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Abstract: Neuroblastoma is the most common extracranial solid tumor in children. It is a highly
heterogeneous tumor consisting of different subcellular types and genetic abnormalities. Literature
data confirm the biological and clinical complexity of this cancer, which requires a wider availability
of gene targets for the implementation of personalized therapy. This paper presents a study of
neuroblastoma samples from primary tumors of untreated patients. The focus of this analysis is to
evaluate the impact that the inflammatory process may have on the pathogenesis of neuroblastoma.
Eighty-eight gene profiles were selected and analyzed using a non-negative matrix factorization
framework to extract a subset of genes relevant to the identification of an inflammatory phenotype,
whose targets (PIK3CG, NFATC2, PIK3R2, VAV1, RAC2, COL6A2, COL6A3, COL12A1, COL14A1,
ITGAL, ITGB7, FOS, PTGS2, PTPRC, ITPR3) allow further investigation. Based on the genetic signals
automatically derived from the data used, neuroblastoma could be classified according to stage rather
than as a “cold” or “poorly immunogenic” tumor.
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1. Introduction

Neuroblastoma (NB) is an extracranial solid tumor, and it is considered the most
frequently diagnosed neoplasia in children (7–10%) after leukemia and brain tumors [1,2].
It originates from neural crest cells (NCCs), multipotent cells close to the neural tube,
which migrate and differentiate into multiple cell types during embryogenesis, including
sympathetic neurons and adrenal medullary cells (modified postganglionic sympathetic
neurons). Deregulation of signaling pathways involved in NCC cell differentiation can lead
to the development of NB anywhere in the sympathetic nervous system or the medullary
region of the adrenal gland. NB is a highly heterogeneous tumor in terms of clinical
behavior, consisting of different sub-cell types and showing a variety of genomic alterations
such as MYCN amplification, different DNA ploidy patterns, deletion of the short arm
of chromosome 1, gain of arm of chromosome 17q, and deletion of chromosome 11q.
These genomic alterations, histopathology, age, and stage according to the International
Neuroblastoma Staging System (INSS) are used to classify patients with NB into risk
groups, including low, intermediate, and high risk [3]. Patients with high-risk NB are
challenging to treat and require more effective therapeutic approaches that require a
deeper understanding of the complex intratumoral heterogeneity of NB [4]. As few genetic
defects have been identified, most recent research has focused on identifying the molecular
pathways involved in the complex pathogenesis of NB. Several signaling pathways have
been identified in the literature that contribute to the growth and progression of NB and its
resistance to conventional treatments [5]. It is possible to schematize the role of signaling
pathways involved in the pathophysiology of NB as follows:
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(i) MYCN signaling promoting NB cell proliferation and activating MDM2 expression.
(ii) Wnt signaling, which is involved in stemness and increases the level of MYCN.
(iii) ALK signaling, which activates the expression of PI3K/AKT/mTOR, RAS-MAPK,

and MYCN.
(iv) p53-MDM2 pathway, which promotes angiogenesis, MYCN translation and drug

resistance.
(v) PI3K/AKT/mTOR pathway which promotes survival and chemoresistance of NB cells.
(vi) RAS-MAPK signaling, which is activated by EGFR, promotes neuroblastoma cell survival.
(vii) TrkB signaling activating PI3K/mTOR [6,7].

Rapid advances in omics techniques and “big data” analysis have significantly in-
creased knowledge of the molecular landscape of NB, and its molecular profiling has
provided bioinformatics pipelines to guide different therapeutic options. The recent dis-
covery that two distinct epigenetic states, the less differentiated mesenchymal and neural
crest-like (MES) and the more differentiated adrenergic or sympathetic noradrenergic
(ADRN), coexist and can spontaneously switch between each other represents an advance
in the understanding of NB biology [8–10]. In primary human neuroblastoma, ADRN
status identifies most of the tumor at diagnosis [8,9], whereas MES status is enriched at the
time of recurrence and metastatic disease [11].

Further data provided by the literature define NB as a “cold tumor” because it lacks
basal inflammatory signaling, T-cell infiltration, and a very low expression of the major
histocompatibility complex class I (MHC-I) [12]. This information indicates how the
genetic complexity of NB requires further investigations; in fact, further attempts should
be made to select new signaling pathways that may be responsible for the pathogenesis.
The definition of NB as a “cold” tumor has aroused our curiosity enough to want to
understand this condition; in particular, the aim of our study is to identify the protagonists
of inflammatory events and the potential pathways in which they are involved, starting
with NB samples derived from primary tumors of untreated patients whose gene profiles
are available. If the answer to our question is affirmative, we would like to identify
additional prognostic tumor markers that could be helpful in determining a patient’s
prognosis and/or response to treatment, in addition to those that are currently known from
the literature. Since children make up many NB patients, finding novel tumor markers is
crucial to using them as therapeutic targets and creating customized therapy based on a
patient’s genetic predisposition.

The paper is organized as follows: Section 2 details the pathway enrichment analysis
of extracted genes, discusses the results for understanding potential biomarkers associated
with NB cancer, and provides some gene association network analysis (performed using
GeneMANIA and STRING software) that further consolidated the validity of these ex-
tracted genes, Section 3 describes the NB samples included in this study and the extraction
framework used to identify the subset of genes extracted and discussed in Section 2.

