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Abstract: There is an ongoing search for novel disinfection techniques that are not only effective,
cheap, and convenient, but that also do not have adverse effects on the properties of dental impres-
sions. We compared the effects of various methods (UVC, gaseous ozone, commercial solution, and
spray) on the dimensional change, tensile strength, and hardness of silicone impressions. Moreover,
as a secondary aim, we performed a statistical comparison of the properties of nondisinfected addi-
tion (Panasil Putty Soft, Panasil monophase Medium, Panasil initial contact Light) and condensation
silicones (Zetaplus Putty and Oranwash L), as well as a comparison of materials of various viscosities
(putty, medium-bodied, and light-bodied). Our results revealed that addition silicones had higher
dimensional stability, tensile strength, and Shore A hardness compared to condensation silicones.
Both traditional (immersion and spraying) and alternative methods of disinfection (UVC and ozone)
had no significant impact on the tensile properties and dimensional stability of the studied silicones;
however, they significantly affected the hardness, particularly of Oranwash L. Our study demon-
strated that, similarly to standard liquid disinfectants, both UVC and ozone do not strongly affect the
material properties of most silicones. However, before recommendation, their usefulness for each
individual material should be thoroughly evaluated.

Keywords: dental materials; ozone; UVC; tensile strength; dimensional stability; hardness

1. Introduction

Dental impressions are negative imprints of oral tissues (teeth, gums, and alveolus).
Formation of these impressions is a key stage in the fabrication of dental casts used in
prosthetics and orthodontics. Because dental impressions allow the creation of replicas
of patients’ teeth and mouth structures, they play an important role in the appropriate
diagnosis and precise design of well-fitted oral appliances. Although digital dentistry is fast
evolving and displacing conventional methods, dental scans, which are a promising means
of taking impressions, still have limitations. One of the issues resolved in modern scanners
is the low quality of these scans if the abutment is inclined or the span is too long [1].
Moreover, restorative materials present in the oral cavity may reflect light and cause
disturbances in three-dimensional images [2–6]. Therefore, the conventional impression
technique is often preferred for obtaining full-arch impressions, which are particularly
functional impressions for complete denture fabrication [7].

Materials selected for dental impressions can significantly influence the accuracy and
precision of the impression and, consequently, of the final result. Although both rigid
(impression plaster and zinc oxide-eugenol) and elastic materials (agar, alginate, polyether,
condensation silicone (C-silicone), addition silicone (A-silicone), and polysulfide) have been
widely used for creating dental impressions, elastic ones are often preferred. Nowadays,
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sodium alginate is used as the basic material for taking impressions before the preparation
of diagnostic gypsum casts, individual trays, orthodontic appliances, and splints. However,
sodium alginate-based impressions are not recommended for more precise applications
because they exhibit dimensional instability as they absorb water and swell, and they also
constrict due to syneresis [8]. Dental works of the best quality can be achieved using casts
made from elastomeric impressions [9]. Silicones are often preferred by dentists as they
are characterized by high flexibility and recovery during removal from the oral cavity, as
well as the ability to be poured up to 1 week with only slight changes in their dimensional
stability, estimated at 0.3% [10].

Apart from good dimensional stability, the ideal impression material should meet other
criteria, such as appropriate setting time, flow properties, mechanical strength, accuracy,
compatibility with cast materials, safety, ease of manipulation, low cost, and disinfectability.
Depending on the application, materials with optimal properties are selected. The analysis
of the properties of a dental impression material cannot be limited to the properties of the
material itself, in its native form, but must also take into account the impact of time, as well
as storage and disinfection conditions, on the material characteristics. Dental impressions
must be disinfected in order to limit the risk of cross-contamination and ensure the safety
of both patients and dental personnel. Because dental impressions are placed in the oral
cavity, where they will be exposed to saliva and blood, and as a result potentially contami-
nated with pathogens (e.g., streptococci, staphylococci, Escherichia coli, Mycobacterium
tuberculosis, hepatitis C virus, and Herpes simplex virus, Candida albicans) [11–13], it
is important to disinfect them to prevent the transmission of infectious agents between
dental offices and laboratories [8,14]. It has been estimated that approximately 70% of the
materials transported to dental laboratories are contaminated with microorganisms [15].
Moreover, in the present situation of the SARS-CoV2 pandemic, special attention should be
paid to safety concerns as saliva can be a perfect environment for the growth of infectious
microorganisms [16].

