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Abstract: Organ transplantation is associated with various forms of programmed cell death which
can accelerate transplant injury and rejection. Targeting cell death in donor organs may represent
a novel strategy for preventing allograft injury. We have previously demonstrated that necroptosis
plays a key role in promoting transplant injury. Recently, we have found that mitochondria function
is linked to necroptosis. However, it remains unknown how necroptosis signaling pathways regulate
mitochondrial function during necroptosis. In this study, we investigated the receptor-interacting
protein kinase 3 (RIPK3) mediated mitochondrial dysfunction and necroptosis. We demonstrate
that the calmodulin-dependent protein kinase (CaMK) family members CaMK1, 2, and 4 form a
complex with RIPK3 in mouse cardiac endothelial cells, to promote trans-phosphorylation during
necroptosis. CaMK1 and 4 directly activated the dynamin-related protein-1 (Drp1), while CaMK2
indirectly activated Drp1 via the phosphoglycerate mutase 5 (PGAM5). The inhibition of CaMKs
restored mitochondrial function and effectively prevented endothelial cell death. CaMKs inhibition
inhibited activation of CaMKs and Drp1, and cell death and heart tissue injury (n = 6/group, p < 0.01)
in a murine model of cardiac transplantation. Importantly, the inhibition of CaMKs greatly prolonged
heart graft survival (n = 8/group, p < 0.01). In conclusion, CaMK family members orchestrate cell
death in two different pathways and may be potential therapeutic targets in preventing cell death
and transplant injury.

Keywords: CaMK; Drp1; PGAM5; necroptosis; transplantation; heart

1. Introduction

Inflammation in transplantation directly results in diverse cell death programs, in-
cluding necrosis and apoptosis, which promote transplant injury and rejection. Necrosis
promotes cellular swelling, plasma membrane rupture, and the release of pro-inflammatory
molecules which worsen inflammation [1–3]. Necrosis is also regulated, and the most
studied form, necroptosis, is initiated by the receptor-interacting protein kinase family
(RIPK1 and 3) and mixed lineage kinase domain like protein (MLKL) [1–4].

Other intracellular signaling mechanisms of necroptosis are likely to exist. Mitochon-
dria play a major role in cell metabolism and participate in cell death. Whether mitochon-
dria are directly involved in programmed forms of necrosis remains controversial [5–7] and
contradictory data suggest that both mitochondrial-dependent and -independent forms of
necrosis or necroptosis participate [5–8].

We have previously demonstrated that RIPK3-mediated necroptosis in donor heart
grafts can promote inflammatory injury and transplant rejection [9,10]. The elimination of
RIPK3 expression in mouse microvascular endothelial cells (MVEC) or donor allografts
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attenuated cell and tissue necrosis, and reduced rejection [9,10]. Furthermore, we found that
mitochondrial membrane permeability is an important mechanistic mediator of necroptosis
in MVEC, suggesting that blocking this process might prevent cardiac transplant ischemia
injury and rejection [11,12]. Understanding the relation of RIPK activation to mitochondrial
damage during necroptosis would be important in developing strategies that target cell
death and transplant rejection. In this study, we found that the calmodulin-dependent
protein kinase (CaMK) family plays a crucial role in necroptosis and that RIPK3, and
CaMK1, 2, and 4 form a ‘death complex’. CaMK2 activates phosphoglycerate mutase 5
(PGAM5) which in turn activates mitochondrial dynamin-related protein-1(Drp1), while
CaMK1/4 directly activate Drp1. Importantly, inhibition of CaMK function attenuated cell
death and significantly prolonged murine heart transplant survival.

2. Results
2.1. The CaMK Family Participates in MVEC Necroptosis

We sought to determine upstream mechanisms of mitochondrial damage and MVEC
death to identify any effective target(s) to control cell death. Exposure to TNFα induced
death. The addition of the caspase-8 inhibitor IETD failed to block cell death (Figure 1A,B),
supporting that caspase-8-independent cell death is due to necroptosis [9,10]. The observed
TNFα-induced cell death was inhibited by the addition of RIPK1 inhibitor necrostatin-1s
(Nec-1s, Figure 1A,B), confirming that it was indeed due to necroptosis. Interestingly,
we found that the addition of the CaMKs inhibitor KN93 significantly reduced cell death
(Figure 1A,B), implying that CaMKs play a role in necroptosis. In addition, we found
that CaMK1, 2, and 4 mRNA expression was significantly increased during necroptosis
(Figure 1C). Furthermore, phosphorylated CaMK1–4 proteins were increased during in-
duction of necroptosis, respectively (Figure 1D–I collectively suggesting that CaMKs may
participate in necroptosis).
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Figure 1. The CaMK family participates in MVEC necroptosis. (A) Cells (20 × 103/well) were seeded
in quadruplicates in a 96-well plate. Cell death was induced by TNFα (T, 20 ng/mL) with Smac
mimetic BV6 (S, 2 µM). Apoptosis was inhibited by caspase-8 inhibitor z-IETD (I, 30 µM). Necroptosis
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was inhibited by RIPK1 inhibitor Nec-1s (N, 10 µM). CaMK was inhibited by KN93 (K, 20 µg/mL).
Cell death was detected by SYTOX Green uptake into the dead cell from 0 to 24 h by IncuCyte
Image system (Essen Bioscience, Ann Arbor, MI, USA). (B) SYTOX uptake was quantified at 24 h.
Data are shown as mean ± standard deviation (SD) of quadruplicates and representative of three
independent experiments. **** p < 0.0001. t-test. (C) Expression of CaMK1, CaMK2, and CaMK4
was quantified by real time PCR after cell death induction for 4 h. β-actin was used as endogenous
control for mRNA expression. Data are shown as mean ± SD of three independent experiments.
Western blot analysis of CaMK1 and p-CaMK1 (D,E), CaMK2 and p-CaMK2 (F,G), and CaMK4 and
p-CaMK4 (H,I). Cells were collected for Western blot analysis 5 h after cell death induction. GAPDH
was used as loading control. Images were quantified by densitometry (ImageJ 1.54g). Relative ratio
= phosphorylated protein/total protein. Data are shown as the mean ± SD of three independent
experiments. ** p < 0.01, *** p ≤ 0.001, **** p ≤ 0.0001; 1-way ANOVA; Tukey’s multiple comparisons.