2. Results and Discussions

The subset of genes extracted from Metagene4 (as described in Section 3) was an-
alyzed by pathway enrichment analysis with the WebGeastalt tool [13], using the ref-
erence database PANTHER (Analysis of proteins through evolutionary relationships,
http://www.pantherdb.org, accessed on 30 November 2022), which combines genomes,
gene function classifications, pathways, and statistical analysis tools to cluster genes into
functional pathways that also outline the molecular functions and biological processes
under investigation. These genes are analyzed according to the following parameters: the
reference organism: hsapiens; enrichment categories: Panther pathways; type ID: gene
symbol; reference list: genome-protein-coding. The enrichment analysis was performed
with a minimum and maximum number of IDs. The statistical method chosen for the FDR
was BH (Yoav Benjamini and Yosef Hochberg BH procedure).

Table 1 reports the ten pathways selected; the first six pathways have a p-value ≤ 0.05
and an FDR ≤ 1 and contain 79 genes (representing 10.2% of the 771 extracted genes from

http://www.pantherdb.org
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Metagene4) of which 15 are shared in the different pathways; the remaining enrich the
single pathways.

Table 1. Pathway enrichment analysis: Ten categories are identified as enriched categories, and all are
shown in this table. The parameters for the enrichment analysis are as follows: minimum number of
IDs in the category: 5, maximum number of IDs in the category: 2000, FDR method: BH, significance
level: top 10.

Gene Set Description Size Expect Ratio p Value FDR

P00053 T-cell activation 75 4.8985 4.4912 4.9299 × 10−10 5.5708 × 10−8

P00031 Inflammation mediated by chemokine
and cytokine signaling pathway 200 13.063 2.7559 3.6630 × 10−9 2.0696 × 10−7

P00034 Integrin signaling pathway 166 10.842 2.1214 0.00030327 0.011423

P00010 B-cell activation 58 3.7882 2.9038 0.00099971 0.028242

P00054 Toll receptor signaling pathway 50 3.2657 2.1435 0.041004 0.79098

P00009 Axon guidance mediated by netrin 30 1.9594 2.5518 0.041999 0.79098

P00050 Plasminogen activation cascade 15 0.97970 3.0622 0.069606 1

P00033 Insulin/IGF pathway–protein kinase
B signaling cascade 35 2.2860 2.1873 0.073811 1

P00011 Blood coagulation 38 2.4819 2.0146 0.097796 1

P00047 PDGF signaling pathway 125 8.1642 1.4698 0.11051 1

The analysis of the 88 primary NB tumor profiles allows the selection of the 79 genes
listed in Table 2. These genes are distributed in 6 of the 10 pathways reported in Table 1
and meet the significance criteria FDR < 1 and p-value < 0.05.

Table 2. List of genes present in the first 6 pathways selected with the WebGeastalt tool and satisfying
the significance criteria (FDR < 1; p-value < 0.05). The parameters for the enrichment analysis are as
follows: minimum number of IDs in the category: 5, maximum number of IDs in the category: 2000,
FDR method: BH, significance level: top 10.

T-cell activation

CD247, CD28, CD3D, CD3E, CD3G, CD74, CD86, FOS,
HLA-DMB, HLA-DPA1, HLA-DQA1, HLA-DQA2,
HLA-DRA, LCK, LCP2, NFATC2, PIK3CG, PIK3R2,
PTPRC, VAV1, WAS, ZAP70

Inflammation mediated by chemokine and
cytokine signaling pathway

ACTA2, ACTG2, ALOX5AP, C5AR1, CCL11, CCL13,
CCL18, CCL2, CCL21, CCL4, CCL5, CCL8, CCR1, CCR2,
CCR5, CCR7, COL12A1, COL14A1 COL6A2, COL6A2,
COL6A3, CX3CR1, CXCL10, FPR1, FPR3, ITGAL,
ITGB7, ITPR3, JUNB, MYH11, MYH9, NFATC2,
PIK3CG, PTGS2, RAC2, VAV1, VWF

Integrin signaling pathway

COL10A1, COL11A1 COL12A1, COL14A1, COL15A1,
COL1A2, COL4A5, COL5A1, COL5A2, COL5A2,
COL6A2, COL6A3, COL8A1, COL8A1, FLNA, ITGAL,
ITGAX, ITGAX, ITGB7, ITGBL1, PIK3CG, PIK3R2,
PTGS2, RAC2

B-cell activation BLNK, BTK, CD19, FOS, ITPR3, NFATC2, PIK3CG,
PTPRC, RAC2, SYK, VAV1