Currently, there is no “gold standard” method for the disinfection of dental im-
pressions. Immersion is considered to be one of the safest methods to prevent cross-
contamination [11]. However, chemical disinfectants may influence the properties of dental
impression materials, and consequently, the quality and precision of dental casts and the
final prosthetic or orthodontic works [8]. It is known that disinfectants containing oxidizing
compounds (e.g., peroxysulfates, sodium hydrochlorite, aldehydes, quaternary ammonium
salts, iodine compounds, or organic alcohols) can affect the quality of impression materials,
reducing their ability to reproduce the details of the teeth and mucosa. Therefore, other
disinfection methods are preferable, and the antimicrobial efficiency of various disinfection
procedures and their impact on impression materials must be thoroughly investigated.

Due to the ability to oxidize phospholipids and lipoproteins, ozone may be used
for the inactivation of bacteria, viruses, fungi, yeast, and protozoa. Ozone can disrupt
the integrity of bacterial cell envelope, damage viral capsid, and prevent virus-to-cell
contact [17,18]. Several studies have demonstrated that ozone is a promising agent for
surface disinfection, but there is no standard protocol defining both concentration and
time of exposure [19]. Some research groups have proposed that ozone can also be used
for the disinfection of dental impressions, but this idea is still not widely applied [20].
Moreira Fonseca et al. demonstrated that exposure to ozone caused morphological damage
in Streptococcus mutans bacteria due to its ability to induce a significant increase in the
production of reactive oxygen species [21]. Apart from the ozonation, exposure to UVC is
also considered a promising method of disinfection. Aeran et al. analyzed the effectiveness
of UVC radiation in the disinfection of alginate, A-silicone, and polyether impression
materials. However, their study revealed only a decrease in the count of bacterial colonies,
without investigating the possible adverse effects on material properties [22].

In our previous study, we evaluated the effectiveness of both traditional (commercial
spray and solution) and alternative (ultraviolet C (UVC) and gaseous ozone) methods in the
disinfection of dental impression materials contaminated with common oral pathogens [23].



Int. J. Mol. Sci. 2022, 23, 10859 3 of 14

All these techniques were found to be effective in reducing bacterial growth on the surface
of specimens, but our results suggested the need to further assess them in terms of their
influence on the physical and mechanical properties of dental silicones.

In the present study, we aimed to evaluate the effects of disinfection by immersing,
spraying, UVC, and ozone on the linear dimensional changes, tensile strength, and hardness
of various impression materials (A-silicones and C-silicones of putty-type, medium-bodied,
and light-bodied viscosity). In addition to the main research aim, in order to provide
more comprehensive insight, as a preliminary step we compared the material properties of
different types of silicones without disinfection (addition and condensation silicones), as
well as of nondisinfected silicones of various viscosities (putty, medium-bodied, and light-
bodied). We tested the following research hypotheses: (1) there is no significant difference
in selected material properties between disinfected and nondisinfected dental silicones; and
(2) there is no significant difference in the selected material properties between A-silicones
and C-silicones as well as between materials of different viscosities.

2. Results
2.1. Preliminary Comparison of Nondisinfected Materials

The results of the comparison of linear dimensional change, tensile strength, and Shore
A hardness between various nondisinfected dental impression materials are presented in
Table 1.

Table 1. Mean (SD) of linear dimensional change, tensile strength, and Shore A hardness for nondis-
infected controls of various impression materials; different superscript letters indicate the statistical
significance (p < 0.05) of differences between the studied groups.

Material Linear Dimensional Change [%] Tensile Strength [MPa] Shore A Hardness

Zetaplus Putty 0.4190 (0.2626) ab 1.691 (0.1345) d 58.08 (1.383) c

Oranwash L 0.6933 (0.1977) a 1.159 (0.2901) e 19.98 (0.7690) e

Panasil Putty Soft 0.1179 (0.1126) c 3.196 (0.2547) b 61.02 (2.025) b

Panasil monophase Medium 0.2039 (0.1236) bc 3.607 (0.3273) a 64.66 (1.201) a

Panasil initial contact Light 0.3368 (0.1487) ac 2.337 (0.1231) c 54.04 (0.6987) d

Additionally, to draw more general conclusions, a summary of the results of the linear
dimensional change test, tensile strength test, and Shore A hardness test performed jointly
for each type of silicone (A-silicones and C-silicones) and materials of different viscosity
are presented in Tables 2 and 3, respectively.

Table 2. Mean (SD) of linear dimensional change, tensile strength, and Shore A hardness for C-
silicones and A-silicones, and the statistical significance (p) of differences between these two groups.

Type of Material Linear Dimensional Change [%] Tensile Strength [MPa] Shore A Hardness

C-silicones 0.5561 (0.2664) 1.425 (0.3506) 39.03 (19.18)
A-silicones 0.2196 (0.1547) 3.043 (0.5660) 59.91 (4.640)

Significance p = 0.0082 p < 0.0001 p < 0.0001

Table 3. Mean (SD) of linear dimensional change, tensile strength, and Shore A hardness for the
materials of different types of viscosity; different superscript letters indicate the statistical significance
(p < 0.05) of differences between the studied groups.

