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Abstract: Myocardial infarction (MI) causes peripheral organ injury, in addition to cardiac dys-
function, including in the liver, which is known as cardiac hepatopathy. Aerobic exercise (AE) can
effectively improve liver injury, although the mechanism and targets are currently not well estab-
lished. Irisin, mainly produced by cleavage of the fibronectin type III domain-containing protein
5 (FNDC5), is a responsible for the beneficial effects of exercise training. In this study, we detected
the effect of AE on MI-induced liver injury and explored the role of irisin alongside the benefits of
AE. Wildtype and Fndc5 knockout mice were used to establish an MI model and subjected to AE
intervention. Primary mouse hepatocytes were treated with lipopolysaccharide (LPS), rhirisin, and a
phosphoinositide 3-kinase (PI3K) inhibitor. The results showed that AE significantly promoted M2
polarization of macrophages and improved MI-induced inflammation, upregulated endogenous irisin
protein expression and activated the PI3K/ protein kinase B (Akt) signaling pathway in the liver of MI
mice, while knockout of Fndc5 attenuated the beneficial effects of AE. Exogenous rhirisin significantly
inhibited the LPS-induced inflammatory response, which was attenuated by the PI3K inhibitor. These
results suggest that AE could effectively activate the FNDC5/irisin-PI3K/Akt signaling pathway,
promote the polarization of M2 macrophages, and inhibit the inflammatory response of the liver
after MI.

Keywords: myocardial infarction; liver injury; inflammation; macrophage; aerobic exercise; irisin

1. Introduction

Heart failure (HF) is a frequent complication of myocardial infarction (MI), which is
one of the leading causes of death worldwide [1]. Clinical studies have found that acute MI
leads to impaired liver function, with elevated serum levels of aspartate aminotransferase
(AST) in approximately 85.6% of MI patients and alanine aminotransferase (ALT) in 48.2%
of MI patients [2,3]. HF could induce the development of acute cardiogenic liver injury
and congestive hepatopathy, moreover, the incidence of congestive liver disease in patients
with HF post MI is up to 65% [4]. Guzeeva et al. have indicated the abnormalities in the
liver of patients with MI, including metabolism disorders and structural changes, might be
due to the decreased contractile capacity of the myocardium [5]. There was a significant
correlation between the severity of liver injury and mortality after MI [2,3]. Therefore, it is
of great significance to improve liver injury in patients with MI.

Inflammation is often a cause of liver injury in many types of liver diseases. In
patients with MI, cardiac dysfunction inevitably leads to a decrease in the peripheral blood
volume, which would induce cellular ischemia and hypoxia around the hepatic portal vein
and an imbalance of redox levels [6,7]. Excessive reactive oxygen species (ROS) trigger
an inflammatory response and increase the synthesis and secretion of pro-inflammatory
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cytokines, such as nuclear factor-kappa B (NF-κB) and tumor necrosis factor-α (TNF-
α) [8]. Macrophages are widely distributed innate immune cells, and play a fundamental
role in the initiation, maintenance, and resolution of inflammation [9]. It is known that
proinflammatory cytokines can promote the polarization of M1-type macrophages, which
would further exacerbate the expressions of proinflammatory cytokines and induce the
inflammatory response [10]. A previous study showed that MI could trigger systemic
inflammation and activate macrophages in the liver, which would be one of the mechanisms
of MI-induced liver injury [11]. Studies have revealed that the increased M1 macrophage
polarization and reduced M2 macrophage polarization were the important causes of liver
injury in multiple liver disease models [12–16]. Therefore, regulating M1/M2 macrophage
polarization would be an effective pathway to inhibit inflammation and alleviate MI-
induced liver injury.

Exercise training is an effective intervention to improve cardiac function in MI pa-
tients [17]. It has been reported that exercise training provides beneficial effects in various
liver diseases, including hepatic ischemia-reperfusion injury [18], drug-related liver in-
jury [19], and non-alcoholic fatty liver disease (NAFLD) [20]. The mechanisms were related
to inhibiting ROS and inflammation, regulating M1/M2 macrophages polarization, in-
creasing β-oxidation and reducing intrahepatic fat content, hepatocyte autophagy, and
apoptosis [18,21–24]. It has been demonstrated that aerobic exercise (AE) ameliorated liver
injury in MI rats by reducing oxidative stress [25]. However, whether exercise training
could inhibit the inflammation in the liver after MI needs to be further explored.

