.0 μM). 

Not evaluated. Not evaluated. [42] 

Neutrophils isolated from rats Magnolol (0.1 – 10 μM) ↓COX products formation, but low ef-
fect on 5-LOX products biosynthesis 
at 3 μM; Inhibition of COX and 5-LOX 
products production at 10 μM;  
↓TxB2 formation (IC50 = 0.5 μM); ↑LTB4 
biosynthesis at concentrations <3 μM, 
but inhibition at higher concentra-
tions; Magnolol alone modified 5-
LOX distribution in the cells, ↑AA re-
lease (PLA2 activity), ↑cPLA2 translo-
cation and phosphorylation (effects 
dose-dependent) and had no effect on 
MAPK phosphorylation. These effects 
were absent in the presence of 
A23187. 

↓COX-1 and 
COX-2 activity 
(IC50 = 26.0 ± 1.9 
and 31.2 ± 2.8 
μM, respec-
tively) in cell-
free assays 

Weak inhibition 
of 5-LOX activ-
ity (IC50 ~ 90 μM) 
in cell-free assay 

[43] 
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BMMC cells Ginkgetin (1 – 50 μM). 
 

↓LTC4 in BMMC activated with KL 
(100 ng/ml) (IC50 = 0.33 μM);  
↓PGD2 in BMMC activated with KL 
(100 ng/ml), IL-10 (100 U/ml) and LPS 
(100 ng/ml) (IC50 = 0.75 μM); ↓degran-
ulation reaction in a dose dependent 
manner (IC50 = 6.52 μM)  

Not evaluated. ↓COX-2 protein 
level. 

[44] 

Rat peritoneal neutrophils and 
RAW 264.7 macrophages 

5-O-demethylnobiletin 
(0.01 – 10 μM) 

↓LTB4 formation in rat neutrophils 
(IC50 = 0.35 μM) 

↓5-LOX activity 
(cell lysate) by 
57% at 0.25 μM 

↓COX-2 expres-
sion RAW cells 
(5-20% inhibi-
tion)   

[45] 

Human monocyte line U937. Procyanidin B2 (50 and 
100 μM).  

↓LOX-1 protein and mRNA levels in 
ox-LDL treated macrophages. 

↓5-LOX protein 
and mRNA lev-
els in ox-LDL 
treated macro-
phages. 

Not evaluated. [46] 

BMMC Five coumarins (pso-
ralen, xanthotoxin, sco-
poletin, umbelliferone, 
and (+)-marmesin) and 
three flavonoids (apig-
enin, luteolin and 
cynaroside) (12.5 and 
25.0 μg/mL). 

↓LTC4 production in BMMC activated 
with KL (100 ng/ml) at 25.0 μg/mL; 
↓PGD2 formation in BMMC activated 
with KL (100 ng/ml), IL-10 (100 U/ml) 
and LPS (100 ng/ml) at 12.5 μg/mL.  
All compounds showed COX-2/5-
LOX dual inhibitory activity. 

Not evaluated. Not evaluated. [47] 

BMMC cells Methyl gallate (5 – 160 
μM). 

↓LTC4 (IC50 = 5.3 μM) in BMMC acti-
vated with KL (100 ng/ml).  
↓PGD2 (IC50 = 17.0 μM) in BMMC acti-
vated with KL (100 ng/ml), IL-10 (100 
U/ml) and LPS (100 ng/ml).  
 

Not evaluated. ↓COX-2 activity 
(colorimetric 
COX inhibitor 
screening assay 
kit) (IC50 = 19.0 
μM); no effect on 
COX-2 protein 
levels at ≤80 μM. 

[48] 

BMMC cells Ochnaflavone (1.5 – 50 
μM). 

↓LTC4 (IC50 = 6.5 μM) in BMMC acti-
vated with KL (100 ng/ml).  

Not evaluated. ↓COX-2 protein 
levels. 

[49] 
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↓PGD2 (IC50 = 0.6 μM) in BMMC acti-
vated with KL (100 ng/ml), IL-10 (100 
U/ml) and LPS (100 ng/ml); ↓Degran-
ulation reaction in a dose dependent 
manner (IC50 = 3.0 μM). 

PMNLs from healthy donors. Eugenol (5 – 60 μM). ↓LTC4 and 5-HETE in A23187- and 
AA-stimulated PMNLs (IC50 = 30.0 
and 26.0 μM, respectively). 

Not evaluated. Not evaluated. [50] 

Human peripheral blood eo-
sinophils 

Genistein (1nM – 10 
μM) 

↓LTC4 in A23187-stimulated cells (IC50 
= 80 nM); ↓p38 and MK2 phosphory-
lation 

↓5-LOX translo-
cation 

Not evaluated [51] 

Rat peritoneal leukocytes. Sakuranetin, 7-O-
methylaromadendrin 
and 3-acetyl-7-O-
methylaromadendrin 
(5 – 100 μM). 