Type of Viscosity of Material Linear Dimensional Change [%] Tensile Strength [MPa] Shore A Hardness

Putty 0.2684 (0.2501) b 2.542 (0.7904) b 59.55 (2.271) b

Medium-bodied 0.2039 (0.1236) b 3.607 (0.3273) a 64.66 (1.201) a

Light-bodied 0.5151 (0.2499) a 1.748 (0.6420) c 37.01 (17.13) c
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The results of the analysis of dimensional changes in the studied impression materials
caused by 24-h storage are listed in Tables 1–3.

A comparison of nondisinfected controls of each of the studied materials indicated
the lowest dimensional changes in Panasil Putty Soft and highest changes in Oranwash
L among the studied materials (Table 1). The dimensional changes in A-silicones were
significantly lower than those observed in C-silicones (0.2196% vs. 0.5561%, p = 0.0082)
(Table 2). Furthermore, the dimensional stability of putty and medium-bodied materials
was better than that of light-bodied materials (p = 0.0142 and p = 0.0071, respectively)
(Table 3).

The analysis of nondisinfected specimens revealed that tensile strength significantly
differed in the impression materials. The value of the parameter was the highest in Panasil
monophase Medium (3.607 MPa) and the lowest in Oranwash L (1.159 MPa) (Table 1).
In general, A-silicones were characterized by a significantly higher tensile strength than
C-silicones (3.043 vs. 1.425 MPa, p < 0.0001) (Table 2). Furthermore, in the case of both A-
silicones and C-silicones, putty materials had significantly higher tensile strength than light-
bodied ones (2.542 vs. 1.748 MPa, p = 0.0207) (Table 3). Interestingly, Panasil monophase
Medium (material of medium-bodied viscosity) had the highest tensile strength among the
studied A-silicones (3.607 MPa) (Table 1).

Similar to the tensile strength test, the results of the analysis of Shore A hardness
revealed that the impression materials significantly differed in their hardness. Among the
silicones studied, Panasil monophase Medium had the highest Shore A hardness (64.66),
and Oranwash L had the lowest value (19.98) (Table 1). In general, when comparing
nondisinfected specimens, A-silicones were found to have significantly higher Shore A
hardness than C-silicones (59.91 vs. 39.01, p < 0.0001) (Table 2). Similar to tensile strength,
in the case of both types of silicones, Shore A hardness was significantly higher in putty
materials than light-bodied ones (59.55 vs. 37.01, p < 0.0001) (Table 3). Among the studied
materials, Panasil monophase Medium showed the highest hardness (64.66, p < 0.01 for all
comparisons) (Table 1).

The results of the comparison of nondisinfected control and materials disinfected by
different techniques are summarized in Figures 1–6.

2.2. Linear Dimensional Change

The results of the analysis of dimensional changes in the studied impression materials
caused by various disinfection techniques are illustrated in Figure 1 (for disinfected C-
silicones) and Figure 2 (for disinfected A-silicones).
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A comparison of dimensional changes of materials subjected to various disinfection
techniques with that of nondisinfected controls revealed that most of the disinfection meth-
ods had no significant effect on this parameter of the majority of the studied materials. Only
one combination (Oranwash L and spraying with Zeta 7 spray) resulted in a significantly
lower dimensional change compared to the nondisinfected control (p = 0.0053) (Figure 1).
In the case of A-silicones, disinfection did not significantly affect their linear dimensional
change in comparison to the nondisinfected control (Figure 2).

2.3. Tensile Strength

The tensile strength values measured for each of the studied impression materials
are presented in Figure 3 (for disinfected C-silicones) and Figure 4 (for disinfected A-
silicones). A comparison of disinfected specimens with nondisinfected controls revealed
that disinfection had no effect on the tensile strength of impression materials. Moreover, the
tensile strength of studied materials disinfected by different methods did not significantly
differ from that of the nondisinfected control (all ps > 0.05) (Figures 3 and 4).
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Figure 4. Tensile strength of A-silicones (Panasil Putty Soft, Panasil monophase Medium, and Panasil
initial contact Light) after disinfection using various methods.