Irisin is an exercise-induced myokine, which is cleaved from fibronectin type III
domain-containing protein 5 (FNDC5). It has been reported that irisin plays important
roles in regulating energy metabolism, insulin resistance, oxidative stress, inflammation,
cell apoptosis, and fibrosis [26–28]. FNDC5/irisin is involved in different types of liver
diseases, such as NAFLD, multiple detrimental insults-induced liver injury, and hepatic
malignancy [29]. However, little is known about the effect of irisin on MI-induced liver
injury. Exercise training could induce hepatic irisin expression, inhibit the inflammatory
response, and improve liver function in NAFLD [30,31]. Whether exercise training could
improve MI-induced liver injury through irisin needs to be explored. In this study, we
prepared MI models with AE intervention by using wildtype (WT) and Fndc5 knockout
(Fndc5-/-) mice, and we found that FNDC5/irisin inhibited the inflammatory response and
mediated the AE-induced improvement of the liver injury and inflammation after MI.

2. Results
2.1. AE Inhibited Liver Injury in Mice with MI

The WT mice were used to establish the MI model and survival mice were randomly
divided into the sham-operated group (S), MI group, and MI with AE group (ME). At first,
we evaluated the cardiac function by using echocardiography to confirm the effectiveness
of AE on MI mice. The results showed that, compared to the S group, the left ventricular
internal diameter at end diastole (LVIDd) had a trend that increased, whereas the left
ventricular internal diameter at end systole (LVIDs) increased significantly (p < 0.01),
ejection fraction (EF) and fractional shortening (FS) decreased significantly (both p < 0.01) in
the MI group. In comparison to the MI group, AE increased EF (p < 0.01) and FS (p < 0.01)
significantly (Figure 1A–E).

We examined the histological changes in the liver by using H&E staining and sirius
red staining. The results showed that, compared to the S group, MI induced inflammatory
cell infiltration and increased collagen deposition (p < 0.01), and collagen I (p < 0.01)
expression in the livers of the MI group. Compared to the MI group, AE reduced the
degree of inflammatory cell infiltration, decreased collagen deposition (p < 0.05), and the
expressions of collagen I (p < 0.05) and collagen III (p < 0.05) in the ME group (Figure 1F–K).
We evaluated liver function by detecting serum transaminase levels. Compared to the S
group, the levels of AST, ALT, and total bilirubin (T-BIL) in the serums were significantly
increased in the MI group (all p < 0.01), which were reversed by AE (p < 0.01 for AST and
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ALT, p < 0.05 for T-BIL, Figure 1L–N). These results indicated that the MI-induced liver
injury and dysfunction were improved by AE.
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Figure 1. Effects of AE on the structure and function of the liver in mice with MI. (A–E), results of
echocardiography; (F), H&E staining of liver tissue, the arrow indicates the area of inflammatory
cell infiltration. (G,H), sirius red staining and analysis of liver tissue and collagen fibers (red), the
arrow of Figure (G) indicates the area of collagen fiber deposition. (I–K), the expressions of hepatic
collagen I and collagen III. (L–N), the levels of AST, AST, and T-BIL in serum. Scale bar: 5 µm. Data
are expressed as mean ± SEM, n = 6. * p < 0.05, ** p < 0.01 by one-way ANOVA. S: sham group; MI:
myocardial infarction group; ME: MI with AE group.
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2.2. AE Regulated Macrophage Polarization, Suppressed Inflammatory Response and Activated
Irisin/PI3K/Akt Signaling Pathway in the Liver of MI Mice