↓LTB4 production A23187-stimulated 
rat peritoneal leukocytes treated with 
7-O-methylaromadendrin, sa-
kuranetin, and 3-acetyl-7-O-
methylaromadendrin (IC50 = 62, 9 and 
15 μM, respectively); as a reference 
compound, apigenin also showed in-
hibitory effects (IC50 = 14 μM); ↓PLA2 
activity (only 7-O-methylaromaden-
drin); ↓Elastase release (only sa-
kuranetin at 100 μM); none of the fla-
vanones tested inhibited PGE2 bio-
synthesis in RAW 264.7 mouse macro-
phages. 

↓LTB4 produc-
tion in homoge-
nized rat perito-
neal polymor-
phonuclear leu-
kocytes (only sa-
kuratenin at 20 
μM). 
 

Not evaluated. [52] 

Human gastric epithelial cells 
(AGS) and murine macro-
phage RAW264.7 

NDGA and geraniin 
(10 μM). 

↓5-HETE production in AGS cells; 
↓IL-8 and TNF-α in AGS cells and 
macrophages; attenuation of cPLA2 
induction by NDGA, but not geraniin. 

↓5-LOX protein 
levels. 

No effect on 
COX-2 protein 
levels. 
 

[53] 

BMMC cells Meso-dihydroguaia-
retic acid (0.8 – 25 μM). 

↓LTC4 (IC50 = 1.3 μM) in BMMC acti-
vated with KL (100 ng/ml); ↓PGD2 
(IC50 = 9.8 μM) in BMMC activated 
with KL (100 ng/ml), IL-10 (100 U/ml) 
and LPS (100 ng/ml); ↓Degranulation 

Not evaluated. No effect on 
COX-2 protein 
levels. 

[54] 
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reaction in a dose dependent manner 
(IC50 = 11.4 μM). 

PMNLs from healthy donors. Carnosic acid and car-
nosol (0.03 – 30 μM). 

↓LTB4, 5(S),12(S)-diHETE, and 5-
H(p)ETE in A23187-stimulated 
PMNL treated with carnosol and car-
nosic acid (IC50 = 7.0 and 15-20 μM, re-
spectively); ↓12-HETE and 12-HPETE 
synthesis in A23187-stimulated 
PMNL treated with carnosol (IC50 = 13 
μM), but no effect on cells treated 
with carnosic acid;   
Antagonise intracellular Ca2+ mobili-
sation induced by a chemotactic stim-
ulus, and attenuate formation of ROS 
and the secretion of human leukocyte 
elastase. 

↓5-LOX activity 
(IC50 = 0.1 and 1.0 
μM for carnosic 
acid and carno-
sol, respectively)  
 

Not evaluated. [55] 

PBMC isolated from whole hu-
man blood. 

Quercetin, 3’-O-
methylquercetin (MQ), 
quercetin-3’-O-sulfate 
(QS), quercetin-3-O-
glucuronide (QG) and 
3’-O-methylquercetin-
3-O-glucuronide 
(MQG) (1 – 10 μM). 

↓LTB4 synthesis in A23187-stimulated 
PBMCs treated with quercetin (IC50 = 
2.0 μM) and MQ at 2.0 μM; ↓PGE2 for-
mation in LPS-activated PBMCs 
treated with quercetin and MQ (IC50 = 
2.0 μM); lack of effect for the rest of 
compounds tested 

Not evaluated. Not evaluated. [56] 

Rat adherent macrophages 
from granuloma 

NDGA (10 μM) ↓LTB4 synthesis in stimulated cells ↓5-LOX expres-
sion (mRNA and 
protein) 

Not evaluated [57,58] 

BBMCs isolated from mice Isolated phenolic com-
pounds from Ailanthus 
altissima leaves 

Scopoletin, quercetin and luteolin in-
hibited the biosynthesis of PGD2 (IC50 
= 39.2, 7.3 and 2.5 μM, respectively) 
and LTC4 (IC50 = 59.9, 5.1 and 1.8 μM, 
respectively); no effect of astragalin 
and scopoline at the concentrations 
tested. 

Not evaluated Not evaluated [59] 
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The methanolic extract and solvent 
fractions of Ailanthus altissima inhib-
ited PGD2 (49.0 – 57.4%) and LTC4 
(96.7 – 99.8%) at 50 μg/mL 

Human neutrophils Hyperforin (0.3 – 30 
μM) 

↓5-LOX product biosynthesis (IC50 = 
1.9 μM) in intact neutrophils via inhi-
bition of 5-LOX translocation to the 
nuclear membrane. This effect was re-
duced in the presence of OAG (IC50 ≥ 
10 μM) 

↓5-LOX activity 
in cell homoge-
nates (IC50 ~ 30 
μM), in partially 
purified (IC50 ~ 7 
μM) and puri-
fied enzyme 
(IC50 = 1.6 μM). 
This inhibition 
occurs via inter-
action with the 
Trp residues 
within the 5-
LOX C2-like do-
main and block-
ing the binding 
of 5-LOX with 
CLP. Besides, 
this inhibitory 
effect was inde-
pendent of the 
redox tone and 
blocked in the 
presence of 
OAG (IC50 ≥ 10 
μM) and PC.   