Next, we examined the role of each member of the CaMK family in MVEC necroptosis,
respectively. CaMK2 was efficiently silenced by siRNA as confirmed by PCR analysis and
Western blot analysis (Figure 2A,B). Necroptosis was decreased in the CaMK2 silenced MVECs
compared to the control (Figure 2C), suggesting CaMK2 participates in necroptosis. We then
silenced the expression of CaMK1 and CaMK4 in MVECs using siRNA (Figure 2D–G). Cell death
was significantly attenuated upon silencing of either CaMK1 or CaMK4 MVECs when compared
to their respective controls (Figure 2H). However, the effect on inhibition of necroptosis was
additive when both CaMK1 and 4 were silenced (Figure 2H). Hence, our data suggest that
CaMK family members participate in MVEC necroptosis that is triggered by TNFα.
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Figure 2. CaMKs participate in necroptosis. CaMK2δ silencing in MVECs was confirmed by PCR 16 h
after siRNA treatment (A) and Western blot (B) 24 h after siRNA treatment. Untreated cells (UT) or
vehicle control (VC, transfection reagent) treated cells were used as controls. GAPDH from the same
blot was used as the loading control. Data are pooled and represent three independent experiments.
(C) CaMK2δ-siRNA or VC treated cells were harvested after 24 h and subjected to the cell death assay.
SYTOX uptake/cell death was monitored by IncuCyte Image system. Data are shown as mean ± SD
of quadruplicates and represent three independent experiments. siRNA-induced silencing of CaMK1
(D,E) and CaMK4 (F,G) in MVECs was confirmed by PCR and Western blot analysis. (H) CaMK1,
CaMK4, or CaMK1+4 siRNAs or vehicle control (VC, EndoFectin) treated cells were harvested after
24 h and subjected to the cell death assay. SYTOX uptake was monitored for 24 h by IncuCyte Image
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system. Data are shown as mean ± SD of quadruplicates at 24 h and represent three independent experi-
ments. * p ≤ 0.05, ** p≤0.01, *** p ≤ 0.001, **** p ≤ 0.0001; 1-way ANOVA; Tukey’s multiple comparisons.

2.2. RIPK3 and the CaMK Family Members Form a Complex in Necroptosis

Firstly, we wanted to confirm if RIPK3 interaction is upstream of CaMKs by using
co-immunoprecipitation analyses. In untreated and vehicle control treated cells, CaMK2
was not co-immunoprecipitated with CaMK1, CaMK4 and RIPK3 (Figure 3A). However,
under necroptosis conditions, RIPK3 was co-immunoprecipitated with CaMK1, CaMK2,
and CaMK4, respectively (Figure 3B), suggesting that RIPK3 is linked to CaMKs. As shown
in Figure 3C, CaMK1 was co-immunoprecipitated with CaMK2. However, only a low
level of CaMK4 was co-immunoprecipitated with CaMK2 (Figure 3C). Interestingly, when
CaMK1 was silenced in MVECs, more CaMK4 protein was co-immunoprecipitated with
CaMK2 (Figure 3D), suggesting that CaMK4 may play a complementary role in cell death,
when CaMK1 is reduced or absent. Taken together, these studies suggest RIPK3 and CaMKs
form a complex, resulting in mutual activation during induction of cell death.
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Interestingly, the addition of the Drp1 inhibitor, Midivi-1, inhibited necroptosis (Fig-
ure 4A). Similarly, silencing Drp1 with siRNA prevented cell necroptosis, suggesting that 
Drp1 is required for the necroptosis we observed (Figure 4B). Next, we analyzed the mech-
anism(s) of CaMK-mediated Drp1 activation. The activated (phosphorylated) form of 
Drp1 (p-Drp1 S616) was inhibited by RIPK1 inhibitor Nec-1s, Drp1 inhibitor Midivi-1, or 

Figure 3. RIPK3 and CaMKs form a complex during necroptosis. Cells were induced to undergo necroptosis,
as shown in Figure 1, and collected after 4 h. (A) Untreated and vehicle control treated cells were used as
co-immunoprecipitation controls. Cell lysates were immunoprecipitated with CaMK1, CaMK4, and RIPK3
antibodies, respectively, and followed by Western blot analysis to detect CaMK2. (B) Cell lysates were
immunoprecipitated with CaMK1, CaMK2, and CaMK4 antibodies, respectively. Rabbit IgG were used
as control. The immunoprecipitants were used to detect RIPK3 in Western blot analysis. (C) Cell lysates
were immunoprecipitated with CaMK1 and CaMK4 antibodies. The immunoprecipitants were used to
detect CaMK2 in Western blot analysis. (D) CaMK1 siRNA or vehicle treated cells were harvested after 24 h
for cell death induction and then collected after 4 h. Cell lysates were immunoprecipitated with CaMK2
antibody or rabbit IgG. The immunoprecipitants were used to detect CaMK4 in Western blot analysis. Data
(B–D) represent three independent experiments. (E) Cell death was induced as described in Figure 1. ATP
level was quantified by the CellTiter-Glo® Luminescent Cell Viability kit. Data are shown as mean ± SD
of three independent experiments. (F) Mitochondria were probed by MitoTracker. Fluorescent intensity
was automatically quantified by the IncuCyte System. Data are shown as mean ± SD of three independent
experiments. *** p ≤ 0.001; **** p ≤ 0.0001, 1-way ANOVA; Tukey’s multiple comparisons.