To further examine the mechanisms of AE on liver injury, we measured the inflamma-
tion level by detecting the expressions of macrophage polarization-related proteins and
inflammatory factors in the liver tissues. Mannose receptor (CD206) and arginase-1 (Arg1)
were viewed as markers of M2 macrophage [32]. Western blotting results showed that
compared to the S group, reduced protein expressions of CD206 (p < 0.05) and Arg1 were
detected in the MI group, which were upregulated by AE (both p < 0.05, Figure 2A–C).
Meanwhile, MI increased the expressions of inducible nitric oxide synthase (iNOS, p < 0.01),
NF-κB (p < 0.01), TNF-α (p < 0.01), interleukin-1β (IL-1β, p < 0.01), and interleukin-6 (IL-6,
p < 0.01) when compared to the S group. While compared to the MI group, AE significantly
reduced the expressions of iNOS (p < 0.05), NF-κB (p < 0.01), TNF-α (p < 0.01), IL-1β
(p < 0.01), and IL-6 (p < 0.05, Figure 2D–H). These results indicated that MI promoted
the development of inflammation, while AE promoted M2 macrophage polarization and
inhibited inflammation.
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Figure 2. Effects of AE on the macrophage polarization, inflammatory response, and activation
of irisin/PI3K/Akt signaling pathway in the livers of the MI mice. (A), Western blotting results;
(B,C), analysis of the expressions of CD206 and Arg1. (D–H): analysis of the expressions of inflam-
matory factors. (I–K), analysis of the activation of the irisin–PI3K/Akt signaling pathway. Data are
expressed as mean ± SEM, n = 3. * p < 0.05, ** p < 0.01 by one-way ANOVA. S: sham group; MI:
myocardial infarction group; ME: MI with AE group.
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To verify whether irisin and the downstream PI3K/Akt signaling pathway were in-
volved in this process, we detected the protein expression of irisin and the phosphorylation
of PI3K and Akt. The results showed that AE significantly upregulated the expression of
irisin (p < 0.01) and the phosphorylation of PI3K and Akt (both p < 0.05) in the ME group
when compared to the MI group (Figure 2I–K). These results indicated that AE effectively
activated the FNDC5/irisin-PI3K/Akt signaling pathway in the livers of the MI mice.

2.3. Knockout of Fndc5 Impaired the Protective Effect of AE on MI-Induced Liver Injury

To determine the exact role of irisin in the protective effect of AE on MI-induced liver
injury, we prepared Fndc5-/- MI mice and intervened them with AE. At first, we detected
the expression of Fndc5 in WT and Fndc5-/- mice by RT-qPCR. Compared to the WT mice,
minimal Fndc5 was detected in the livers of the Fndc5-/- mice (p < 0.01, Figure 3A). Survival
Fndc5-/- mice were also divided into the sham group (KS), MI group (KMI), and ME group
(KME). Compared with the S, MI, and ME groups of the WT mice, knockout of Fndc5 mice
further increased the levels of AST (both p < 0.01 in the KMI and KME groups, Figure 3B),
ALT (p < 0.05 in the KME group, Figure 3C), and T-BIL (both p < 0.01 in the KMI and KME
groups, Figure 3D), and reduced cardiac function by increasing LVIDs (both p < 0.05 in the
KS and KME groups, p < 0.01 in the KMI group, Figure 3F) and decreasing EF and FS (all
p < 0.01 in the KS, KMI and KME groups, Figure 3G,H) in the Fndc5-/- mice. These results
indicated that Fndc5 knockout aggravated MI-induced liver injury and cardiac dysfunction
and inhibited the protective effect of AE, however, it had no significant effect on the liver
function of the sham mice. Moreover, the deterioration of cardiac function, due to Fndc5
knockout, increased the mortality after MI, which resulted in a reduction in sample size.
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Figure 3. Effect of Fndc5 knockout on the MI-induced liver injury and the benefits of AE. (A), RT-
qPCR results of Fndc5 in the WT and Fndc5-/- mice; (B–D), serum levels of AST, ALT, and T-BIL;
(E–H), hemodynamic results. Data are expressed as mean ± SEM, n = 6. * p < 0.05, ** p < 0.01 by
two-way ANOVA. S: sham group; MI: myocardial infarction group; ME: MI with AE group; KS, KMI,
and KME: the S, MI, and ME groups of the Fndc5-/- mice.