Not evaluated [60] 

RBL-1 cells and RAW 264.7 
cells. 

(-)-Nyasol (2 – 100 μM). ↓Cys-LT production in A23187-
treated RBL-1 cells at 2 – 10 μM. As a 
reference compound, NDGA also ex-
erted inhibitory effects at 5 μM; 

Not evaluated. No effect on 
COX-2 protein 
levels. 
 

[61] 
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↓PGD2 and NO production in LPS-
treated RAW 264.7 cells at 1 – 100 μM.  

RBL-1 and RAW 264.7 cells Schisandra fructus 
methanolic extract and 
the individual com-
pounds such as vanillic 
acid; NDGA as control 
of 5-LOX inhibition 

↓5-LOX products formation (Cys-
LTs) y RBL-1 cells treated with the ex-
tract (IC50 = 71.1 μg/mL) and NDGA 
(IC50 = 0.2 – 1  μM); vanillic acid had 
no effect; the extract and vanillic acid 
exerted less than 50% inhibition 
against PGE2 and NO formation at the 
concentrations tested. 

Not evaluated Not evaluated [62] 

Rat endothelial cells (YPEN-1). Morin (1 and 5 μM). ↓ROS generation; ↓NF-κB activation 
(via reduced DNA binding activity, 
IκBα phosphorylation and p65/p50 
nuclear translocation); modulation of 
ERK and p38 signal transduction; 
↓iNOS protein levels in t-BHP-in-
duced YPEN-1 cells. 

↓5-LOX protein 
levels in t-BHP-
induced YPEN-1 
cells. 

↓COX-2 protein 
levels in t-BHP-
induced YPEN-1 
cells. 

[63] 

Murine macrophage 
RAW264.7 cells.  
 

Curcumin (0.63 – 80 
μM). 

↓PGE2 formation in LPS-stimulated 
RAW264.7 cells;  
↑HO-1 mRNA expression and protein 
level; no effect on iNOS (mRNA ex-
pression and protein level), cPLA2 
(mRNA expression)  

No effect on 5-
LOX mRNA ex-
pression. 
 

No effect on 
COX-2 mRNA 
expression and 
protein level. 

[64] 

BMCMC cells NDGA (3 μM). ↑PGE2 and ↓LTB4/LTC4 production in 
BMCMCs stimulated with ConA 
(mimics IgE cross-linking), substance 
P (following culture of cells with IL-4) 
or A23187; ↓degranulation of 
BMCMCs stimulated with ConA and 
A23187. 

Not evaluated. Not evaluated. [65] 

RBL-1 13 phenolic com-
pounds isolated from 
Lonicera japonica (20 

The compounds that exerted the high-
est inhibition on 5-LOX products 
(Cys-LTs) formation were protocate-
chuic acid (35.8%), 3,5-

Not evaluated Not evaluated [66] 
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μM); NDGA as control 
of 5-LOX inhibition 

dicaffeoylquinic acid methylester 
(15.1%), luteolin (97.0%), quercetin 3-
O-β-D-glucopyranoside (11.1%) and 
NDGA (100%) 

Human isolated PBMC Quercetin (25 μM) ↓TLR-2 and TLR-4 mRNA expression; 
↓NF-κB activation; ↓IL-6 biosynthesis; 
↓iNOS mRNA expression; ↓PGE2 bio-
synthesis 

↓5-LOX produc-
tion; 

↓COX-2 mRNA 
expression; 
↓COX produc-
tion;  

[67] 

RBL-1 cells Scopoletin, scopolin, 
scoparone, esculetin 
chlorogenic acid, quer-
cetin, isorhamnetin-3-
O-galactoside, iso-
rhamnetin-3-O-robino-
bioside, capillarisin, 
and NDGA (0.1 – 50 
μM) 

↓LTB4 biosynthesis in A23187-stimu-
lated cells. The most effective com-
pounds were NDGA (95.7% inhibi-
tion at 1 μM), as well as esculetin, 
quercetin, and capillarisin (IC50 = 6.6, 
0.7 and 17.7 μM, respectively).   