To test if mitochondrial dysfunction is a down-stream effect of CaMKs, we measured ATP
levels during cell death. ATP levels were substantially decreased during necroptosis, whereas
inhibition of CaMKs by KN93 or inhibition of necroptosis by Nec-1s restored ATP production
(Figure 3E). In addition, the fluorescent intensity of mitochondria was substantially decreased
during necroptosis, which could be recovered by adding KN93 or Nec-1s (Figure 3F). These
data suggest that mitochondrial dysfunction is a down-stream effect of CaMKs. We next aimed
to identify the mitochondrial signaling molecules down-stream of CaMKs.

2.3. CaMK1 and CaMK4 Directly Bind to and Phosphorylate Drp1 while CaMK2 Indirectly
Regulates Drp1 Phosphorylation via PGAM5

Drp1 is an important molecule for inducing mitochondrial fragmentation and dys-
function through excessive fission [13]. During mitochondrial fission, high Ca2+ intake and
a lower ATP level may be associated with the function of CaMKs family proteins. Thus, we
tested whether CaMKs and PGAM5 and/or Drp1 interact with each other.
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Interestingly, the addition of the Drp1 inhibitor, Midivi-1, inhibited necroptosis
(Figure 4A). Similarly, silencing Drp1 with siRNA prevented cell necroptosis, suggest-
ing that Drp1 is required for the necroptosis we observed (Figure 4B). Next, we analyzed
the mechanism(s) of CaMK-mediated Drp1 activation. The activated (phosphorylated)
form of Drp1 (p-Drp1 S616) was inhibited by RIPK1 inhibitor Nec-1s, Drp1 inhibitor Midivi-
1, or CaMKs inhibitor KN93 (Figure 4C,D), confirming the role of Drp1 in necroptosis.
Furthermore, silencing CaMK1, 2, 4, or CaMK1+2+4 inhibited the level of p-Drp1 (S616)
(Figure 4E,F). These results suggested that CaMKs are responsible for Drp1 activation.
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system. SYTOX uptake was quantified at 24 h. Data are shown as mean ± SD of quadruplicates and
represent three independent experiments. (B) Drp1siRNA or vehicle-treated cells were harvested
after 24 h and subjected to the cell death assay. Data are shown as mean ± SD of quadruplicates
and represent three independent experiments. **** p ≤ 0.0001, 1-way ANOVA; Tukey’s multiple
comparisons. (C) p-Drp1 Western blot. Cell death was induced as described in Figure 1. Drp1
inhibitor Midivi-1 or CaMKs inhibitor KN93 was added. Cells were collected for Western blot
analysis 4 h after cell death induction. Untreated (UT) cells were used as controls. (D) Images
were quantified by ImageJ. Relative Ratio of protein level = p-Drp1/Total Drp1. Data are shown
as mean ± SD of three independent experiments. (E) CaMK1, CaMK2, CaMK4, CaMK1+4, and
CaKM1+2+4 siRNAs-treated cells were harvested after 24 h for the cell death assay. Cells were
collected after 4 h for Western blot analysis of p-Drp1 (S616). (F) Images were quantified by ImageJ.
GAPDH was used to normalize protein levels. Data are shown as mean ± SD of three independent
experiments. **** p ≤ 0.0001; 1-way ANOVA; Tukey’s multiple comparisons.

Next, we determined if PGAM5 is required for CaMKs-mediated Drp1 phosphorylation.
Interestingly, CaMK2, but not CaMK1 and CaMK4, was co-immunoprecipitated with PGAM5
(Figure 5A), suggesting CaMK2-PGAM5-Drp1 associated in a trimolecular complex. In un-
treated and vehicle control treated cells, Drp1 was not co-immunoprecipitated with CaMK1,
CaMK2, CaMK4 and PGAM5 (Figure 5B). However, under necroptosis conditions, silencing
PGAM5 by siRNA abrogated co-immunoprecipitation of CaMK2 and Drp1 (Figure 5C). Fur-
thermore, silencing CaMK2, but not CaMK1 or CaMK4, inhibited the co-immunoprecipitation
of PGAM5 and Drp1 (Figure 5D,E), confirming the CaMK2-PGAM5-Drp1 axis in necroptosis.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 9 of 23 
 

 

represent three independent experiments. (B) Drp1siRNA or vehicle-treated cells were harvested 
after 24 h and subjected to the cell death assay. Data are shown as mean ± SD of quadruplicates and 
represent three independent experiments. **** p ≤ 0.0001, 1-way ANOVA; Tukey’s multiple compar-
isons. (C) p-Drp1 Western blot. Cell death was induced as described in Figure 1. Drp1 inhibitor 
Midivi-1 or CaMKs inhibitor KN93 was added. Cells were collected for Western blot analysis 4 h 
after cell death induction. Untreated (UT) cells were used as controls. (D) Images were quantified 
by ImageJ. Relative Ratio of protein level = p-Drp1/Total Drp1. Data are shown as mean ± SD of 
three independent experiments. (E) CaMK1, CaMK2, CaMK4, CaMK1+4, and CaKM1+2+4 siRNAs-
treated cells were harvested after 24 h for the cell death assay. Cells were collected after 4 h for 
Western blot analysis of p-Drp1 (S616). (F) Images were quantified by ImageJ. GAPDH was used to 
normalize protein levels. Data are shown as mean ± SD of three independent experiments. **** p ≤ 
0.0001; 1-way ANOVA; Tukey’s multiple comparisons. 