Based on these results, we compared the effect of AE on the inflammatory response
between the KMI and KME groups. H&E staining, sirius red staining, and western blotting
results showed AE has no effect on the levels of inflammatory infiltration, collagen deposi-
tion, (Figure 4A–F) and the expressions of CD206, Arg1, NF-κB, iNOS, TNF-α, IL-1β, and
IL-6 as well as the phosphorylation of PI3K and Akt (Figure 4F–O). These results showed
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that the knockout of Fndc5 attenuated the effects of AE on the inhibition of inflammation
and activation of the PI3K/Akt signaling pathway in the livers of the MI mice.
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Figure 4. Effect of Fndc5 knockout on the AE-inhibited inflammatory response in the livers of the MI
mice. (A,B), sirius red staining of liver tissue, the arrow of Figure (A) indicates the area of collagen
fiber deposition; (C), H&E staining of liver tissue, the arrow indicates the area of inflammatory
cell infiltration; (D,E), the expressions of hepatic collagen I and collagen III. (F), Western blotting
results; (G,H), analysis of the expressions of CD206 and Arg1. (I–M): analysis of the expressions of
inflammatory factors. (N,O), analysis of the activation of the PI3K/Akt signaling pathway. Data are
expressed as mean ± SEM, n = 3. KMI: myocardial infarction group of the Fndc5-/- mice; KME: MI
with AE group of the Fndc5-/- mice.
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2.4. Irisin Activated the PI3K/Akt Signaling Pathway and Inhibited Inflammation In Vitro

To verify whether exogenous irisin could inhibit inflammation, primary mouse hepa-
tocytes were isolated and treated with LPS, rhirisin, exercised serum (ES), and LY294002
(a PI3K inhibitor). The results showed that LPS intervention significantly inhibited the
phosphorylation of PI3K and Akt (all p < 0.01). Both rhirisin and ES significantly increased
the expression of irisin (p < 0.01 for rhirisin, p < 0.05 for ES), the phosphorylation of PI3K
(both p < 0.01) and Akt (both p < 0.01) in LPS-treated hepatocytes. LY294002 significantly
inhibited the phosphorylation of PI3K (both p < 0.01) and Akt (both p < 0.01) in cells with
rhirisin and ES intervention (Figure 5A–D).
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LPS intervention significantly increased the expressions of NF-κB (p < 0.01), TNF-α
(p < 0.01), IL-1β (p < 0.01), and IL-6 (p < 0.01) compared to the control group. Both rhirisin
and ES intervention reduced the expressions of NF-κB (both p < 0.01), TNF-α (both p < 0.01),
IL-1β (both p < 0.01), and IL-6 (both p < 0.01) in the LPS-treated cells (Figure 5A,E–H). The
PI3K inhibitor LY294002 inhibited the effects of rhirisin and ES by increasing the expressions
of NF-κB (p < 0.01 for ES), TNF-α (p < 0.01 for ES), IL-1β (both p < 0.01), and IL-6 (both
p < 0.01, Figure 5A,E–H). In addition, the results showed that rhirisin and ES could activate
the PI3K/Akt signaling pathway and inhibit the LPS-induced inflammatory response in
primary mouse hepatocytes.

3. Discussion

MI-induced liver injury has been confirmed in clinical patients and animal models.
Exercise training can improve MI-induced liver injury, although the mechanisms have
not yet been fully elucidated. In this study, we focused on the role of irisin in the anti-
inflammatory effect of AE in the livers of MI mice. The main findings of this study were as
follows: (1) AE inhibited MI-induced inflammation and dysfunction, upregulated irisin
protein expression, and activated the PI3K/Akt signaling pathway in the livers of MI
mice; (2) knockout of Fndc5 alleviated the benefits of AE in MI-induced liver injury and
the inflammatory response; (3) rhirisin improved LPS-induced inflammation through the
PI3K/Akt signaling pathway in hepatocytes. These results revealed the anti-inflammatory
effect of irisin in liver injury after MI and provide a basis for screening the exercise targets
in the protective effect on MI-induced liver injury.

Left ventricular systolic dysfunction after MI causes cardiac insufficiency effects. The
ensuing ischemia and hypoxia both reduce cardiac function and induce damage to the other
organs, such as the kidney, brain, skeletal muscle, and liver [2,33,34]. It has been shown
that considerable changes were observed in the rat liver six months after MI [35,36]. Acute
and chronic HF may lead to acute ischemic hepatitis or chronic congestive hepatopathy.
In this study, we found inflammatory cell infiltration and collagen deposition in the liver
tissue during the seventh week of MI. Meanwhile, serum transaminase levels increased
significantly. These results confirmed MI could induce liver injury. Six weeks of AE
inhibited liver injury, which would block the further development of the injury and liver
tissue remodeling.