2.4. Shore A Hardness

The results of the analysis of Shore A hardness of each of the studied impression
materials are presented in Figure 5 (for disinfected C-silicones) and Figure 6 (for disinfected
A-silicones). Disinfection had a significant impact on hardness. This effect was particularly
evident for C-silicones (significant difference from nondisinfected specimens at p < 0.05
and Zetaplus disinfected by UVC and ozone disinfection and Oranwash L disinfected by
different disinfection methods) (Figure 5). In addition, the hardness of putty-type materials
(both Zetaplus and Panasil Putty Soft) increased after disinfection, while in the case of light-
and medium-bodied silicones it was reduced by most of the studied disinfection methods
(Figures 5 and 6).
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3. Discussion

Despite high awareness of the importance of disinfecting dental impressions, which
is a routine procedure in dental offices and laboratories, this practice is often neglected,
particularly in developing countries [15]. Research on this topic is highly desirable, pro-
vided that it is reliable, because the introduction of cheaper and more convenient methods
could improve the accessibility of disinfection procedures and increase their frequency. A
systematic review and meta-analysis by AlZain revealed several discrepancies between the
findings of studies undertaken to determine the effect of different disinfection methods on
the properties of various impression materials, indicating that such research needs to be
better designed and standardized [24]. Therefore, we performed this comprehensive study
on dental silicones of various types and of different viscosities, subjecting them to both
traditional and alternative methods of disinfection. We chose UVC radiation and gaseous
ozone as nonstandard, low-cost, and convenient methods.

Our previous study showed that ozone disinfection (for 10 min at 15 ppm concentra-
tion and 800 mg/h flow rate) significantly reduced the growth of pathogens (Pseudomonas
aeruginosa, S. aureus, and C. albicans) recommended by ISO standards for the evaluation
of the bactericidal [25] and fungicidal or yeasticidal [26] activity of chemical disinfectants.
Our research also confirmed the efficacy of exposure to UVC for 40 min in the disinfection
of A-silicones and C-silicones [23].

Before recommendation, any newly discovered disinfection method must be evaluated
for antimicrobial effectiveness as well as the potential influence on the material properties
of dental impressions. For this purpose, we continued our study to demonstrate the
efficacy and safety of UVC radiation and gaseous ozone in the disinfection of various
impression silicones [23]. As their effects were similar to commercial solution and spray,
in the present study we evaluated their influence on the physical properties of selected
elastomeric materials.

One of the most important properties of dental impressions is their dimensional stabil-
ity, which allows the appropriate adaptation of prosthetic or orthodontic appliances that is
essential for their long-term clinical success. This parameter of impression materials may
be strongly affected by disinfection, and thus most studies have focused on the dimensional
stability and surface quality of impression materials after disinfecting them with various
liquid disinfectants [11,27–30]. Özdemir and Pekince found that the dimensional changes of
materials (polyether, hydrocolloid, C-silicone, and A-silicone) disinfected with 1% sodium
hypochlorite or an aldehyde-free disinfectant solution (Zeta 7 spray) differed depending on
the type of impression material, storage time, and disinfectant solution used. Nevertheless,
the values were within the clinically acceptable level specified by the American Dental
Association (ADA) (<0.5%) [28]. A comparison of the dimensional stability of various
materials (polysulfide, A-silicone, C-silicone, and polyether) after immersion in a 5.25%
sodium hypochlorite solution and in a 2% glutaraldehyde solution showed a significant dif-
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ference among the elastomers used but no change in the dimensional stability of elastomers
after disinfection in comparison to the control group [14]. Similar results were revealed
by our study, indicating that the studied methods of disinfection had no negative effect
on the dimensional changes of any studied material. On the other hand, a comparison of
various materials before disinfection showed that the dimensional stability of A-silicones
was significantly higher than that of C-silicones. Such differences were also confirmed by
the other groups, demonstrating that due to the release of setting reaction by-products,
C-silicones showed higher dimensional changes than A-silicones [31–33]. Furthermore, our
results showed minor dimensional changes in non-disinfected putty and medium-bodied
materials compared with light-bodied silicones, which may be explained by the lower filler
content of the light-bodied materials. Khinnavar et al. also confirmed a similar dependence
of dimensional stability on the viscosity of impression materials [34].

To reduce dimensional changes of dental elastomers, various alternatives to chemical
sterilization have been looked for, such as steam autoclaving, microwave disinfection,
or UVC radiation [35,36]. Samra et al. reported that exposure to UVC radiation for 3
min did not significantly influence the dimensional stability of alginates and A-silicones
in comparison to nondisinfected controls. However, their study did not evaluate the
antimicrobial effectiveness of such a short period of disinfection [36]. Another study also
showed that UVC disinfection for a short time (10 min) had no effect on the dimensional
stability of both putty and light-bodied addition-type silicone (Reprosil) [37]. Furthermore,
it was shown that UVC radiation for 20 min did not influence the dimensions of the
impression taken using heavy body elastomeric material followed by the wash impression
based on light-body impression material (Aquasil) [38]. In our study, we applied UVC for
40 min, in accordance with the recommendations of the UVC lamp manufacturer and a
previous paper proving the effectiveness of this disinfection period [23].