Toll receptor signaling pathway CD14, LY96, MAP3K8, PTGS2, TLR2, TLR3, TLR7

Axon guidance mediated by netrin NFATC2, PIK3CG, PIK3R2, PIK3R5, RAC2
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Figure 1 reports the circularly composited visualizations of genes and pathways and
the indications of the shared genes in each of the six selected pathways.
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Figure 1. Shared genes in the six pathways selected by the WebGeastalt tool that meet the significance
criteria (FDR < 1; p-value < 0.05). The circular graph showing the binary relationship between the
six selected pathways and their shared genes was obtained using Circos visualization software [14]
(Version 3, 29 June 2007). The ribbons represent the relationships (the twists on the ribbons indicate
the orientation of the link), the circular segments represent the genes and the pathways to which
they are linked (Path1 = T-cell activation, Path2 = chemokine- and cytokine-mediated inflammation
pathway, Path3 = integrin signaling pathway, Path4 = B-cell activation, Path5 = Toll receptor signaling
pathway, Path6 = netrin-mediated axon guidance). Inflammation mediated by the chemokine and
cytokine signaling pathway shares 12 genes: COL6A2, COL6A3, COL12A1, COL14A1, ITGB7, ITGAL,
ITPR3, NFATC2, PIK3CG, PTGS2, RAC2, VAV1. The integrin signaling pathway shares 9 genes:
COL6A2, COL6A3, COL12A1, COL14A1, ITGAL, ITGB7, PIK3CG, PIK3R2, RAC2. B-cell activation shares
6 genes: ITPR3, FOS, NFATC2, PIK3CG, PTPRC, RAC2, VAV1. T-cell activation shares 5 genes: FOS,
NFATC2, PIK3R2, PIK3CG, PTPRC, VAV1. Netrin-mediated axon guidance shares 4 genes: NFATC2,
PIK3CG, PIK3R2, RAC2. The toll receptor signaling pathway shares only the gene PTGS2.

These data suggest that although NB is a “cold” and/or “non-immunogenic tu-
mor” [12], the inflammatory process—mediated by the chemokine and cytokine signaling
pathway—undoubtedly plays a critical role in the progression of the disease. In tumors,
inflammatory pathways are essential for activating signaling and establishing a permissive
microenvironment. A pediatric NB neoplasm is characterized by functional abnormalities
associated with two genes: the PIK3CG gene shared by five pathways (T-cell activation,
inflammation mediated by chemokine and cytokine signaling pathway, integrin signaling
pathway, B-cell activation, axon guidance mediated by netrin) and the NFATC2 gene, shared
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by four pathways (T-cell activation, inflammation mediated by chemokine and cytokine
signaling pathway, B-cell activation, axon guidance mediated by netrin).

The PIK3CG gene encodes for a class I catalytic subunit of PI3K and plays the role of
a “hub”; i.e., it collects numerous extracellular signals to send them downstream through
the regulatory action of the other components PIK3R2 (T-cell activation, integrin signaling
pathway, axon guidance mediated by netrin) and PIK3R5 (netrin-mediated axon guidance)
This gene also induces pleiotropic actions. In fact, the signals transmitted by the PIK3CG
protein could be necessary for the recruitment of inflammatory cells in the tumor microen-
vironment through the adhesion mediated by integrins (ITGB7, ITGAL) and chemokine
receptors (CCR1, CCR2, CCR5, CCR7, CX3CR1), in response to growth factors and to the
same chemokines (CCL11, CCL13, CCL18, CCL2, CCL21, CCL4, CCL5, CCL8, CXCL10).
PIK3CG signaling can effectively promote angiogenesis and tumor-associated inflamma-
tion [15]; could affect the NFATC2 gene, which encodes a calcium-sensitive protein; and is
characterized by its role in immune responses [16] and neural development [17]. NFATC2
was first identified as a transcriptional regulator in T cells, but it also has a major impact
on tumor growth, metastasis, and the creation of microenvironments that enable tumor
growth [16,18]. The T-cell activation pathway selected by pathway enrichment analysis
revealed that the role of NFATC2 in the immune response is not limited to transcriptional
regulation of T cells but also involves the following:

i. B-cell activation.
ii. Axon growth guidance mediated by netrins, which act as growth factors and promote

growth activity in target cells (netrin-mediated axon guidance) [19].

The activation of NFATC2 could be initiated by the integrins ITGB7 and ITGAL, stimu-
lated by extracellular matrix (ECM) elements such as collagenases (COL6A2, COL6A3,
COL12A1, COL14A1), and the receptors FPR1 and FPR3, which, among other activa-
tion pathways, induce Ca2+ release in NB cells via ITPR3 (inflammation mediated by
chemokines and cytokines signaling pathway) and signal transducers. These stimuli in-
volve the translocation of NFATC2 to the nucleus, which is activated by the formation of
the AP-1 complex, which includes both JUNB (chemokine and cytokine signaling pathway)
and FOS. In T cells, AP-1 forms ternary complexes with NFATC2 and binds NFATC2/AP-1
sites present in regulatory regions of cytokine and effector genes [20].

The proliferation, migration, and angiogenesis of tumor cells are highly dependent on
the NFATC2 protein [16], which can also directly activate the transcriptional activity of the
oncogene by binding to the proximal promoter of the MYC oncogene. NFATC2 silencing
or pharmacological inhibition downregulates MYC and some of its targets. To facilitate
epithelial-to-mesenchymal transition (EMT), it has been hypothesized that NFATC2 is also
functionally related to genes that regulate mesenchymal programs in cancer cells [21].