Hypoxia usually increases the production of ROS, leading to oxidative damage, which
further promotes inflammation. Overproduction of ROS in the liver induces macrophage
polarization to the M1 type. M1 macrophages are involved in proinflammatory responses
by producing proinflammatory cytokines (IL-1β, IL-6, IL-12, IL-18, and TNF-α) and
chemokines to guide acute inflammatory responses, in contrast, M2 macrophages play an
anti-inflammatory role [37,38]. One study demonstrated that AE could reduce oxidative
stress in the liver of MI rats and ameliorate liver injury [25]. However, little is known
about the effect of AE on macrophage polarization and the inflammatory response in the
liver after MI. In this study, our results confirmed that MI reduced the increase of M2
macrophages, and upregulated the expressions of iNOS, NF-κB, TNF-α, IL-1β, and IL-6.
AE significantly increased M2 macrophages and inhibited the expressions of inflammatory
factors. This all suggests that AE is an effective method to inhibit inflammation in the liver
after MI by regulating macrophage polarization.

Many studies focused on the crosstalk between the liver and heart [4,39,40] and found
liver-derived cytokines, such as fibroblast growth factor 21, IL-22, proprotein convertase
subtilisin/kexin type 9, and coagulation factor XI participated in cardiac protection after
MI [41–43]. However, few studies indicated the effect of cytokines on MI-induced liver
injury. Irisin is a well-studied myokine, which was discovered in 2012 [26]. Irisin is mainly
released by skeletal muscle and adipose tissue and is also expressed in the heart, liver,
spleen, pancreas, brain, and kidney [44]. Studies have suggested the therapeutic potential
of irisin against a variety of liver diseases based on its antioxidative, antiapoptotic, and
anti-inflammatory functions [45]. Exogenous irisin treatment was effective in protecting
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the liver from ischemia-reperfusion and sepsis-induced injury [46,47]. Moreover, irisin
could alleviate LPS-induced liver injury and inflammation by inhibiting NLR family pyrin
domain containing 3 (NLRP3) and NF-κB signaling [48]. It has been reported that exercise-
induced irisin inhibited inflammation and improved liver injury in NAFLD [31]. In this
study, we found less expression of irisin in the livers of the mice with MI, which could be
upregulated by AE. Moreover, knockout of Fndc5 attenuated AE-inhibited inflammation
and liver injury after MI. Our data suggest that endogenous irisin played an irreplaceable
role in the improvement of MI-induced liver injury by AE.

The PI3K/Akt signaling pathway is a classical intracellular signaling pathway that
plays a crucial role in the survival, proliferation, migration, and polarization of
macrophages [49–51]. In addition, PI3K/Akt is important to inhibit liver fibrosis, in-
flammation, oxidative stress, and apoptosis, as well as in promoting hepatocyte regenera-
tion [52–55]. Irisin could regulate hepatic glucose metabolism via PI3K/Akt activation [56],
suggesting that the PI3K/Akt signaling pathway is an important downstream signal of
irisin. Previous studies found that the activation of the PI3K/Akt signaling pathway dur-
ing liver ischemia-reperfusion injury, increased IL-4, and IL-10 expressions, decreased
IL-1β and TNF-α expressions, and reduced the hepatic inflammatory response. In con-
trast, inhibition of PI3K/Akt signaling increased NF-κB transcription and the release of
TNF-α, IL-1β, and IL-6, ultimately aggravating liver injury [57,58]. Similar to these studies,
our animal experiments suggested that AE upregulated irisin expression and inhibition
of the inflammatory response were related to the activation of the PI3K/Akt signaling
pathway. Furthermore, inhibition of the PI3K/Akt signaling pathway attenuated the anti-
inflammatory effect of irisin in vitro. However, we have no direct evidence to show how
irisin inhibited inflammation by activating the PI3K/Akt signaling pathway.

Studies have shown that the PI3K/Akt signaling pathway can inactivate Toll-like
receptor 4 (TLR4) by preventing the recruitment of the Toll-IL-1 resistant structural domain
attachment protein (TIRAP) to the cell membrane, which would inhibit the activation of
NF-κB and its downstream proinflammatory cytokines [59–61]. Moreover, it has been
shown that the anti-inflammatory effect of irisin was connected with the TLR4/myeloid
differentiation factor 88 (MyD88) signaling pathway [62]. Based on these, TLR4 would play
an important role in the inhibition of the inflammation of the irisin-PI3K/Akt signaling.
Actually, it still has a different view, whereby irisin inhibited the PI3K/Akt/NF-κB signaling
pathway to ameliorate inflammation, such as in chondrocytes [63]. We believed that
the functions of irisin and the PI3K/Akt signaling pathway were related to the types
of tissue and pathological microenvironment of diseases. The exact mechanisms of the
irisin-mediated anti-inflammatory effect of AE, in the livers of MI mice, still require more
in-depth studies.