Poulis et al. qualitatively evaluated the effect of ozone disinfection on the surface of
impression materials [39]. In the first study, the authors observed that ozone exposure
caused significant eradication of Gram (+) (S. Aureus) and Gram (–) (Klebsiella pneumoniae)
bacteria from the surface of light-body addition-cured silicone (Aquasil Ultra LV-Regular
Set) [40]. In the next study, they observed similar wavy-wrinkling structures on the surface
of specimens treated with either a 0.3% benzalkonium chloride solution or ozone. These
effects could have resulted from the surface oxidation of vinyl polysiloxane by ozone or
liquid chemicals, due to the fracture of methyl groups present on the surface of the polymer
chain, and the subsequent formation of a stiff silicon dioxide film. The authors concluded
that qualitative scanning electron microscopic analysis should be followed by a quantitative
assessment to obtain a more detailed insight [39]. Our research showed no significant effect
of ozone disinfection on the dimensional change of impression materials.

Another important property of dental impression materials is their tensile strength,
which refers to the ability to withstand tensile forces that are applied on the impression
material during its removal from the mouth to separate it from the teeth and surrounding
tissues. In other words, tensile strength is the maximum stress a material can withstand
under uniaxial traction before it ruptures [41]. This property is considered particularly
important as the material is exposed to interproximal spaces, sharp line angles, and gin-
gival crevices [10]. A comparison of two types of vinylpolysiloxane impression materials
(autoclavable Affinis and nonautoclavable Aquasil) revealed the differences in tear strength
and tensile strength between them; however, their properties were not changed upon disin-
fection [10]. Kotha et al. compared five types of addition-reaction polyvinylsiloxane putty
impression materials and concluded that chemical disinfection and autoclave sterilization
did not significantly affect their tensile strength, while microwave sterilization reduced this
value to a great extent [42]. However, there is a need for a comparative study of the tensile
strength of disinfected and nondisinfected elastomers of various types and viscosities, as
well as a study of the effects of UVC and ozone disinfection. Our results showed that
the tensile properties of both C-silicones and A-silicones of various viscosities were not
significantly influenced by standard chemical disinfectants and UVC or gaseous ozone,
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but these materials themselves significantly differed in their ability to withstand tensile
forces, which is in line with the main conclusion of Gupta et al. [10]. Furthermore, our
study confirmed the findings of Meincke et al. that materials with lower filler content have
lower tensile strength, while more viscous materials can withstand higher tensile forces
due to the increased amount of filler [41].

According to our study, Shore A hardness is the physical property of the impression
materials most affected by disinfection. Among the studied materials, light-bodied C-
silicone (Oranwash L) was characterized by the lowest Shore A hardness, even without
disinfection. Changes in hardness could possibly affect the convenience of working with
this material and thus the accuracy of the final casts. Hence, the applicability of various
methods of disinfection should be thoroughly evaluated for each material, especially
condensation-curing materials of lower viscosity. Interestingly, despite the importance of
this parameter, changes in the hardness of the impression materials upon disinfection have
not been thoroughly investigated so far. Goiato et al. explained that one reason for the
significantly lower hardness value observed in the material disinfected by immersion is
absorption of the disinfection solution, and the degree of absorption is dependent on the
filler material and the low level of adhesion between silicone polymers [43]. Overall, two
factors were proposed as a cause of the decrease of hardness value: scission of polymer’s
chain that may increase the freedom of molecules’ movement, and absorption of the water,
which may act as an additional plasticizer enhancing material resiliency. Conversely,
oxygen crosslinking and leaching of plasticizers may be causes of the increased hardness
by reduction in the molecules’ movements and reduction of material elasticity [44]. As
little is known about the possible mechanisms of action of various methods of disinfection
on the material hardness and surface quality, this is an interesting research direction still
waiting for an in-depth investigation.

In terms of clinical application of impression materials, all the parameters studied are
of great importance. Dimensional stability, tensile strength, and hardness strongly influence
the precision of dental restoration, since tensile forces act on the impression during its
removal from the patient’s mouth and could cause deformations, while good dimensional
stability guarantees proper accuracy of restoration despite a time delay between the taking
of the impression and the pouring of the gypsum cast. Hardness of the material is the char-
acteristic that is important from the point of view of easy manipulation of the impression
after setting, as the reduction of the hardness of the material could pose the risk of damage
of the impression during manipulation with the modeling tools. For these reasons, the
material’s characteristics should be not changed upon disinfection.