NFATC2 transcribes PTGS2, which is involved in inflammatory processes; the PTGS2
protein is secreted into the extracellular matrix, catalyzing the production of the pro-
inflammatory prostaglandin PGE2 from arachidonic acid (AA). The latter is also metabo-
lized by lipoxygenases (ALOX5AP) to produce chemoattractants (CCL2, CCL4, CXCL10) [22].
PGE2 has both autocrine and paracrine effects and is a strong inducer of the migration
and proliferation of tumor cells. PGE2 diffuses throughout the brain parenchyma and
activates the immune system, endothelial cell proliferation, vessel formation, and migration
differently depending on which receptors it interacts with [16,23]. In the tumor microenvi-
ronment, the increased production of PGE2 (caused by PTGS2 activation) determines the
increased expression of indoleamine 2,3-dioxygenase (IDO1) which activates the kynure-
nine pathway where tryptophan is used to produce serotonin and melatonin promoting
oxidative stress [24] (see Table S1). The toll-like receptors TLR2, TLR3, and TLR7, along
with CD14 and LY96, enhance the toll receptor signaling pathway when the PTGS2 gene is
expressed in NB cells.

The two genes LY96 and CD14 are activated and act in concert in response to
lipopolysaccharide (LPS) stimuli with the cell surface toll-like receptor 4 (TLR4), pro-
viding a link between the receptor and LPS signaling. The transcription (NFATC2) of
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pro-inflammatory cytokines (PTGS2, PGE2) and chemokines with chemotactic (CCL5,
CCL4, CXCL10) and co-stimulatory (CD86) effects is the result of downstream signaling via
MAP3K8 [25].

Both TLR7 and TLR3 are on the membrane of the endoplasmic reticulum (ER), nucleic
acid-sensitive, and recruited from the ER to endolysosomes in response to stimulation by
their ligands. It has been suggested that extracellular or endosomal DNases break down
nucleic acids before TLRs recognize them.

TLR3 is associated with the release of inflammatory cytokines such as CCL2, CCL4,
CCL5, CCL8, and CXCL10 after ds RNA stimulation, whereas TLR7 signaling stimulates
type I IFN production [26]. Note that PRRX1, a mesenchymal transcription factor present
in Metagene4 (see Table S1) but not selected by the pathway enrichment analysis, induces
the gene for the TLR3 receptor.

An MES phenotype with a high basal inflammatory state is associated with the PRRX1
gene in NB cells, which makes these cells capable of transcription for inflammatory sig-
nature genes and favors the recruitment of T cells (T-cell activation) and B cells (B-cell
activation) [12]. Although TLR7 signaling induces the production of type I IFN, genes
belonging to the MHC-II (inducible by IFN
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MHC-I is generally expressed by all cells, yet tumor cells may lose its expression as a

means of evading the immune system. Some malignancies are known to exhibit MHC-II
even when they lose MHC-I expression; in our case, the genes CD74, HLA-DMB, HLA-DPA1,
HLA-DQA1, HLA-DQA2, and HLA-DQA2 were all expressed.

Recent studies suggest that MHC-I and MHC-II are independently regulated in differ-
ent tumors [27,28]. The protein components of MHC-II are stabilized in the endoplasmic
reticulum by the protein encoded by the CD74 gene. This allows subsequent presentation
of the MHC-II- restricted peptide on the cell surface. CD74 regulates antigens presented by
MHC-II and plays a dual role as a component of the MHC-II antigen presentation pathway
and as a cytokine receptor. The expression of CD74 in tumor cells is thought to play a pro-
and anti-tumor role, which is due to its cytokine signaling and antigen presentation func-
tions [29]. In NB cells, the presence of MHC-II may influence the immune response through
mechanisms that allow direct interaction with T cells to induce polarization and activation.

The binding of the proteins that make up the T cell/CD3 receptor complex (CD247,
CD3D, CD3E, and CD3G), supported by PTPRC [30] and a second co-stimulating signal
(CD28, CD86), provides the first signal for T-cell activation.

PTPRC controls the action of the T cell/CD3 protein complex, which acts as a positive
and negative regulator of the kinase LCK. The latter is dependent on cell type, PTPRC
isoform expression, PTPRC inclusion or exclusion, and clustered signaling complexes. How-
ever, the PTPRC is linked to these responses as a key regulator of cytokine and chemokine
gene expression [31]. These signals, which follow T/CD3-mediated phosphorylation of
LCK, are directed to ZAP70 [32] to activate VAV1 via LCP2 and work with WAS to control
the cytoskeleton.

Co-stimulation of CD28, which binds to VAV1 and activates RAC2, is required for the
second T-cell activation signal, which leads to the development of the AP1 (FOS, JUNB)
transcription complex. Surface molecules transcribed by CD28 and CD86 are involved in
the co-stimulation required to elicit T-cell responses. However, CD28 deficiency can have an
indirect effect on the B-cell compartment, leading to a lack of high-affinity antibodies and
class switching due to insufficient helper T-cell proliferation. Therefore, CD28 activation
is essential for adaptive immunity [33]. By interfering with the control of inflammatory
processes and tumor immunity, and by influencing the malignant development of cancer,
alterations in the CD86 gene can inactivate T cells [34]. NB has been shown to have
immunogenic effects in addition to T-lymphocyte and B-cell activation, which are both
controlled by PTPRC and co-stimulated by the CD19 complex, a co-receptor of the BCR
B-cell receptor [35].