Next, we determined if PGAM5 is required for CaMKs-mediated Drp1 phosphoryla-
tion. Interestingly, CaMK2, but not CaMK1 and CaMK4, was co-immunoprecipitated with 
PGAM5 (Figure 5A), suggesting CaMK2-PGAM5-Drp1 associated in a trimolecular com-
plex. In untreated and vehicle control treated cells, Drp1 was not co-immunoprecipitated 
with CaMK1, CaMK2, CaMK4 and PGAM5 (Figure 5B). However, under necroptosis con-
ditions, silencing PGAM5 by siRNA abrogated co-immunoprecipitation of CaMK2 and 
Drp1 (Figure 5C). Furthermore, silencing CaMK2, but not CaMK1 or CaMK4, inhibited 
the co-immunoprecipitation of PGAM5 and Drp1 (Figure 5D,E), confirming the CaMK2-
PGAM5-Drp1 axis in necroptosis. 

Next, we analyzed the interaction between CaMK1/CaMK4 and Drp1. The physical 
interaction between CaMK1 with Drp1 was confirmed by co-immunoprecipitation during 
necroptosis (Figure 5F). Interestingly, silencing PGAM5 did not prevent CaMK1 binding 
to Drp1 (Figure 5F), suggesting CaMK1 directly interacts with Drp1 without PGAM5. The 
interaction between CaMK4 with Drp1 was noted under CaMK1 ‘deficiency’ conditions 
(Figure 5G,H), suggesting that CaMK4 plays a complementary role for CaMK1. Taken to-
gether, our study demonstrated that CaMK1 and CaMK4 can directly mediate Drp1 acti-
vation while CaMK2 indirectly regulates Drp1 activation via PGAM5. Hence, CaMKs may 
be considered as potential therapeutic targets to prevent cell death and graft injury. 

 
Figure 5. Cont.



Int. J. Mol. Sci. 2024, 25, 4428 10 of 23
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 10 of 23 
 

 

 

 
Figure 5. CaMK2 indirectly binds to Drp1 via PGAM5 while CaMK1 and CaMK4 directly bind to
Drp1 without PGAM5. (A) Cells death was induced as Figure 1 and cells were collected 4 h after. Cell



Int. J. Mol. Sci. 2024, 25, 4428 11 of 23

lysates were immunoprecipitated with CaMK1, CaMK2, and CaMK4 antibodies. Rabbit IgG was used
as isotype control. The immunoprecipitants were used to detect PGAM5 in Western blot analysis.
(B) Untreated and vehicle control treated cells were used as co-immunoprecipitation controls. Cell
lysates were immunoprecipitated with CaMK1, CaMK2, CaMK4 and PGAM5 antibodies, respectively,
and followed by Western blot analysis to detect Drp1. (C) PGAM5 siRNA- or vehicle control (VC)-
treated cells were harvested after 24 h for the cell death assay. Four hours after, cell lysates were
immunoprecipitated with anti-CaMK2 or control IgG. The immunoprecipitants were used to detect
Drp1 in Western blot analysis. (D) CaMKs siRNAs- or vehicle control-treated cells were harvested
after 24 h and used in the cell death assay. Cells were collected after 4 h and cell lysates were
immunoprecipitated with PGAM5 antibody or rabbit IgG. Immunoprecipitants were used to detect
Drp1 in Western blot. (E) Images were quantified by ImageJ. The relative level of Drp1 was calculated
against the Drp1 level of necroptotic cells (TSI treated) in vehicle control (VC) group. Data are shown
as mean ± SD of three independent experiments. **** p ≤ 0.0001; t-test. (F) PGAM5 siRNA- or
VC-treated cells were harvested after 24 h and used in the cell death assay. Cells were collected
after 4 h and cell lysates were immunoprecipitated with CaMK1 antibody or control IgG. The
immunoprecipitants were used for anti-Drp1 detection in Western blot analysis. (G) CaMK1, CaMK2,
or PGAM5 siRNA-treated cells were harvested after 24 h for the cell death assay. Cells were collected
after 4 h and immunoprecipitated with CaMK4 antibody or control IgG. The immunoprecipitants
were used for anti-Drp1 detection in Western blot analysis. (H) Images were quantified by ImageJ.
The relative level of Drp1 was calculated against the Drp1 level of necroptotic cells (TSI treated)
in vehicle control (VC) group. Data are shown as mean ± SD of three independent experiments.
**** p ≤ 0.0001; 1-way ANOVA; Tukey’s multiple comparisons.

Next, we analyzed the interaction between CaMK1/CaMK4 and Drp1. The physical
interaction between CaMK1 with Drp1 was confirmed by co-immunoprecipitation during
necroptosis (Figure 5F). Interestingly, silencing PGAM5 did not prevent CaMK1 binding to
Drp1 (Figure 5F), suggesting CaMK1 directly interacts with Drp1 without PGAM5. The
interaction between CaMK4 with Drp1 was noted under CaMK1 ‘deficiency’ conditions
(Figure 5G,H), suggesting that CaMK4 plays a complementary role for CaMK1. Taken
together, our study demonstrated that CaMK1 and CaMK4 can directly mediate Drp1
activation while CaMK2 indirectly regulates Drp1 activation via PGAM5. Hence, CaMKs
may be considered as potential therapeutic targets to prevent cell death and graft injury.