Our study revealed the differences between the analyzed dental impression materials,
even without disinfection. The linear dimensional changes of A-silicones were significantly
lower than those of C-silicones, while the tensile strength and Shore A hardness of the
A-silicones were significantly higher than the C-silicones. Additionally, the dimensional
stability, tensile strength, and Shore A hardness of putty-type and medium-bodied ma-
terials were better compared to light-bodied material. Most of the disinfection methods
applied did not affect the dimensional stability and tensile strength of a majority of the
studied materials. On the other hand, disinfection significantly affected the hardness of the
materials, especially the C-silicones. For this reason, based on our results, only disinfection
by spraying could be recommended for Oranwash L, since all other methods significantly
reduced the hardness of this material. For the other silicones, all methods could be applied,
as they did not worsen the material properties studied.

Future research on impression materials should analyze the influence of disinfection on
their other properties, since it has been shown that some of these (e.g., surface roughness)
can be significantly affected, particularly by chemical disinfectants [45,46]. Moreover,
although our study applied a carefully designed methodology, simulating most of the oral
conditions such as temperature and moisture, there is a need for more studies to confirm
the lack of adverse effects of the proposed methods of disinfection. Clinical investigations
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would provide valuable information on the changes brought by disinfection in impression
materials, as a complex geometry of the oral cavity may affect these dependencies.

4. Materials and Methods

The general design of the study is depicted in Figure 7.
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4.1. Materials

The study examined five dental silicones: three condensation-curing silicones (Zeta-
plus Putty, Oranwash L, and Panasil Putty Soft) and two addition-curing silicones (Panasil
monophase Medium and Panasil initial contact Light). These materials had different
degrees of viscosity (Table 4).

Table 4. Description of dental impression materials used in the study.

Type of Material Viscosity Name Manufacturer Mixing Technique Intraoral Setting
Time at 35 ◦C

C-silicone (condensation
polysiloxane)

Putty Zetaplus Putty Zhermack (Badia
Polesine, Italy)

Manual (hand mix) 3 min 15 s
Light-bodied Oranwash L Manual (with spatula) 3 min 30 s

A-silicone (vinyl
polysiloxane)

Putty Panasil Putty Soft
Kettenbach

(Eschenburg,
Germany)

Manual (hand mix) 2 min

Medium-bodied Panasil monophase
Medium

Dispensing gun with
mixing tip 2 min

Light-bodied Panasil initial
contact Light

Dispensing gun with
mixing tip 2 min 30 s

4.2. Preparation of Specimens

The materials were processed according to the manufacturer’s recommendations.
Zetaplus Putty and Panasil Putty Soft were mixed using fingertips, Oranwash L using a
spatula and clean mixing block, Panasil monophase Medium and Panasil initial contact
Light using a dispensing gun with mixing tips.

Samples were prepared following ISO 37:2017(E) [47] (specimens for the determination
of tensile strength) or ISO 4823:2015 [48] (specimens for the determination of dimensional
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stability and Shore A hardness) standards. Stainless steel dies (Slusarstwo-Tokarstwo
Paweł Sitkowski, Wroclaw, Poland) and a self-made die based on dental stone (GC Fujirock
EP Premium Line Super Hard Plaster, GC Corporation, Tokyo, Japan) were used for the
preparation of samples.

After mixing, the materials were transferred to a proper die, covered and pressed with
a glass plate, and conditioned in an incubator (CLN 15 Smart, POL-EKO-APARATURA,
Wodzislaw Slaski, Poland). Then, the materials were immersed in distilled water at 35 ◦C
for a duration specified by the manufacturers as an intraoral setting time/time in the oral
cavity (Table 4). After conditioning, the specimens prepared for the tensile strength test
were left for 3 h before they were cut with a cutter (Slusarstwo-Tokarstwo Paweł Sitkowski,
Wroclaw, Poland) and disinfected. The specimens prepared for dimensional stability and
hardness tests were removed from the die, rinsed with tap water, and disinfected using
different methods selected for this study.

4.3. Disinfection

The prepared specimens were subjected to various methods of disinfection. Their
parameters are detailed in Table 5. For each type of the studied materials, specimens not
subjected to any method of disinfection were used as nondisinfected controls.

Table 5. Parameters of the disinfection methods applied in this study.