4. Materials and Methods
4.1. Animals and Exercise Protocol

Eight-week-old male C57BL/6J wildtype (WT) mice were purchased from the labo-
ratory animal center of the Xi’an Jiaotong University (Xi’an, China). The Fndc5+/- mice
(C57BL/6N-Fndc5em1Cya, S-KO-09897), which were conventional knockout by CRISPR-
Cas9, were purchased from Cyagen Biosciences Inc. (Guangzhou, China) and were
used to generate the homozygous target mice. The sequence of primers for screening
homozygous mice is as follows: F1: 5′-CTGTCTCCAATGTTCCACT TGTCTG-3′; R1: 5′-
CTTGCCTTTGTTCTTTGAGGCCATC-3′; R2: 5′-GCTTGAACCAAGGCGAGAGCTAGT-3′.
All animals were housed in the Institute of Sports Biology, Shaanxi Normal University
(temperature: 23–25 ◦C and humidity: 40–60%), with four to five animals per cage, who
resided under a 12 h light/12 h dark cycle and received ad libitum access to water and
standard rodent chow. All experimental protocols were approved by the Ethics Committee
of Shaanxi Normal University.

WT and Fndc5-/- mice were used to establish the MI model by ligation of the left
anterior descending coronary artery at the position approximately 2 mm under the junction
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of the pulmonary conus and left atrial appendage. Surviving WT mice were randomly
divided into the sham-operated group (S), MI group, and MI with AE group (ME), n = 6;
the surviving Fndc5-/- mice were also divided into the S group (KS), MI group (KMI), and
ME group (KME), n = 3.

Mice in ME and KME groups were subjected to six weeks of treadmill AE from
the second week after surgery. The exercise training protocol was based on a previous
study [64] and adjusted according to the state of the exercised mice. During the first five
days, mice were subjected to adaptive training, in which the speed and duration were
gradually increased from 5 m/min for 10 min to 10 m/min for 50 min. The formal training
speed was 10 m/min for 60 min per day, five days per week, for six weeks, corresponding to
a moderate intensity exercise, and the maximum oxygen uptake was about 65–70% [65,66].
No mice died during the process.

4.2. Echocardiographic Measurements

Echocardiography was used to test cardiac function on the second day after ligation
and the second day after the last training. Mice were placed in the supine position and
anesthetized with isoflurane (3% induction and 1% maintenance, 1 L/min oxygen). The
left ventricle internal dimension diastole (LVIDd), the left ventricle internal dimension
systole (LVIDs), and the ejection fraction (EF) were recorded by averaging six consecutive
cardiac cycles with an ultrasound probe after hair removal. Fractional shortening (FS) was
calculated by the formula: FS = (LVIDd − LVIDs)/LVIDd.

4.3. Histological Staining and Analysis

Mice were sacrificed and the livers were quickly collected, cleaned with phosphate
buffer saline (PBS, pH = 7.2), and fixed in cold 4% formaldehyde or liquid nitrogen for sub-
sequent experiments. Liver tissues fixed in 4% paraformaldehyde were paraffin-embedded.
Embedded tissues were subjected to 5 µm serially sectioned and stained with H&E or sirius
red, according to the standard procedures.

4.4. Primary Mouse Hepatocyte Isolation and Cell Culture

The method of primary mouse hepatocyte isolation was modified from the classic
two-step collagenase perfusion technique [67]. The specific steps were as follows: culture
plates were covered with 0.01% rat-tail collagen (C8062, Solarbio, Beijing, China) one day
before cell isolation. Before separating the cells, the pH of the Perfusion Solution I (0.019 g
EGTA dissolved in 100 mL D-HANKS) and Perfusion Solution II (type IV collagenase
40 mg dissolved in 100 mL high sugar DMEM) were adjusted to 7.2–7.4 and placed in a
water bath at 40 ◦C for 1 h. Perfusion Solution I and II were infused retrograde through the
inferior vena cava using a 4.5-gauge infusion needle to the liver, which was showing an
earthy color and collapsing. The liver was cut out and the gallbladder was removed. The
liver tissue was transferred to a culture plate, the liver envelope torn, and gently shaken
until the hepatocytes were separated. Hepatocyte suspension was obtained by filtration
using a 70 µm cell sieve and centrifuged twice at 500 r/min. After adjusting the density,
1 × 106 hepatocytes were inoculated into each plate and incubated at 37 ◦C for 8 h. When
the cell density reached 80–90%, the primary mouse hepatocytes were treated with LPS
(500 ng/mL, 12 h), rhirisin (250 ng/mL, 24 h), exercise serum from mice (1%, 24 h, mimic
the effects of AE), and LY294002 (10 µM, 24 h).