Not evaluated Not evaluated [68] 

Rat peritoneal macrophages Platycladus orientalis 
chloroform extract 
(12.5 – 100 μg/mL) and 
the individual com-
pounds hinokiol and 
acacetin (12.5 – 100 
μM); 12.5 μM NDGA 
was used as control of 
5-LOX inhibition 

↓5-HETE and LTB4; ↓12-HHT; the ex-
tract showed no inhibitory effect on 
LTA4 hydrolase 

↓5-LOX activity 
(43.2% for 
honokiol and 
48.8% for aca-
cetin at 100 μM; 
IC50 = 7.1 μM for 
NDGA) in a cell-
free assay 

Moderate or 
weak COX-2 in-
hibition in cell-
free assays 

[69] 

RBL-2H3 cells Extracts of Foeniculum 
vulgare (12.5 – 200 
mg/mL), its individual 
compounds (50 μM) 
and 1 μM NDGA as 
positive control 

↓5-LOX products (Cys-LTs) for-
mation in cells treated with the ex-
tracts (only at 200 μg/mL); the indi-
vidual phenolics (scopoletin and um-
belliferone) had no effect on 5-LOX 
activity; 1μM NDGA exerted a strong 
inhibition (92.4%) 

Not evaluated Not evaluated [70] 
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RBL-2H3 cells Macelignan (5, 10 and 
20 μM ) 

No cytotoxic effect; ↓β-hexosamini-
dase (8 – 32% inhibition) and hista-
mine release (8 – 27% inhibition); 
↓Ca+2 intracellular concentration; 
↓PGE2 and LTC4 biosynthesis; ↓IL-4, 
IL-13, and TNF-α formation; ↓Akt and 
MAPK phosphorylation 

↓5-LOX mRNA 
expression 

↓COX-2 mRNA 
expression 

[71] 

PMNL from healthy donors, 
whole human blood and 
HEK293 cells 

Caffeic acid and CAPE 
(0.1-30 μM). 

CAPE exerted a ↓LT biosynthesis 
(LTB4, 20-COOH- and 20-OH-LTB4 as 
well as 5-HETE) in thapsigargin-stim-
ulated PMNLs (53-85% inhibition at 1 
μM; IC50 = 0.52 μM) as well as in zy-
mosan-stimulated whole blood 
treated (32% reduction at 1 μM; IC50 = 
1.79 μM); CAPE also exerted a ↓AA 
release in thapsigargin-stimulated 
PMNLs (32% reduction at 1 μM); Caf-
feic acid exerted no effects. 

CAPE exerted 
↓5-LOX activity 
(IC50 = 0.13 μM) 
whereas caffeic 
acid had no ef-
fect on the en-
zyme isolated 
from 5-LOX-
transfected 
HEK293  

Not evaluated. [72] 

Rat basophilic leukemia (RBL-
2H3) cells. 

Panduratin A 
(1 – 20 μM). 

The effects observed in A23187- and 
PMA-stimulated RBL-2H3 cells were: 
↓LTB4 and PGE2 formation as well as 
↓AA release; ↓Ca2+ influx and β-hex-
osaminidase and histamine secretion 
at 20 μM; ↓IL-4, IL-13, and TNF-α 
mRNA expression; ↓Akt, ERK, p38, 
and JNK phosphorylation  

↓5-LOX mRNA 
expression. 

↓COX-2 mRNA 
expression. 

[73] 

Primary avian polymorphonu-
clear leukocytes. 

Caffeic acid 
(5 μM). 

↓LTB4 production in leukocytes stim-
ulated with TLR agonists (FLG, PAM 
or CpG). 

Not evaluated. Not evaluated. [74] 

Feline esophageal epithelial 
cells. 

Eupatilin (25-200 μM). ↓H2O2-induced cytotoxicity (dose-de-
pendent effect), ↓p38 and JNK activa-
tion, and LTB4 production at 150 μM 
(12 h pretreatment).  

↓5-LOX expres-
sion in H2O2-in-
duced cells at 
150 μM (12 h 
pre-treatment) 

Not evaluated. 
 

[75] 
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Human neutrophils isolated 
from peripheral blood of 
healthy donors. 

3,3’,4’-Tri-hydroxy-fla-
vone, 3,5,7-tri-hy-
droxy-flavone, 3,7,3’-
tri-hydroxy-flavone 
and 3,7,4’-tri-hydroxy-
flavone (10 and 25 μM), 
NDGA and quercetin 
(10 μM) 
 

↓LTB4 production in A23187- and AA-
stimulated neutrophils (except for 
3,7,3’-tri-hydroxy-flavone at 10 μM); 
↓oxidation of luminol, amplex red 
and APF by reactive species gener-
ated by PMA-stimulated neutrophils; 
↓COX-1 activity in a cell-free system 
for 3,5,7-tri-hydroxy-flavone and 
3,7,3’-tri-hydroxy-flavone in a con-
centration-dependent manner.  

Not evaluated. ↓COX-2 activity 
in a cell-free sys-
tem for 3,5,7-tri-
hydroxyflavone 
in a concentra-
tion-dependent 
manner. 

[76] 

RAW264.7 cells and rat perito-
neal macrophages. 

Baicalein and its glyco-
side, baicalin (1.5 – 100 
μM). 

↓LTB4 production in rat peritoneal 
macrophages in the presence of exog-
enous AA (IC50 = 35.6 μM); ↓PGE2 in 
LPS-stimulated RAW264.7 cells by 
baicalein (IC50 = 28.6 μM). 