2.4. Inhibition of CaMKs Attenuated Heart Transplant Injury and Rejection

Finally, we investigated if inhibition of CaMKs could attenuate graft injury and improve
transplant survival using an established murine heart allotransplant model [9–12]. Donor hearts
from wild type B6 mice were perfused with KN93 (10 µg/mL) and then subjected to ischemic
storage as described in Section 4 before being transplanted into fully allogeneic BALB/c mice.
Graft recipients received KN93 (20 µg/mouse) or 0.5 mL saline intraperitoneally on day 1, 2,
and 3 after transplantation. After three days, grafts were collected for Western blot analyses.
Interestingly, p-CaMK1, p-CaMK2, p-CaMK4, and p-Drp1 (S616) were increased in transplanted
grafts compared with naïve hearts (Figure 6A–E). However, expression levels of these proteins
were significantly inhibited by KN93 treatment (Figure 6A–E).

Next, we analyzed tissue damage following CaMKs inhibition. Additional grafts
(n = 6/group) were collected 3 days after transplantation. Graft sections were stained by
hematoxylin and eosin (H&E) and tissue damage was scored by a pathologist in a double-
blinded fashion. As shown in Figure 7A,B, the KN93 treatment attenuated lymphocyte
infiltration (0.8 ± 0.8 vs. 1.7 ± 0.8 in control, n = 6, p = 0.048), infarction (0.3 ± 0.5 vs.
2.0 ± 1.3 in control, n = 6, p = 0.007), polymorphonuclear leukocyte (PMN) infiltration
(0.3 ± 0.5 vs. 1.3 ± 0.5 in control, n = 6, p = 0.003) and overall injury (1.6 ± 1.2 vs.
5.2 ± 2.3, n = 6, p = 0.005). Graft lymphocyte infiltration was furthermore confirmed by
immunohistochemistry using anti-CD45 (Figure 7C,D). TdT-mediated dUTP nick-ended
labeling (TUNEL) indicated the area of cell death in heart grafts was significantly inhibited
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in KN93 treated recipients (Figure 7E,G). KN93 treatment also reduced p-MLKL levels in
the graft (Figure 7F,H), implying its role in inhibiting necroptosis in the graft.
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Figure 6. p-CaMK1, p-CaMK2, p-CaMK4, and p-Drp1 (S616) increases were inhibited by KN93 in the graft
post heart transplantation. (A) B6-to-BALB/c heart transplantation and KN93 injection was performed
as detailed in the Methods. The grafts (n = 3) were collected after 3 days for Western blot analysis by
CaMK1, p-CaMK1, CaMK2, p-CaMK2, CaMK4, p-CaMK4, Drp1 and p-Drp1 (S616) antibodies, respectively.
(B–E) Images were quantified by ImageJ. Relative ratio of protein = phosphorylated protein/total protein.
Data are shown as mean ± SD of 3 transplants. **** p ≤ 0.0001; Student t-test.
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were collected after 3 days for H&E staining. Images were taken under 200 times magnification. (B) Graft
injuries were scored for lymphocyte infiltration, infarction, and PMN infiltration from 0 to 5 in a blinded
fashion. Scores were averaged as mean ± SD of 6 grafts. (C) Grafts (n = 6) were used for immunohisto-
chemistry with anti-CD45, and positive areas (brown color) are indicated by red arrows. Images were taken
under 200 times magnification. (D) Positive areas of each graft were automatically counted in six connected
random areas under 200 times magnification by Image J and averaged in a double-blinded manner. (E)
Grafts (n = 6) were assessed by TUNEL. B6 naive hearts were used as control. Brown color indicates
TUNEL positive cells as indicated by red arrows. Images are at 200 times magnification. (F) Necroptosis in
the graft was detected by p-MLKL immunohistochemistry. Images are at 200 times magnification. Positive
cells are indicated by red arrows. (G) TUNEL positive areas were quantified as above. (H) p-MLKL
positive areas were quantified as above. ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001. t-test.

To determine if KN93 can affect transplant long term and attenuate chronic rejec-
tion, B6 hearts were perfused with KN93 solution or vehicle control and subjected to
ischemic storage as above. All graft recipients received immunosuppression consisting
of anti-CD154 on the day of transplantation. KN93 solution or 0.5 mL saline was admin-
istered intraperitoneally for 3 days and then on alternated days for 21 days. The grafts
were collected for histological analyses of chronic rejection. A double-blinded evaluation
of H&E staining indicated significant inhibition of the microvasculature damage in the
KN93 treatment allografts, with low levels of artery damage (0.25 ± 0.5 vs. 2.75 ± 1.7 in
control, n = 4, p = 0.015), neointima formation (0 vs. 1.5 ± 0.58 in control, n = 4, p = 0.001),
lymphocyte infiltration (1.25 ± 0.5 vs. 2.75 ± 1.26 in control, n = 4, p = 0.034), and in-
farction (0.25 ± 0.5 vs. 3.0 ± 1.83 in control, n = 4, p = 0.014) (Figure 8A,B). KN93 treated
grafts showed less infiltration of CD3+ T cells (Figure 8C,D) and IgG than did control
grafts (Figure 8C–E). Interestingly, KN93 treated grafts showed higher Foxp3 staining
(Figure 8C,F), implying the potential role of regulatory T cells in improving graft survival.
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Figure 8. Inhibition of CaMKs attenuates heart transplant chronic injury and rejection.
(A) B6-to-BALB/c heart transplantation and anti-CD154 injection are detailed in Section 4. KN93
or saline was injected on day 1, 2, and 3 followed by every 48 h until 21 days post transplantation. Recip-
ient mice (n = 4/group) were euthanized, and the grafts were collected for H&E and elastin-trichrome
staining. Images were taken under 200 times magnification. Representative images are shown. (B) Graft
injuries were quantified blindly by a pathologist. Scores were averaged as mean ± SD of 4 grafts.
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** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, t-test. Grafts were assessed by immunohistochemistry for
anti-CD3 (C), anti-IgG (E) and anti-Foxp3 (G) and positive staining areas (brown color) are indicated by
red arrows. Images were taken under 200 times magnification. Positive areas anti-CD3 (D), anti-IgG
(F) and anti-FoxP3 (H) of each graft were automatically counted in six connected random areas under
200 times magnification by Image J and averaged in a double-blinded fashion. **** p ≤ 0.0001. t-test.
(I) B6-to-BALB/c heart transplantation using KN93 or saline administration was performed as above.
Graft survival was monitored daily. Cessation of beating is considered as rejection. n = 8 per group, ** p =
0.004. Log Rank test.