The initial stimulus allows SYK or a similar protein kinase linked to the ZAP70 chain
to be recruited and activated. SYK, a non-receptor-type protein kinase, is involved in
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the coupling of activated immune receptors; the resulting signaling model serves as a
major paradigm of immune cell signaling. The stimulatory events generate a downstream
signaling cascade involving BTK, BLNK, VAV1, and RAC2. Their transcriptional effects
(NFATC2, FOS) lead to cytoskeletal regulation, proliferation, differentiation, and cytokine
release [36]. This cascade is supported by ITPR3 and PIK3CG.

This study found an interesting observation regarding the presence of several genes
associated with inflammation, particularly the VWF gene. The VWF gene encodes a protein
that plays a role in leukocyte adhesion, extravasation, and the release of pro-inflammatory
cytokines. VWF acts as an adhesive surface on activated endothelial cells, facilitating
the binding and retention of leukocytes. Tumor cells can use leukocyte-like trafficking
pathways, including the acquisition of VWF expression. This suggests that NB tumor cells
have an enhanced ability to interact with endothelial cells and penetrate the endothelium
compared to other tumor cells that do not express VWF. As a result, both endothelial-cell-
derived VWF and tumor-cell-derived VWF may contribute to tumor cell dissemination
in the bloodstream [37]. The ability of tumor cells to communicate with endothelial cells
via VWF is enhanced by the functions of the collagens present in the extracellular matrix
(ECM), which help to establish a better interface with the microenvironment and make it
permissive. Indeed, the kynurenine pathway in the inflammatory microenvironment [24]
mutually potentiates the COL12A1/ITGB pathway [38] and plays a role in carcinogenesis
and advanced clinical stage.

COL12A1 and COL14A1 are in the gene cluster for collagens that enrich the integrin sig-
naling pathway; together with COL15A1, they belong to the family of FACIT collagens [39]
to which the COL6A2, COL6A3, COL5A1, and COL5A2 genes are related. Because they
can adapt to environmental factors and assume varying degrees of stiffness, elasticity, and
resistance, collagens, particularly FACITs, behave functionally. In fact, COL5A1, COL5A2,
COL6A2, COL6A3, COL12A1, and COL14A1 may be connected and have similar functions
for the ECM [40]. The genes COL5A3, COL1A2, COL4A5, COL8A1, COL8A2, COL10A1, and
COL11A1, which encode for collagens and are present in the integrin signaling pathway,
make the interaction of NB cells with the microenvironment more effective; in fact, all these
collagens have a function focused on organization, adhesion, regulation, and cell migration,
ensuring the fluidity of the ECM.

Signals from the ECM are involved in PIK3 (PIK3CG, PIK3R2, PIK3R5) and activate
second messengers (RAC2) that are critical in growth signaling pathways. These signals
are mediated by ITGB7 and ITGAL, CCR1, CCR2, CCR5, CCR7, CX3CR1, and ITGAX
(inflammation mediated by chemokine and cytokine signaling pathway). RAC2 plays
an important role in many signaling pathways involving receptor tyrosine kinases, G-
protein-coupled receptors (GPCRs), and integrin-related kinases [41]. The cytoskeletal
rearrangements of actin (ACTA2, ACTG2, FLNA) are specifically initiated by VAV1 proteins
as nucleotide exchange factors, and their action is ensured by MYH11 and MYH9, contractile
proteins that convert chemical energy into mechanical energy [42].

It was observed that MYH11 truncating mutants exhibited increased motor activity
and ATPase, suggesting a potential role for these proteins in energy balance and tumor
cell motility [43]. Furthermore, VAV1 results in the loss of intercellular adhesions and
organized actin fibers, suggesting a link to invasiveness and EMT through the development
of a mesenchymal phenotype. Axon guidance mediated by the netrin pathway (NFATC2,
PIK3CG, PIK3R2, PIK3R5, and RAC2), whose genes have already been addressed, also
modulates the invasive ability of NB cells. Conversely, netrin is a neuronal guidance signal
that regulates the activation, migration, and cytoskeletal rearrangement of various cell
types, including neurons. It is therefore a chemotropic protein whose signaling increases
T-cell chemokinesis and promotes cell infiltration associated with acute inflammation
in vivo [19].

Figure 2 illustrates all these signals and their “tumor-promoting inflammation” in NB.
Finally, the inflammation pathway mediated by chemokines and cytokines is statistically the
richest in genes (36 genes), confirming the crucial role played by the cellular protagonists of
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the immune system (T-cell activation; B-cell activation). By examining the genes enriched in
the pathways selected by pathway enrichment analysis, some factors emerged that prevent
NB from being classified as a “cold” or “non-immunogenic” tumor. These results allow
the creation of an edit on which one can then develop a practical application to provide
important feedback in clinical practice.
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Figure 2. Representative scheme of the 15 genes shared by the selected pathways using pathway
enrichment analysis. Our model shows the mechanisms that converge to activate NFATC2 and other
targets such as PIK3CG that are shared by the action of different stimuli. Some factors in the tumor
microenvironment (COL6A2, COL6A3, COL12A1, COL14A1, chemokines, cytokines, etc.) can promote
crosstalk between NFATC2 and PIK3CG and can promote crosstalk between receptor types (ITGB7,
ITGAL, PTPRC, chemokine R) that induce the activation of signals (ITPR3, PIK3CG, PIK3R2, VAV1,
RAC2) that have downstream pro-inflammatory and non-pro-inflammatory effects: production of
PTGS2, cytokines, and chemokines and activation of T and B cells.