No effect on  
5-LOX expres-
sion (mRNA and 
protein level).  

↓COX-2 mRNA 
expression and 
protein level in 
LPS-stimulated 
RAW264.7 cells. 

[77] 

Human isolated PMNL or 
monocytes 

Cannflavin A and B 
(0.1 – 10 μM)   

↓5-LOX products (LTB4, tr-LTB4, 5-
HPETE) with IC50 = 1.6 – 2.4 μM for 
cannaflavin A; ↓PGE2 biosynthesis 
(IC50 = 8.8 μM for cannaflavin A) in 
LPS stimulated monocytes; ↓12-HHT 
in platelets (IC50 > 10 μM for cannafla-
vin A) 

↓5-LOX (IC50 = 
0.8 and 0.9 μM 
for cannaflavin 
A and B, respec-
tively) activity 

↓mPGES-1 activ-
ity by both com-
pounds 
(cannaflavin A 
showed IC50 = 
1.8 μM); ↓COX-1 
and COX-2 ac-
tivity (cannafla-
vin A showed 
IC50 > 10 μM) 

[78] 

Human isolated neutrophils Luteolin, NDGA, quer-
cetin, 3’,4’-dihy-
droxyflavone, apig-
enin, acacetin, chrysoe-
riol, diosmetin, taxifo-
lin, chrysin, (±)-eriodic-
tyol (±)-naringenin and 
other related flavo-
noids (10 and 40 μM) 

The highest inhibition of LTB4 synthe-
sis was exerted by luteolin (IC50 = 1.6 
± 0.3 μM), 3’,4’-dihydroxyflavone 
(IC50 = 1.7 ± 0.1 μM), quercetin (IC50 = 
4.0 ± 1.2 μM), NDGA (56.5 ± 2.5% in-
hibition at 1μM) and eriodyctiol (53.4 
± 4.8% inhibition at 40 μM). 

Not evaluated Not evaluated [79] 
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BMMC Homoisoflavanone 
(5,7-di-hydroxy-3-(3-
hydroxy-4-methoxy-
benzyl)-chroman-4-
one) (1.4 – 14.4 μM). 

↓LTB4, LTC4 and PGD2 in DNP-IgE 
and DNP-HSA-activated BMMCs; 
↓mRNA level and release of IL-6 and 
TNF-α; ↓degranulation of BMCMCs; 
no effect on COX-1 protein levels 

↓5-LOX protein 
levels in DNP-
IgE and DNP-
HSA-activated 
BMMCs. 

↓COX-2 protein 
levels in DNP-
IgE and DNP-
HSA-activated 
BMMCs. 

[80] 

BMMCs-isolated from bone 
marrow of C57BL/6 

Curcumin (1 – 10 μM) ↓LTC4 and Ca+2 influx in IgE/Ag-in-
duced BMMCs; ↓COX-2-dependent 
PGD2 synthesis; ↓cPLA2 phosphoryla-
tion and translocation; inhibition of 
NF-κB, MAPK, and Syk pathways (all 
the effects were dose-dependent). 

↓5-LOX translo-
cation 

Not evaluated [81] 

PMNL from healthy donors. Pinostilbene, rhaponti-
genin, isorhapontige-
nin, RSV, oxyresvera-
trol, pterostilbene 

↓LTB4 (IC50 = 18.5 ± 7.8 and 9.32 ± 3.3 
μM for oxyresveratrol and pterostil-
bene, respectively; IC50 > 50 μM for the 
rest of compounds) 
Pinostilbene exerted the highest COX-
1 and COX-2 inhibition (IC50 = 1.9 ± 1.6 
and 0.35 ± 0.23, respectively), whereas 
rhapontigenin was the weakest com-
pound (IC50 = 24.55 ± 10.38 and 36.12 ± 
10.43, respectively) 

Molecular dock-
ing analysis 
showed that 
pterostilbene 
formed hydro-
gen bonds with 
His372 and 
Thr364 

Molecular dock-
ing analysis 
showed that pi-
nostilbene 
formed hydro-
gen bonds with 
Arg129, Phe518 
and Gln192; 

[82] 

PMNL from healthy donors. Xanthohumol,  
xanthohumol C,  
8-prenylnaringenin,  
4-hydroxy-colupulone,  
humulone, cascadone 
and humudifucol (up 
to 10 μM). 

↓LTB4 and 5-HPETE in A23187- and 
AA-stimulated PMNLs treated with 
xanthohumol (IC50 = 2.9 μM); no ef-
fects observed with the rest of com-
pounds. 
 

Not evaluated. Not evaluated. [83] 

Human peripheral neutrophils 
from human whole blood. 

Daidzein, dihydrodai-
dzein, and equol (0.01 – 
1 μM). 