Finally, we examined if KN93 could improve graft survival in a murine model of
heart allotransplantation. B6 hearts were treated with KN93 as above. Interestingly, KN93
treatment attenuated rejection and significantly prolonged graft survival compared with the
controls (mean survival = 98.5 ± 62.6 days vs. 38.5 ± 13.7 days, n = 8, p = 0.004, Figure 8G).
In summary, these data demonstrate that inhibition of CaMKs attenuated graft IRI and
prolonged transplant survival.

3. Discussion

We previously reported that RIPK1/3 and mitochondrial molecules participate in
necroptosis and transplant rejection [9–12,14]. However, it has remained unknown how
RIPK1 and RIPK3 interact with mitochondria during necroptosis. In this study, we have
identified that CaMKs are the intermediary link between RIPK3 and down-stream mito-
chondrial damage. Furthermore, we have found that the CaMK family members differen-
tially regulate the phosphorylation of the mitochondrial fission molecule, Drp1, during
necroptosis. Of clinical relevance, CaMKs inhibition attenuated heart transplant injury
and significantly prolonged heart graft survival. Our results strongly suggest that CaMKs
play crucial roles in necroptosis and thus might be clinically important targets to prevent
transplant injury and rejection.

CaMK1–4 are multifunctional serine/threonine protein kinases and can phosphorylate
multiple downstream targets. CaMK2 consists of four homologous subtypes (α, β, γ, and
δ). CaMK2α/β are mostly found in neural systems [15]. Interestingly, CaMK2δ is a major
type of CaMK2 in heart cells (reviewed in [16–18]). Interestingly, a recent study has found
that CaMK2 is a substrate of RIPK3 and participates in necroptosis and apoptosis in heart
injury [19]. Furthermore, several studies have demonstrated that the RIPK3-CaMKII-mPTP
pathway plays an important role in necroptosis and the myocardial pathogenesis (reviewed
in [20,21]). Our study supports these findings and clearly demonstrates that RIPK3 is
linked to CaMK2 in MVECs during necroptosis (Figure 3). Studies have demonstrated
that CaMK2 participates in mitochondrial dysfunction via activation of Drp1 in neuronal
and cancer studies [22,23]. However, it was unknown whether CaMK2-mediated-Drp1
activation is a direct or indirect effect. Our study shows that CaMK2 is linked to PGAM5
and thus indirectly activates Drp1 (Figure 5).

CaMK1 and CaMK4 are activated via CaMKK-dependent phosphorylation [24–27].
They also regulate mitochondrial morphology via activation of Drp1 in neuronal and kidney
cells [28,29]. However, it was unclear if CaMK1/4 directly or indirectly activate Drp1. In
this study, we have found that CaMK1/4 can directly activate p-Drp1 (S616) in the absence
of PGAM5 (Figures 4 and 5). This differs from CaMK2 which requires PGAM5 for Drp1
activation (Figure 5). CaMKs have distinct subcellular distributions after phosphorylation,
CaMK1 and CaMK2 execute their functions in the cytosol while CaMK4 locates within the
nucleus [16,17]. However, in our immunocytochemistry studies, all CaMKs could be found
in the cytosol (Supplementary Figure S1), implying a different role of CaMK4. Indeed,
we showed that CaMK4 directly binds to Drp1 during necroptosis (Figure 5), indicating a
non-nuclear role of CaMK4.

Drp1 accumulates within mitochondria once activated and drives mitochondrial fis-
sion [30,31]. Its excessive activation leads to mitochondrial dysfunction and ultimately
cellular apoptosis [32]. Interestingly, Drp1 also plays a role in necroptosis. A previous
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study suggested that the RIPK1-RIPK3-PGAM5-Drp1 axis drives mitochondrial damage
and necroptosis [33]. However, the role of Drp1 in necroptosis remained controversial
as divergent studies from several groups had shown that PGAM5 and Drp1 are ‘dispos-
able’ for cellular necroptosis [34–36]. We found that Drp1 is activated via two different
pathways: the RIPK3-CaMK2-PGAM5-Drp1 axis and the RIPK3-CaMK1/4-Drp1 axis
(Figures 4 and 5). This may explain in part why PGAM5 is not required for necropto-
sis in some studies, as CaMK1/4 can bypass PGAM5 and directly activate Drp1 [34,36].
Interestingly, a recent study showed that inhibition of Drp1 reduced endothelial cells im-
munogenicity to allogeneic CD8+ T cells sufficiently to protect mouse heart allografts from
injury and prolong allograft survival [37]. In our transplantation study, inhibition of Drp1
upstream CaMKs significantly inhibited graft injury and prolonged heart graft survival
(Figures 7 and 8). It is noteworthy that the activation forms of p-CaMKs and p-Drp1 were
increased post transplantation, which could be significantly inhibited by KN93 treatment
(Figure 6). CaMKs inhibition in the present transplant study may have multiple effects
beside inhibiting necroptosis as CaMKs are multi-targeting kinases and thus participate in
other death pathways such as apoptosis [38–42] and pyroptosis [43,44]. Hence, our study
cannot eliminate an effect of CaMKs inhibition on other death pathways to improve graft
survival. In addition, CaMKII in the heart has multiple variants including δA, δB, δC, and
δ9 (Reviewed in [18,21]). While δB protects against cell death, other variants participate
in cell death [18,21]. Therapeutic benefit by pharmacological inhibition of this pathway
is challenged by the diversity of CaMKII isoforms and splice variants. Effective clinical
therapies will need to consider how to best uncouple harmful from beneficial effects of
targeting CaMKII. In our study, the results of CaMK inhibitor treatment reflected an over-
all benefit despite broadly inhibiting CaMKIIδ isoforms. However, selective targeting of
specific CaMKII variants of course may provide greater and more predictable protection in
cell death and heart transplantation.