To obtain additional results and check what we have observed, we also reported the
gene association networks obtained by the GeneMANIA software (version 3.5.2) [44] and
the Search Tool for Retrieval of Interacting Genes (STRING) database (version 11.0) [45].

Both Neuroblastoma (CUI: C0027819) and Childhood Neuroblastoma (CUI: C4086165)
were used as disease strings when we mined the DisGeNET database. We next filtered
the list of linked genes using the subset of genes PIK3CG, NFATC2, PIK3R2, VAV1, RAC2,
COL6A2, COL6A3, COL12A1, COL14A1, ITGAL, ITGB7, FOS, PTGS2, PTPRC, ITPR3.

The eight genes PIK3CG, PTGS2, FOS, PTPRC, VAV1, ITPR3, NFATC2, and PIK3R2
were identified as genes associated with the diseases in both cases (Neuroblastoma and
Childhood Neuroblastoma disorders) with an EL_gda (Evidence Level gene-disease asso-
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ciation) value larger than 0.6. Figure 3 depicts the gene association network obtained by
GeneMANIA, while Figure 4 illustrates the network obtained by STRING when the list of
these eight genes is entered as input.
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Figure 3. The gene association networks that result from entering the list of eight genes—PIK3CG,
PTGS2, FOS, PTPRC, VAV1, ITPR3, NFATC2, and PIK3R2—as input into the GeneMANIA software.
GeneMANIA extends the user’s list with genes that are functionally similar, or share properties with
the initial query genes, and displays an interactive functional association network, illustrating the
relationships among these genes and datasets. The size of each node is proportional to the number of
physical interactions (pink edges) among other genes and indicates the importance of this gene as
a hub in the network. Genes that are co-expressed are shown by light violet edges, and pathways
involving related nodes are indicated by cyan edges.
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Figure 4. The gene association networks that result from entering the list of eight genes—PIK3CG,
PTGS2, FOS, PTPRC, VAV1, ITPR3, NFATC2, and PIK3R2—as input into the STRING software (version
3.5.2). The depicted network has 13 nodes, 41 edges, an average node degree of 6.31, and a PPI
enrichment p-value of 7.59 × 10−13.
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These evaluations with the GeneMANIA and STRING genetic association networks
have further strengthened the validity of the genes PIK3CG, PTGS2, FOS, PTPRC, VAV1,
ITPR3, NFATC2, and PIK3R2 in the pathogenesis of NB. Additionally, as Figures 3 and 4
illustrate, these genes function as hubs, meaning that they are at the center of a network
that connects them to each other as well as to other genes whose roles are related to the
manifestation of the MES phenotype on an inflammatory basis.

3. Materials and Methods

This paper presents a retrospective study of fully anonymized NB samples from pri-
mary tumors of untreated patients. All of the data have been deposited in the NCBI Gene
Expression database (https://www.ncbi.nlm.nih.gov/geo, accessed on 20 April 2022) [46]
and contain the gene expression profiles of primary tumors; their identification is ac-
complished by entering keywords in the identification of the series (GSE) that belong to
“Homo Sapiens” and by accurately screening the material to be chosen for the analyses
inherent in the study. Data with the accession number GSE16476 were specifically cho-
sen (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16476, accessed on 20
April 2022).

The GSE16476 dataset presents 88 primary NB samples from untreated patients; the
data in the GSE16476 dataset are devoid of all references regarding sex, age, and stage
and refer to untreated primary neuroblastoma patients, whose profile was obtained from
the residual material acquired during surgical interventions for diagnostic purposes and
immediately frozen in liquid nitrogen. These specimens ranged from Neuroblastoma #1 to
Neuroblastoma #88 (a detailed description of clinical and pathological data on the study
population can be found in [47] and its related Supplementary Materials; all data were
fully anonymized). Gene profile was determined using the GPL570 platform Affymetrix
Human Genome U133 Plus 2.0 Array. This platform represents a reference and guarantees
complete coverage of the human U133 genome set with more than 6500 additional genes
for analysis and more than 47,000 transcripts. All probe sets represented on the GeneChip
Human Genome U133 set are identically replicated on the GeneChip Human Genome U133
Plus 2.0 array. The platform with the related protocol was published in 2003 and updated
in 2020.

Non-Negative Matrix Factorization for Automatic Gene Extraction

We analyzed these selected raw data using the non-negative matrix factorization
(NMF) framework proposed in [48]. This framework was previously applied to identify
low-dimensional structures embedded in colorectal cancer data, MCF-7 breast cancer data,
and heterogeneous cancer-associated fibroblast population data [49–51]. This framework
is based on a non-negative matrix factorization (NMF) algorithm which performs feature
extraction on the non-negativity gene expression data matrix X ∈ Rn×m (representing the
structured form—rows are genes and columns are samples—of the pre-processed data),
decomposing it into additive combinations of two non-negative intrinsic feature factors:
W ∈ Rn×k and H ∈ Rk×m, such that X ≈ WH, with k < min (m,n). In particular, the
metagene matrix W collects in its columns the biological information about the genes
studied, while the elements of the coefficient matrix H show the importance of a particular
metagene in each sample. Because of the non-negativity constraint, the NMF framework
can interpret huge and complex data structures while preserving physical viability. It can
also automatically identify the low-dimensional structure embedded in the original data.