4.5. Measurement of Liver Function

The ATS (C010-2-1, NanJing JianCheng Bioengineering Institute, Nanjing, China), ALT
(C009-2-1), and T-BIL (C019-1) assay kits were used for testing the liver function. The
operation procedure was carried out in strict accordance with the instructions.
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4.6. RT-qPCR

Total RNA was extracted from the frozen liver tissues (15–20 mg) with the RNAeasyTM

animal RNA isolation kit with spin columns (R0024FT, Beyotime, Shanghai, China). A Re-
vertAid first-strand cDNA synthesis kit (K1622, Thermo Scientific, Waltham, MA, USA)
was used to transcribe mRNA into cDNA. RT-qPCR was performed by using SYBR
Green PCR Master Mix (Beyotime) and a CFX96 Real-Time PCR System (Bio-Rad, Her-
cules, CA, USA). The primers were synthesized by Sangon (Shanghai, China). The
primer sequences were as follows: Fndc5 (F:5′-GGCTGGGAGTTCATGTGGAA-3′; R:5′-
TGGGAAGCGGTTATCTTTGCT-3′), Gapdh (F:5′-CAGTGCCAGCCTCGTCTCAT-3′; R:5′-
AGGGGCATCCACAGTCTTC-3′).

4.7. Western Blotting

Extracted tissue protein and cellular protein were separated by 10–12% SDS-PAGE at
a constant voltage of 90 V for 90 min, followed by electrotransfer (300 mA, 4 ◦C, 100 min)
to NC membranes (Millipore, Bedford, MA, USA). Membranes were blocked with 5% skim
milk for 90 min at room temperature (RT), then, incubated with primary antibodies at
4 ◦C overnight. The primary antibodies and concentrations were as follows: irisin (1:1000,
ab174833, Abcam, Cambridge, UK) NF-κB p65 (1:1000, 10745-1-AP, Proteintech, Rosemont,
IL, USA), TNF-α (1:500, 60291-1-Ig, Proteintech), IL-6 (1:1000, 21865-1-AP, Proteintech),
IL-1β (1:1000, 16806-1-AP, Proteintech), phospho-PI3K (1:1000, AP0854, ABclonal, Wuhan,
China), PI3K (1:1000, ab278545, Abcam), phospho-Akt (1:1000, 28731-1-AP, Proteintech),
CD206 (1:1000, 18704-1-AP, Proteintech), Arg-1 (1:1000, 66129-1-Ig, Proteintech), iNOS
(1:1000, 22226-1-AP, Proteintech), collagen I (1:1000, 14695-1-AP, Proteintech), and collagen
III (1:1000, 22734-1-AP, Proteintech). GAPDH was used as a loading control for protein
normalization. On the second day, the membranes were washed three times with Tris-
buffered saline with Tween 20 (TBST) and, then, incubated with the HRP-conjugated
secondary antibody for 90 min at RT. After washing the membranes, the reactive bands
were detected using enhanced chemiluminescence reagent (ECL, Bio-Rad), and visualized
using a digitalized Bio-Rad ChemiDocTM MP Imaging system (Bio-Rad).

4.8. Statistical Analysis

Image J software was used to process and analyze the microscope images and detect
the grayscale values of the bands. GraphPad Prism 5.0.1 was used to analyze experimental
data, including T-test and one-way ANOVA followed by Tukey’s test or two-way ANOVA.
Data were expressed as the mean ± standard error (SEM) with statistically significant
differences selected at the p < 0.05 and p < 0.01 levels.

5. Conclusions

In this study, we found AE activated the expression of FNDC5/irisin, activated the
PI3K/Akt signaling pathway, promoted the polarization of the M2 macrophages, and in-
hibited the inflammatory response of the liver after MI. The specific intracellular molecular
mechanism needs to be further explored (Figure 6).
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