Our in vivo results are based on a mouse heterotopic heart transplantation model,
which, like other small animal studies, have limitations in extrapolating to potential human
clinical studies. Mouse heart transplantation being a heterotopic model is not life sup-
porting as in conventional clinical orthotopic transplantation. Thus, there are differences
in heart chamber usage, physiology, and effects on myocardial stress that can influence
results. In addition, humans have more complex innate and memory alloimmune responses
compared with mice, which as well can affect responses to inflammatory injury and cell
death. However, mouse models provide valuable insights that form a basis for translational
studies in larger animal models and ultimately clinical studies. Our results thus support
further studies in larger animal models.

In summary, our studies confirm that CaMKs and RIPK3 interact to form a complex
which is related to mitochondrial damage and necroptosis. Inhibition of CaMKs can
impede cell death and can prolong allogenic heart transplant survival, thus supporting the
physiological importance and potential clinical relevance of this interaction. This study
supports that CaMKs are important in inducing programmed cell death and thus may be
important potential therapeutic targets in preventing organ injury.

4. Materials and Methods
4.1. Animals

Wild-type C57BL/6 (B6) and BALB/c mice (Charles River Lab, Bar Harbor, ME, USA)
were maintained in the animal facility. All animal experimental procedures complied
with the guideline from Institutional Animal Care and Use Committee (IACUC) and were
approved by the Animal Care Committee of Western University (AUP-2019-131).

4.2. Cell Death Assay

MVEC were isolated and developed as described previously [9,10]. Cells were grown
in DMEM medium supplemented with fetal bovine serum. TNFα (10 ng/mL; PeproTech,
Rocky Holl, NJ, USA) was used to induce cell death. Smac-mimetic BV6 (2 µM; ApexBio Tech.
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Houston, TX, USA) was added to suppress the function of inhibitor of apoptosis proteins (IAP)
and therefore activates caspases to promote cell death. Caspase-mediated apoptosis was inhib-
ited by caspase-8 inhibitor IETD (30 µM; ApexBio). RIPK1 inhibitor Nec-1s (10 µM; Millipore
Sigma, Etobicoke, ON, Canada) was added to inhibit necroptosis. Cell death was measured by
SYTOX® Green (100 nM, Thermo Fisher Scientific, Mississauga, ON, Canada) and quantified
using the IncuCyte System (Essen Bioscience).

4.3. Mitochondrial Analysis

Mitochondrial function and cell death were confirmed by measurement of total ATP level
according to the manufactural protocol (Cell Viability Assay, Promega, Madson, WI, USA). In ad-
dition, mitochondria were labelled by MitoTracker probes (Thermo Fisher Scientific). Fluorescent
intensity was automatically quantified by the IncuCyte System (Essen Bioscience).

4.4. Small Interference RNA (siRNA)

MVECs were seeded at 50–60% confluence and washed with serum-free DMEM.
MVECs were transfected with the siRNA working solution containing different concen-
trations of siRNA, Endofectamine (Thermo Fisher Scientific) in serum-free Opti-MEM
(Thermo Fisher Scientific) according to the manufactory protocol.

siRNA sequences are: CaMK1 sense 5′CCACCCUUUUAUGAUGAAAtt-3′, and anti-sense 5′-
UUUCAUCAUAAAAGGGUGGgt-3′; CaMK2δ sense 5′-GGAUGGACU UUCACAGAUUtt-3′,
and anti-sense 5′-AAUCUG UGAAAGUCCAUCCct-3′; CaMK4 sense 5′-GAGAU CCUCUGGGC-
GAUU U UU-3′, and anti-sense 5′ UCAAGG AAAU AUUCGAAACUU-3′; PGAM5 sense
5′-CCATAGAGACCACCGATAT-3′, and anti-sense 5′-CGGAA GCTGTGCAGTATTA-3′;
Drp1 sense 5′-CGUAAAAGGUUGCCCGUGAtt-3′, and anti-sense 5′-UCACGGGC AACCU
UUUACGaa-3′.

MVECs were transfected with siRNA. siRNA-induced silencing was confirmed by
PCR and Western blot analysis. Based on PCR result, the dose of 50 nM siRNA was
selected in this study. The cells were harvested at 24-h post-transfection and used for cell
death assays.

4.5. Quantitative PCR

Total RNA was extracted using TRIzol Reagent (Thermo Fisher Scientific). PCR was
performed using PowerTracker QPCR Mix (Thermo Fisher Scientific). The primers used
are as follows: CaMK1: 5′-CCAGGTGGAAGCAGGCGGAA-3′ and 5′-AGAAGGCAC
CCGTGCCCAGA-3′. CaMK2δ: 5′-CCTAAATGGCATAGTTCAC-3′ and 5′-GGATCTTTA
CGCAGGACTTC-3′. CaMK4: 5′-AGGAGACCTCCAGTATGGTGC-3′ and 5′-CTCCTCA
GTCATGGGGTCCAT-3′. Drp1: 5′-TGGGTGCGGACATCA-3′ and 5′-GCTCTGCGTT CC
CACTACGA-3′. PGAM5: 5′-ATCTGGAGAAGACGAGTTGACA-3′ and 5′-CCTGTTCCC
GACCTAATGG T-3′. β-actin: 5′-CCAGCCTTCCTTCCTGGGTA-3′ and 5′-CTAGAACAT T
GCGGTGCA-3′. β-actin was used as endogenous control for gene expression analysis.