The NMF framework (sketched in Figure 5) has three major steps: (1) data pre-
processing and matrix representation, (2) NMF core module, (3) metagene and com-
mon gene extraction. The data pre-processing and representation step begins with pre-
processing the downloaded database to handle probe sets which refer to different quantities
of transcript and associate probes that were not annotated in any sequence. This step pro-
duces the gene expression non-negative matrix X ∈ Rn×m that will be analyzed by the NMF
core module. The second step, namely the NMF core module, computes the metagene and

https://www.ncbi.nlm.nih.gov/geo
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coefficient factor matrices W and H via sequential approximation of the Kullback–Leibler
divergence loss optimizing the appropriate update rules (see [48,52] for mathematical de-
tails). Employing a gene score scheme suggested in [53], the third and final stage involves
identifying the metagenes and extracting the relevant genes for each metagene.
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Figure 5. Scheme of the NMF framework adopted to extract subgroups of genes relevant to the sample
of NB included in the GSE16476 dataset. The three sequential steps are as follows: (1) pre-process
raw data and construct a matrix representation of them, namely the gene expression non-negative
matrix X; (2) factorize X into metagene matrix W and a coefficient factor H (with rank information
equal to r = 5); (3) identify the most representative metagene in W, namely Metagene4, and rank its
relevant genes. The subset of selected genes is subjected to post-processing analysis to determine
their role in the inflammatory process and pathway enrichment analysis in NB.

In particular, the gene scoring computes a score value for each gene in a metagene
and then selects only those genes overcoming a given threshold τ (the adopted threshold
is τ = µ̂ + 3 σ̂, with µ̂ and σ̂ being the median and the MAD of the gene score vector
itself). Metagenes in W containing the largest number of genes satisfying this empirical
criterion are selected as the most representative of the information hidden in the microarray
data matrix X. Specifically, in this study, five metagenes were estimated (rank k = 5 as
illustrated in Figure 6). Metagene4 (presenting relevant genes) was extracted as the most
representative element. Figure 7 illustrates the heatmap of the expression profiles of the
extracted genes in Metagene4. This metagene was then used to perform the final pathway
enrichment analysis as discussed in the Section 2.
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Figure 6. Evaluation of the most appropriate rank value to be used in the factorization process of the
microarray matrix representing the NB data. The six pictures in the first panel (NMF rank survey)
report the behavior of different measures useful to define the proper number of metagenes to extract
from the data (i.e., the rank r of the factorization process). The second panel, instead, reports the plots
of the consensus matrices obtained with different rank values (r = 2. . .,7). From a deep analysis of
both the plots of the Cophenetic Correlation Coefficients (CCC) and the consensus matrices, it can be
deduced that the value k = 5 is the first value at which the CCC trend starts to decrease. This made it
possible to determine the rank of k = 5 for the purpose of computing the matrices W and H, that are
the most appropriate to discretize the NB dataset.
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Figure 7. Expression profiles of the extracted genes plotted as a heatmap. Rows show individual
genes, columns show individual samples. Red tiles indicate expression above, yellow tiles indicate
expression below the median transcript level for that gene across all samples. Color saturation
is proportional to the magnitude of the difference from the median. Genes and conditions were
clustered using an average linkage algorithm.

4. Conclusions

In this review, we discussed the role of some genes within specific pathways in NB
and how these genes are involved in the inflammatory process. In conclusion, we believe
we have contributed to clarifying some aspects that characterize the inflammatory process
in NB. Indeed, the specific framework used on NB data allowed the automatic extraction of
some genes, whose analysis revealed their involvement in various inflammatory processes.
The analyzed NB samples could secrete pro-inflammatory cytokines (CCL2, CCL4, CCL5,
CCL8, CXCL10, etc.); produce PTGS2, which induces the synthesis of prostaglandins (PGE2);
and modulate the microenvironment by interacting with collagens (COL6A2, COL6A3,
COL12A1, COL14A1, COL5A1, COL5A2, etc.), which maintain and regulate the fluidity
of the extracellular matrix (ECM). In addition, the samples could activate T cells (CD247,
CD3D, CD3E, and CD3G) and B cells (CD19, SYK, BTK, and BLNK) and express signatures
associated with immunotherapy. The idea that NB is unlikely to be classified as a non-
immunogenic and/or “cold” tumor, and that it is only a stage-related disease at the time of
diagnosis, is supported by the gene signals automatically retrieved from the existing NB
data [54]. Numerous genes involved in inflammation, mediated by the integrin signaling
pathway and the chemokine and cytokine signaling pathway, also characterize the MES
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phenotype, whose responses are strongly triggered by cues from T- and B-lymphocyte
infiltrating cells associated with a significant inflammatory state.