↓LTB4 A23187- and AA- stimulated 
neutrophils (IC50 = 0.2 μM for equol; 
20% of inhibition for daidzein and di-
hydrodaidzein 1 μM); no effect on the 
enzymatic hydrolysis of LTA4 to LTB4; 
↓free radical peroxidation of AA (IC50 

Not evaluated. Not evaluated. [84] 
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= 0.6 μM for daidzein and >1.0 μM for 
equol and dihydrodaidzein); ↓MPO 
activity (IC50 = 0.45, 0.7 and >1.0 μM 
for equol, dihydrodaidzein and dai-
dzein, respectively) 

Isolated human PMNL CAPE (1 μM) ↓5-LOX products Molecular dock-
ing analysis 
showed affinity 
= -8.5 Kcal/mol 
and interaction 
with His372 

Not evaluated. [85] 

RAW 264.7 macrophages Isoorientin (1 – 25 μM; 
16 h) 

↓TNF-α, IL-1β, iNOS expression and 
NF-κB pathway;  

↓5-LOX protein 
expression 

↓COX-2 protein 
expression 

[86] 

Mouse mast cell line (PB-3c). Daidzein, genistein 
and their glycosides 
(daidzin and genistin), 
equol, quercetin and 
kaempferol (50 μM; 48 
h). 

↓LTB4 production A23187- and AA-
stimulated PB-3c cells (100% inhibi-
tion exerted by equol, quercetin and 
kaempferol, 72.5% by genistein, and a 
weak but significant suppression by 
daidzin and daidzein). 

Not evaluated. Not evaluated. [87] 

Isolated human PMNL and 
platelets 

Baicalein, apigenin, 
quercetin, CAPE, myri-
cetin (0.1 – 20 μM) 

↓5-LOX products (including LTB4, 6-
trans-LTB4, 6-trans-12-epi-LTB4, 20-
OH-LTB4, 20-COOH-LTB4, and 5-
HETE); IC50 = 11.0 and 5.97 μM in 
PMNL for baicalein and quecetin, re-
spectively). 
↓12-HETE (IC50 = 1.78, 1.34 and 1.28 
μM, respectively) and 12-HHT (IC50 = 
9.92, 2.91 and 3.79 μM, respectively) 
in platelets treated with baicalein, 
quercetin and CAPE  

Molecular dock-
ing analysis us-
ing soybean 15-
LOX;  
(i) CAPE´s affin-
ity = -5.4 
kcal/mol and in-
teraction with 
Arg426, Ser510, 
His518 and 
Phe576 
(ii) Baicalein´s 
affinity = -1.4 
kcal/mol and in-
teraction with 

Not evaluated. [88] 
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Fe, His518 and 
Phe576 
(iii) Quercetin´s 
affinity = 0.8 
kcal/mol and in-
teraction with 
Asp766, His518 
and Phe576 

Isolated human PMNL and 
whole blood 

CAPE (0.1 – 10 μM) ↓5-LOX products (including LTB4, tr-
LTB4, 20-OH-LTB4, 20-COOH-LTB4, 
and 5-HETE); IC50 = 0.97 and 3.58 μM 
in PMNL and whole blood, respec-
tively) 

Molecular dock-
ing analysis into 
the active site of 
5-LOX (cristal 
structure) 
showed affinity 
= -8.8 Kcal/mol 
and interaction 
with Leu420 and 
His372 

Not evaluated [89] 

Caco-2 Hydroxytyrosol (1 μM) ↓PGE2, LTB4, 5-HETE, 12-HETE, 15-
HETE, 13-HODE 

Not evaluated. Not evaluated. [90] 

RAW 264.7 macrophages Ellagic acid-3,3’,4-tri-
methoxy-4’-O-α-L-
rhamnopyranoside (1 – 
100 μM for toxicity as-
says; 1 – 5 μM for anti-
inflammatory assays) 

↓NO, TNF-α, IL-6 and NF-κB expres-
sion; ↑IL-10 

↓5-LOX level in 
culture medium 

↓COX-2 level in 
culture medium 

[91] 

Human monocytes, neutro-
phils and platelets. 

Ginkgolic acid (0.1 – 10 
μM). 

↓Tr-LTB4 isomers and 5-HPETE in 
A23187-stimulated intact human neu-
trophils in the presence or absence of 
exogenous AA (IC50 = 3.8 and 2.9 μM, 
respectively); ↓12-HHT formation by 
isolated COX-1 (IC50 = 8.1 μM); ↓12-
HHT and TxB2 formation in AA-stim-
ulated platelets (IC50 = 2.1 and 2.2 μM, 

↓Tr-LTB4 iso-
mers and 5-
HPETE synthe-
sized by human 
recombinant 5-
LOX (IC50 = 0.2 
μM) 

No effect on 
COX-2 activity 
(human recom-
binant isolated 
enzyme) 

[92] 
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respectively); ↓PGE2, PGD2, TxB2, 
PGF2α, 11-HETE, 12-HHT, PGE1 and 
TxB1 in LPS-stimulated monocytes. 