Method Material or Equipment Description

UVC UV-C Blue (Activeshop, Wroclaw, Poland) Irradiation for 40 min at 254 nm

Ozone Ozox Professional G168 (MediaSklep24, Bojszowy, Poland)
Putting in an 8-L box with 15 ppm ozone

concentration, and ozonation for 10 min at an
ozone flow rate of 800 mg/h

Solution Zeta 7 Solution (Zhermack, Badia Polesine, Italy); active
ingredients: quaternary ammonium salts, phenoxyethanol

Immersion for 10 min in 100-time diluted
solution and rinsing with distilled water

Spray Zeta 7 spray (Zhermack, Badia Polesine, Italy); active
ingredients: alcohols

Spraying all surfaces of the specimen and
allowing to dry

After disinfection, the specimens were kept in closed boxes for 24 h at room tempera-
ture, and then their properties were evaluated. All tests were carried out at the standard
laboratory temperature of 23 ± 2 ◦C and humidity of 50 ± 10%.

4.4. Linear Dimensional Change Test

The effect of different disinfection techniques on the dimensional stability of the
studied dental silicones was evaluated in accordance with the ISO 4823:2015 standard [48].
For this purpose, the distance between lines d1 and d2 along line c was measured on a
test block and on specimens using a Magnusson digital caliper (150 mm) (Limit, Wroclaw,
Poland). The dimensional changes, ∆L [%], were calculated using the following equation:

∆L = 100 × (L1 − L2)/L1 (1)

where

L1 is the distance measured between lines d1 and d2 in the test block [mm]; and
L2 is the distance measured between lines d1 and d2 in the impression material specimen [mm].

4.5. Tensile Strength Test

The effect of different disinfection techniques on the tensile strength of the studied
dental silicones was evaluated in accordance with the ISO 37:2017(E) standard [47]. Type
1A dumbbell test pieces were selected for evaluation as they have advantages over types 1
and 2 due to better repeatability and particularly lower number of breaks outside the test
length. Specimens with a standard thickness of 2.0 mm were obtained using a specially
fabricated cast die based on dental stone (GC Fujirock EP Premium Line Super Hard Plaster,
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GC Corporation, Tokyo, Japan). Dumbbells of proper dimensions were prepared using
the appropriate steel cutter. The thickness and width of specimens were measured three
times using a digital caliper (Limit, Wroclaw, Poland), and the cross-sectional area was
calculated. Then, using the Universal Testing Machine (model Z10-X700, AML Instruments,
Lincoln, UK), the tensile test was performed with the nominal traverse rate of moving
grip (500 mm/min). Any test piece that broke outside the test length was discarded, and a
repeat test was conducted on another test piece.

Tensile strength, TS [MPa], was calculated using the following equation:

TS = Fm/(W × t) (2)

where

Fm is the maximum force [N];
t is the thickness of the test piece over the test length [mm]; and
W is the width of the test piece over the test length [mm].

4.6. Hardness Test

The Shore A hardness of the specimens was evaluated according to the PN-EN ISO
868:2005 standard [49]. The measurements were made at five different points using the
Sauter HBA 100-1 Shore-Durometer (KERN & SOHN GmbH, Balingen, Germany) attached
to the Sauter Durometer Test Stand TI-A0 (KERN & SOHN GmbH).

4.7. Statistical Analysis

The obtained results were analyzed using GraphPad Prism 9.1.2. software (GraphPad
Software, San Diego, CA, USA). All measurements were carried out for a minimum of
10 samples (n ≥ 10 for each group). The results were expressed as box pots displaying the
five-number summary of a set of data (minimum, first quartile, median, third quartile, and
maximum). Differences between the studied methods of disinfection and nondisinfected
controls were tested using parametric one-way analysis of variance (ANOVA) with post hoc
Tukey’s Honest Significant Difference test or the nonparametric Kruskal–Wallis ANOVA
with post hoc Dunn’s test. Differences between the groups were considered statistically
significant at p < 0.05.

5. Conclusions

Our general conclusion is that both the main and additional hypotheses of the study
should be rejected. The results showed that: (1) A-silicones had better dimensional stability,
tensile strength, and Shore A hardness than C-silicones; and (2) both traditional (immersing
and spraying) and alternative (UVC and ozone) disinfection methods did not significantly
influence the tensile properties and dimensional stability of the studied dental silicones;
however, disinfection significantly affected their hardness, particularly that of light-bodied
C-silicone (Oranwash L).

Based on our results, it can be concluded that both UVC radiation and gaseous ozone
may be promising alternative methods for disinfecting dental impressions, especially
A-silicones and putty-type C-silicones. Because these disinfection techniques may have
a negative influence on the hardness of impressions, their usefulness for light-bodied
silicones should be assessed for each individual material.

Author Contributions: Conceptualization, J.W. and M.W.; methodology, J.W.; validation, M.W.;
formal analysis, J.W.; investigation, J.W., A.M., S.O. and P.S.; resources, M.W.; data curation, J.W.;
writing—original draft preparation, J.W. and A.P.-S.; writing—review and editing, M.W.; visualization,
J.W.; supervision, J.W. and M.W.; project administration, J.W.; funding acquisition, J.W. and M.W. All
authors have read and agreed to the published version of the manuscript.