4.6. Immunoprecipitation

Cells were collected in RIPA Lysis and Extraction Buffer containing a protease inhibitor
cocktail (Cell Signaling Technology, Danvers, MA, USA). Each supernatant was supple-
mented with 1 µg of the appropriate antibody and incubated for 1–2 h at 4 ◦C. An aliquot
(20 µL) of protein G agarose (Santa Cruz Biotech, Dallas, TX, USA) was added to each
sample and incubated at 4 ◦C overnight. The beads were then washed. An aliquot (40 µL)
of SDS–PAGE sample buffer was added to the beads to elute the immunoprecipitated
proteins for Western blot analysis.

4.7. Western Blot

Total cellular protein was extracted using RIPA buffer with protease inhibitors. The
concentration of the isolated protein was measured by Bradford Dye Protein Assay (Thermo
Fisher Scientific). The samples were then equally loaded in 10% SDS-PAGE gel. Antibodies
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used in Western blot are as follows: anti-CaMK1 (sc-137225), anti-p-CaMK1 (sc-28438-R),
anti-CaMK2 (sc-100362), anti-Drp1 Drp1 (sc-271583), anti-GAPDH (sc-47724, Santa Cruz
Biotech); anti-p-CaMK2 (PA5-37832), anti-p-CaMK4 (PA5-36745, Thermo Fisher Scientific);
anti-CaMK4 (4032S) anti-PGAM5-L (63454S, Cell Signaling Technology); anti-p-Drp1 (S616)
(ab314755), and anti-RIPK3 (ab62344, Abcam, Toronto, ON, Canada). Protein bands were
visualized by chemiluminescent substrate (Millipore Sigma, Oakville, ON, Canada) and
imaged in the FluorChem M Imaging System (Protein-Samples, Ottawa, ON, Canada).
Protein was quantified by densitometry (ImageJ 1.54g).

4.8. Heterotopic Cardiac Transplantation and Post-Operative Monitoring

Donor hearts from B6 mice were heterotopically transplanted into the abdominal
region of BALB/c mice [9]. Mouse was injected with ketamine/xylazine and placed above
a heating pad at 37 ◦C. A median sternotomy was operated. To induce transplantation
IRI, the donor heart was perfused with Ringer’s buffer and stored at 37 ◦C for 1 h and
at 4◦ C for 4 h. Some hearts were perfused with CaMKs inhibitor KN-93 (20 µg/mL,
MilliporeSigma). The donor heart was procured through a butterfly thoracic incision
and then anastomosed to the recipient abdominal aorta and inferior vena cava using
11-0 sutures (Ethicon, Piscataway, NJ, USA). Following blood reperfusion, the heart graft
resumed spontaneous contraction. The vena cava and pulmonary veins in the donor
hearts were sutured shut. The recipients were kept on inhaled isoflurane/oxygen mixture
(MilliporeSigma). The abdominal wall and skin were closed with a 5-0 suture (Ethicon,
Piscataway, NJ, USA.

The graft recipients received KN93 (20 µg/mouse) or 0.5 mL saline injection intraperi-
toneally on day 1, 2, and 3, and then every other day until day 21. Anti-CD154 (0.25 mg/mouse,
740874, BD Biosciences, San Jose, CA, USA) was injected intraperitoneally right after transplant
surgery. Graft survival was monitored by abdominal palpation for pulse detection. Cessation of
or a significant drop in cardiac pulsation was considered as graft rejection that is confirmed by
histopathological analysis.

4.9. Histology

Grafts were collected and perfused with saline, cut transversely, then fixed with 5%
formalin. Paraffin sections were used for H&E and elastin staining. All injury scores of
artery damage, infarction, and leukocyte infiltration were evaluated by a pathologist in
a blind manner. Damage was scored on a scale of 0–5 (0: no change, 1: 0–10% change,
2: 10–25% change, 3: 25–50% change, 4: 50–75% change, 5: >75% changes).

Tissue sections were stained by anti-CD3 (ab243874), anti-CD45 (ab10558), anti-IgG
(ab238004), and anti-FoxP3 (ab238004, Abcam) followed by immunohistochemistry. In-
tragraft death in tissue sections was detected by TUNEL method (MilliporeSigma). The
number of TUNEL-positive cells were automatically quantified by Image J in a double-
blinded fashion.

4.10. Statistical Analyses

Data were analyzed using the Student’s t-test or 1-way ANOVA with Tukey’s post-
hoc corrections test. The Mantel–Cox log rank test was used to determine graft survival
differences. Differences were considered significant when the p-value was ≤ 0.05.

5. Conclusions

Our in vitro and in vivo studies confirmed that CaMKs and RIPK3 form a complex
and subsequently mediate mitochondrial damage and necroptosis. Importantly, inhibition
of CaMKs can prevent cells death and organ injury and prolong allogenic heart transplant
survival. Hence, our study indicates that CaMKs are important cell death inducers and
thus potential therapeutic targets in preventing organ injury.
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MVEC mouse microvascular endothelial cells
Nec-1s Necrostatin-1
PCR polymerase chain reaction
PGAM5 phosphoglycerate mutase 5
pMLKL phosphorylated mixed lineage kinase domain like protein
RIPK receptor interacting protein kinase
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