PBMCs from healthy donors. Apigenin, EGCG, 
genistein, naringenin, 
nobiletin, wogonin), 
RSV and its dimer (ε-
viniferin), tetramer 
(hopeaphenol), and 
imine analogues (IRA) 
(1 – 10 μM) 

↓LTB4 production by A23187- stimu-
lated neutrophils treated with 
genistein, resveratrol, IRA (1 and 10 
μM) and ε-viniferin (10 μM); LC-MS 
based targeted oxylipin metabolom-
ics showed that: RSV inhibited the 
COX-1/2 pathway and exerted a weak 
attenuation of the 12/15-LOX activity; 
ε-viniferin caused a clear substrate 
shunt towards the remaining AA cas-
cade enzymes (15-LOX, COX-1/2, cy-
tochrome P450); IRA had no impact 
on 15-LOX activity, but elevated the 
formation of COX-derived PGs, hav-
ing no inhibitory effects on COX-1/2 
activity.  

Not evaluated. Not evaluated. [93] 

Murine mast cell line (MC/9). Kuwanon G and 
Morusin (0.5–10 μM). 

↓LTB4 production in PMA- and 
A23187-stimulated MC/9 mast cells 
treated with morusin (2 and 4 μM); 
↓histamine production by kuwanon G 
(2.5–10 μM) and morusin (4 μM). 

↓5-LOX nuclear 
protein level, 
but not cytoplas-
matic level in 
PMA- and 
A23187- stimu-
lated MC/9 mast 
cells treated 
with kuwanon G 
(2.5 – 10 μM) 
and morusin (4 
μM) 

Not evaluated. 
 

[94] 

BMMC Taxifolin (dihy-
droquercetin) (1, 2 and 
5 μM). 

↓LTC4 in IgE/Ag-stimulated and 
DNP-HSA-activated BMMCs. 

↓5-LOX nuclear 
protein levels in 

↓COX-2 protein 
levels in IgE/Ag-
stimulated and 

[95] 
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 ↓IL-6 and MAPKs protein levels, 
translocation of cPLA2 and 
Akt/IKK/NF-κB pathway in IgE/Ag-
stimulated and DNP-HSA-activated 
BMMCs. 
↓degranulation, histamine release, 
phosphorylation of PLCγ, and Ca2+ 
mobilization in IgE/Ag-stimulated 
and DNP-HSA-activated BMMCs. 

IgE/Ag-stimu-
lated and DNP-
HSA-activated 
BMMCs. 
 

DNP-HSA-acti-
vated BMMCs. 
 

PMNLs from healthy donors. Uro-A, Uro-B, Uro-C 
and IsoUro-A, and 
their conjugates Uro-A 
glur, Uro-B glur, 
IsoUro-A-glur and 
Uro-A sulfate (1, 5 and 
15 μM). 

↓LTB4 and 5-HETE (dose-dependent) 

synthesis in A23187/LPS-stimulated 
PMNLs treated with Uro-C (15 μM); 
↓PGE2 formation A23187/LPS- stimu-
lated PMNLs treated with Uro-A or 
IsoUro-A (15 μM); ↓HKE2 and HKD2 

production (5-LOX/COX-2 pathway) 
in A23187/LPS-stimulated PMNLs 
treated with Uro-A, IsoUro-A, and 
Uro-C at 15 μM; ↓HKD2 in the cells 
treated with Uro-B at 15 μM. 

↑No effect on 5-
LOX protein 
level in 
A23187/LPS-
stimulated 
PMNLs treated 
with Uro-C at 15 
μM. 
 

↓COX-2 protein 
level in 
A23187/LPS-
stimulated 
PMNLs treated 
with Uro-A and 
IsoUro-A at 15 
μM; no effect of 
these com-
pounds on COX-
2 activity 
 

[96] 

Caco-2  5,7 di-hydroxy-3,3’,4’-
trimethoxyflavone and 
3,5,6,7,4’-pentameth-
oxy-flavone 

↓TNF-α and IL-1β as well as NF-κB 
activation compared to LPS-treated 
cells. 

No effect on 5-
LOX expression 

↓COX-2 expres-
sion in LPS-
treated cells 

[97] 

Human neutrophils NDGA (1 μM) ↓TLB4, tr-LTB4, 20-OH-LTB4,  
5-HETE, 12-HETE and 15-HETE 

No effect on 5-
LOX expression 

No effect on 
COX-2 expres-
sion 

[98] 

RAW 264.7 macrophages Celery ethanol extract, 
and karafsin (apigenin-
7-O-β-(5´-E-p-couma-
royl)-β-apio-
furanoside)  

No cytotoxic effects; ↓NO release 
(0.0625 – 1 mg/mL). 

↓5-LOX activity 
(25 – 500 
mg/mL) 

↓COX-2 activity 
(25 – 500 
mg/mL) 

[99] 
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Rat basophilic leukemia cell 
line (RBL-2H3) cells. 

Tricin (30.2 μM – 1.5 
mM). 