Through a number of crosstalk mechanisms, further evaluated with gene association
networks, the activated cellular pathways can produce complex pleiotropic effects and
the inflammatory response. Furthermore, it is possible that therapeutic treatment could
be helpful for the MES status of NB (PRRX1, NFATC2, RAC2, VAV1), which showed a
higher degree of inflammatory characterization and possible immunological vulnerability.
A thorough evaluation combined with additional testing of the results of the analysis in
this article may shed light on some of the characteristics of the inflammatory process in NB.
However, these new insights into the phenotype, adaptability, and involvement of non-
tumorigenic cells (T and B lymphocytes) within the tumor microenvironment have further
reinforced the importance of disease stage (MES) in treatment selection. Advances in
molecular biology and pathophysiology could make it possible to provide more specialized
therapies for kids with NB. Those who are now incurable should benefit from this.
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ACTA2 actin alpha 2, smooth muscle
ACTG2 actin gamma 2, smooth muscle
AKT Akt kinase
ALK ALK receptor tyrosine kinase
ALOX5AP arachidonate 5-lipoxygenase activating protein
AP1 K-box region and MADS-box transcription factor family protein
BLNK B cell linker
BTK Bruton tyrosine kinaseC5AR1
C5AR1 complement C5a receptor 1
CCL1 C-C motif chemokine ligand 1
CCL11 C-C motif chemokine ligand 11
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CCL13 C-C motif chemokine ligand 13
CCL18 C-C motif chemokine ligand 18
CCL2 C-C motif chemokine ligand 2
CCL21 C-C motif chemokine ligand 21
CCL4 C-C motif chemokine ligand 4
CCL5 C-C motif chemokine ligand 5
CCL8 C-C motif chemokine ligand 8
CCR1 C-C motif chemokine receptor 1
CCR2 C-C motif chemokine receptor 2
CCR5 C-C motif chemokine receptor 5
CCR7 C-C motif chemokine receptor 7
CD14 CD14 molecule
CD19 CD19 molecule
CD247 CD247 molecule
CD28 CD28 molecule
CD3D CD3 delta subunit of T-cell receptor
CD3E CD3 epsilon subunit of T-cell receptor complex
CD3G CD3 gamma subunit of T-cell receptor complex
CD74 CD74 molecule
CD86 CD86 molecule
COL10A1 collagen type X alpha 1 chain
COL11A1 collagen type XI alpha 1 chain
COL12A1 collagen type XII alpha 1 chain
COL14A1 collagen type XIV alpha 1 chain
COL15A1 collagen type XV alpha 1 chain
COL4A5 collagen type IV alpha 5 chain
COL5A1 collagen type V alpha 1 chain
COL5A2 collagen type V alpha 2 chain
COL5A3 collagen type V alpha 3 chain
COL6A2 collagen type VI alpha 2 chain
COL6A3 collagen type VI alpha 3 chain
COL8A1 collagen type VIII alpha 1 chain
COL8A2 collagen type VIII alpha 2 chain
CX3CR1 C-X3-C motif chemokine receptor 1
CXCL10 C-X-C motif chemokine ligand 10
CXCR1 C-X-C motif chemokine receptor 1
EGFR epidermal growth factor receptor
FACIT collageni associati a fibrille con triple eliche interrotte
FLNA filamin A
FOS Fos proto-oncogene, AP-1 transcription factor subunit
FPR1 formyl peptide receptor 1
FPR3 formyl peptide receptor 3
HLA-DMB major histocompatibility complex, class II, DM beta
HLA-DPA1 major histocompatibility complex, class II, DP alpha 1
HLA-DQA1 major histocompatibility complex, class II, DQ alpha 1
HLA-DQA2 major histocompatibility complex, class II, DQ alpha 2
HLA-DRA major histocompatibility complex, class II, DR alpha
INF I interferon I
ITGAL integrin subunit alpha L
ITGB7 integrin subunit beta 7
ITPR3 inositol 1,4,5-trisphosphate receptor type 3
JUNB JunB proto-oncogene, AP-1 transcription factor subunit
LCK LCK proto-oncogene, Src family tyrosine kinase
LCP2 lymphocyte cytosolic protein 2
LY96 lymphocyte antigen 96
MAP3K8 mitogen-activated protein kinase kinase kinase 8
MAPK map kinase
MDM2 MDM2 proto-oncogene
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MHC-I histocompatibility-1, MHC
MHC-II histocompatibility-2, MHC
mTOR mechanistic target of rapamycin kinase
MYC MYC proto-oncogene
MYH11 myosin heavy chain 11
MYH9 myosin heavy chain 9
NFATC2 nuclear factor of activated T cells 2
P53 tumor protein p53
PGE2 prostaglandin E2
PI3K phosphatidylinositol 3-kinase
PIK3CG phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma
PIK3R2 phosphoinositide-3-kinase regulatory subunit 2
PIK3R5 phosphoinositide-3-kinase regulatory subunit 5
PRRX1 paired related homeobox 1
PTGS2 prostaglandin-endoperoxide synthase 2
PTPRC protein tyrosine phosphatase receptor type C
RAC2 Rac family small GTPase 2
RAS RAS p21 protein activator 1
SYK spleen associated tyrosine kinase
TLR2 Toll like receptor 2
TLR3 Toll like receptor 3
TLR7 Toll like receptor 7
TrKB neurotrophic receptor tyrosine kinase 2
VAV1 vav guanine nucleotide exchange factor
VWF von Willebrand factor
WAS WASP actin nucleation promoting factor
WNT Wnt family signaling pathway
ZAP70 zeta chain of T cell receptor associated protein kinase 70
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