Funding: The study was supported by funding from the Department of Experimental Dentistry of
Wroclaw Medical University (Grant No. SUBZ.B160.22.093).



Int. J. Mol. Sci. 2022, 23, 10859 13 of 14

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated and/or analyzed during the study are available
from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hirota, Y.; Tawada, Y.; Komatsu, S.; Watanabe, F. Effect of impression holding time and tray removal speed on the dimensional

accuracy of impressions for artificial abutment tooth inclined. Odontology 2021, 109, 157–167. [CrossRef] [PubMed]
2. Kustrzycka, D.; Marschang, T.; Mikulewicz, M.; Grzebieluch, W. Comparison of the Accuracy of 3D Images Obtained from

Different Types of Scanners: A Systematic Review. J. Healthc. Eng. 2020, 2020, 8854204. [CrossRef] [PubMed]
3. Cicciù, M.; Fiorillo, L.; D’Amico, C.; Gambino, D.; Amantia, E.M.; Laino, L.; Crimi, S.; Campagna, P.; Bianchi, A.;

Herford, A.S.; et al. 3D digital impression systems compared with traditional techniques in dentistry: A recent data sys-
tematic review. Materials 2020, 13, 1982. [CrossRef]

4. Lim, J.-H.; Mangal, U.; Nam, N.-E.; Choi, S.-H.; Shim, J.-S.; Kim, J.-E. A comparison of accuracy of different dental restorative
materials between intraoral scanning and conventional impression-taking: An in vitro study. Materials 2021, 14, 2060. [CrossRef]

5. Lam, W.Y.H.; Mak, K.C.K.; Maghami, E.; Molinero-Mourelle, P. Dental students’ preference and perception on intraoral scanning
and impression making. BMC Med. Educ. 2021, 21, 501. [CrossRef] [PubMed]

6. Lee, K.C.; Park, S.J. Digital intraoral scanners and alginate impressions in reproducing full dental arches: A comparative 3D
assessment. Appl. Sci. 2020, 10, 7637. [CrossRef]

7. Ahlholm, P.; Sipilä, K.; Vallittu, P.; Jakonen, M.; Kotiranta, U. Digital Versus Conventional Impressions in Fixed Prosthodontics: A
Review. J. Prosthodont. 2018, 27, 35–41. [CrossRef]

8. Vrbova, R.; Bradna, P.; Bartos, M.; Roubickova, A. The effect of disinfectants on the accuracy, quality and surface structure of
impression materials and gypsum casts: A comparative study using light microscopy, scanning electron microscopy and micro
computed tomography. Dent. Mater. J. 2020, 39, 500–508. [CrossRef]

9. Jayaraman, S.; Singh, B.P.; Ramanathan, B.; Pazhaniappan Pillai, M.; MacDonald, L.K.R. Final-impression techniques and
materials for making complete and removable partial dentures. Cochrane Database Syst. Rev. 2018, 2018, CD012256. [CrossRef]

10. Gupta, M.; George, V.T.; Balakrishnan, D. A comparative evaluation of tear strength and tensile strength of autoclavable and
non-autoclavable vinylpolysiloxane impression material: An in vitro study. J. Int. Oral Health 2020, 12, 153–157.

11. Azevedo, M.J.; Correia, I.; Portela, A.; Sampaio-Maia, B. A simple and effective method for addition silicone impression
disinfection. J. Adv. Prosthodont. 2019, 11, 155–161. [CrossRef] [PubMed]

12. Al Mortadi, N.; Al-Khatib, A.; Alzoubi, K.H.; Khabour, O.F. Disinfection of dental impressions: Knowledge and practice among
dental technicians. Clin. Cosmet. Investig. Dent. 2019, 11, 103–108. [CrossRef] [PubMed]

13. Mantena, S.R.; Mohd, I.; Sajjan, S.; Ramaraju, A. Disinfection of Impression Materials: A Comprehensive Review of Disinfection.
Int. J. Dent. Mater. 2019, 1, 7–16. [CrossRef]

14. Adabo, G.L.; Zanarotti, E.; Fonseca, R.G.; Cruz, C.A. Effect of disinfectant agents on dimensional stability of elastomeric
impression materials. J. Prosthet. Dent. 1999, 81, 621–624. [CrossRef]

15. Selvam, S.P.; Rakshagan, V. Day to Day Use of Disinfectant Methods for Different Impression Materials among Dental Practitioners.
J. Pharm. Res. Int. 2020, 32, 113–124. [CrossRef]
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