↓LTB4, LTC4 and PGE2 formation in 
anti-DNP-IgE plus DNP-HAS-stimu-
lated RBL-2H3 cells; ↓hexosaminidase 
release; ↓IL-4 and TNF-α level; 
↓cPLA2, Akt, ERK, p38, JNK, protein 
kinase C, phospholipase C1, Lyn and 
Syk phosphorylation; minimal effect 
on Fyn.  

↓5-LOX protein 
levels in anti-
DNP-IgE plus 
DNP-HAS-stim-
ulated RBL-2H3 
cells. 

↓COX-2 protein 
levels in anti-
DNP-IgE plus 
DNP-HAS-stim-
ulated RBL-2H3 
cells. 
 

[100] 

Rat basophilic leukemia RBL-
2H3 cells and human non–
small-cell lung carcinoma 
A549 cells.  

Red-kerneled rice pro-
anthocyanidin -RRP- 
(catechin octamer) and 
catechin monomer (1 – 
10 μM). 

↓LTB4 and PGE2 formation in A23187-
stimulated RBL-2H3 and A549 cells 
treated with RRP at 1 μM;  
RRP exerted inhibition of 12-LOX 
(IC50 = 39.0 μM) and p12-LOX (IC50 = 
47.5 μM) activity; weak inhibitory ef-
fect on 15-LOX-2 (IC50 >100 μM); cate-
chin exerted ↓15-LOX-2 (IC50 = 20.4 
μM) and COX-1 (IC50 = 30 μM) 

RRP and cate-
chin exerted 
non-competitive 
inhibition 
against human 
5-LOX (IC50 = 
15.1 and 2.2 μM, 
respectively) 
and rat 5-LOX 
(IC50 = 7.0 and 9.0 
μM, respec-
tively) 

RRP exerted no 
effect on COX-1 
or COX-2 activ-
ity up to 500 μM 

[101] 

Abbreviations: AA, arachidonic acid; ADP, adenosine diphosphate; APF, 2-[6-(4’-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid; BMCMCs, canine bone marrow derived 
cultured mast cells; BMMC, mice bone marrow-derived mast cells; cAMP, cyclic adenosine monophosphate; CAPE, caffeic acid phenethyl ester; CLP, coactosin-like protein; 
ConA, concanavalin A; COX, cyclooxygenase; CpG, unmethylated CpG motifs of bacteria DNA; cPLA2, cytoplasmic phospholipase-2; Cys-LTs, cysteinyl leukotrienes; DNP-
HAS, dinitrophenyl human serum albumin; DNP-IgE, dinitrophenyl immunoglobulin E; DPE, 2-(3,4-dihydroxy-phenyl)-ethanol; EGCG, epigallocatechin gallate; FLG, fla-
gellin; fMLP, formyl methionyl leucyl phenylalamine; HETE, hydroxyeicosatetraenoic acid; HHT, hydroxy-5,8,10-heptadecatetraenoic acid; HKE2, hemiketal E2; HKD2, 
hemiketal D2; HODE, hydroxyoctadecadienoic acid; HO-1, hemeoxygenase-1; HPETE, hydroxyperoxyeicosatetraenoic acid; iNOS, inducible nitric oxide synthase; KL, c-kit 
ligand; LOX, lipoxygenase; LOX-1, lectin-like oxidized low-density lipoprotein receptor-1; LPS, lipopolysaccharide; LT, leukotrienes; MAPK, mitogen activated protein kinase; 
MK2, mitogen-activated protein kinase-activated protein kinase2; mPGES, microsomal prostaglandin E synthase; MPO, myeloperoxidase; MQ, 3’-O-methylquercetin; MQG, 
3’-O-methylquercetin-3-O-glucuronide; Myr-3-glur; myricetin-3-O-β-D-glucuronide; NDGA, nordihydroguaiaretic acid; NF-κB, nuclear factor kappa-light-chain-enhancer of 
activated B cells; NO, nitric oxide; OAG, 1-oleoyl-2-acetylglycerol; ox-LDL, oxidized low density lipoprotein; p12-LOX, porcine leukocyte-like 12 lipoxygenase; PAM, bacterial 
lipoprotein mimic palmitoly-3-cysteine–serine–lysine-4; PBMCs, peripheral blood mononuclear cells; PC, phosphatidil coline; PG, prostaglandins; PLA2, phospholipase-2; 
PMA, phorbol 12-myristate 13-acetate; PMNLs, polymorphonuclear leukocytes; QG, quercetin-3-O-glucuronide; QS, quercetin-3’-O-sulfate; ROS, reactive oxygen species; 
RRP, red-kerneled rice proanthocyanidin; RSV, resveratrol; THC, tetrahydrocurcumin; TLR, toll-like receptor; TNF-α, tumor necrosis factor alpha; Tr-LTB4, trans-LTB4; Trp, 
tryptophan; TxB2, thromboxane B2; Uro, urolithins; 
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