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Abstract: Cancer comprises malignant cells surrounded by the tumor microenvironment (TME), a
dynamic ecosystem composed of heterogeneous cell populations that exert unique influences on
tumor development. The immune community within the TME plays a substantial role in tumori-
genesis and tumor evolution. The innate and adaptive immune cells “talk” to the tumor through
ligand–receptor interactions and signaling molecules, forming a complex communication network to
influence the cellular and molecular basis of cancer. Such intricate intratumoral immune composition
and interactions foster the application of immunotherapies, which empower the immune system
against cancer to elicit durable long-term responses in cancer patients. Single-cell technologies have
allowed for the dissection and characterization of the TME to an unprecedented level, while recent
advancements in bioinformatics tools have expanded the horizon and depth of high-dimensional
single-cell data analysis. This review will unravel the intertwined networks between malignancy
and immunity, explore the utilization of computational tools for a deeper understanding of tumor–
immune communications, and discuss the application of these approaches to aid in diagnosis or
treatment decision making in the clinical setting, as well as the current challenges faced by the
researchers with their potential future improvements.

Keywords: cancer; cancer environment; tumor immune communication; bioinformatics; treatment
response; immunotherapy

1. Introduction

The tumor microenvironment (TME) is a complex and dynamic ecosystem comprising
immune and stromal compartments. As shown in Figure 1, the immune compartment con-
sists of diverse cell types that suppress or stimulate tumor progression [1–5]. To suppress
tumor growth, antitumorigenic populations, such as the T and B lymphocytes, directly
target and eliminate the tumor cells or activate the antitumor capacity of other immune
cells, such as macrophages [6–9]. On the contrary, pro-tumorigenic communities, including
the myeloid-derived suppressor cells (MDSCs) and M2 macrophages, exert immunosup-
pressive effects through the inhibition of antitumor functions and the promotion of tumor
escape from immunosurveillance [10,11].

Cell–cell coordination within the TME is critical for initiating appropriate antitumor
immune responses. The coordination networks are established through cell–cell communi-
cations (CCC), predominantly through ligand–receptor (LR) interactions at the cell-surface
level. Cells “talk” to one another by using the “key” ligand to “unlock” the receptor, initiat-
ing a cascade of downstream signaling events [12]. For example, the interaction between
programmed death-ligand 1 (PD-L1) on tumor cells and programmed cell death protein
1 (PD-1) expressed by CD8+ T cells induces T cell exhaustion, downregulating its antitu-
mor cytotoxicity and promoting tumor growth [13]. Meanwhile, the release of signaling
cytokines and chemokines promotes cellular communications. Interferon γ released by
cytotoxic CD8+ T cells is a classic example that initiates tumor apoptosis or necrosis and
promotes cancer degradation [14].
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necrosis and promotes cancer degradation [14]. 

 
Figure 1. A basic schematic view of the tumor microenvironment (TME) showing different cell 
types. Cancer cells are surrounded by a wide diversity of innate and adaptive immune cells. The 
coordination between the immune and tumor cells regulates homeostasis and initiates an appropri-
ate immune response to cancer. The complex network of cells within the TME supports and influ-
ences tumor growth and response to cancer therapies. Abbreviations: DC—dendritic cell; MDSC—
myeloid-derived suppressor cell; CAF—cancer-associated fibroblast; ECM—extracellular matrix. 

Immune checkpoint inhibitors (ICIs), a type of immunotherapy that harnesses im-
munity against tumors, have revolutionized cancer treatment. The most investigated 
checkpoint inhibitors are cytotoxic T lymphocyte antigen-4 (CTLA-4) and PD-1 monoclo-
nal antibodies. CTLA-4, an inhibitory receptor commonly present on naïve CD4+ T cells, 
binds to CD80/86 ligands with high affinity. Such binding downregulates T cell priming, 
thus inhibiting cellular activation and proliferation [8,15]. Anti-CTLA-4 blocks CTLA-4 
functions, enabling CD80/86 to engage with the co-stimulatory molecule CD28, thereby 
promoting T cell activation [16]. Likewise, persistent PD-L1/PD-1 binding between tumor 
and CD8+ T cells turns the latter into exhaustion, diminishing its cytotoxicity against tu-
mor antigens [17]. Anti-PD-1 interrupts the PD-L1/PD-1 interaction to recover the cyto-
toxic capacity of CD8+ T cells and enhance tumor elimination [13,18]. However, ICI ther-
apies have not yet achieved optimal efficacy owing to the distinct response rates observed 
across different cancers, ranging from 4% for pancreatic cancer to 70% for melanoma [19]. 
A comprehensive understanding of cancer biology, particularly regarding the cellular 
composition of the TME and the tumor–immune cell cross-talk, is urgently required to 
improve patient response to ICI therapies. 

Traditional bulk analyses have unraveled genetic changes that substantially modu-
late tumor evolution and antitumor immunity, significantly enhancing our understanding 
of the intrinsic and extrinsic factors that drive tumor growth. However, the average gene 
expressions measured across numerous cells obscure the nuances between rare subpopu-
lations and cellular states, masking crucial biological details associated with disease de-
velopment and treatment response. Moreover, traditional proteomic assessments such as 
immunohistochemistry, in situ hybridization, and flow cytometry rely on predefined pan-
els featuring limited antibodies, constraining their abilities to comprehensively and accu-
rately depict the cellular and molecular basis of cancer. Recent advances in single-cell 
technologies enable whole-transcriptome sequencing at single-cell resolution. The tre-
mendous amount of data generated potentiates our understanding of tumor biology [20–
23]. Meanwhile, subsequent developments in bioinformatics tools facilitate the precise 
characterization and visualization of the TME, enabling efficient and straightforward in-
terpretation of massive and complex results. Among these tools, transcriptomic analyses 
are highly mature, with over 1400 bioinformatics approaches currently available [24]. 

Figure 1. A basic schematic view of the tumor microenvironment (TME) showing different cell
types. Cancer cells are surrounded by a wide diversity of innate and adaptive immune cells. The
coordination between the immune and tumor cells regulates homeostasis and initiates an appropriate
immune response to cancer. The complex network of cells within the TME supports and influences
tumor growth and response to cancer therapies. Abbreviations: DC—dendritic cell; MDSC—myeloid-
derived suppressor cell; CAF—cancer-associated fibroblast; ECM—extracellular matrix.

Immune checkpoint inhibitors (ICIs), a type of immunotherapy that harnesses im-
munity against tumors, have revolutionized cancer treatment. The most investigated
checkpoint inhibitors are cytotoxic T lymphocyte antigen-4 (CTLA-4) and PD-1 mono-
clonal antibodies. CTLA-4, an inhibitory receptor commonly present on naïve CD4+ T
cells, binds to CD80/86 ligands with high affinity. Such binding downregulates T cell
priming, thus inhibiting cellular activation and proliferation [8,15]. Anti-CTLA-4 blocks
CTLA-4 functions, enabling CD80/86 to engage with the co-stimulatory molecule CD28,
thereby promoting T cell activation [16]. Likewise, persistent PD-L1/PD-1 binding
between tumor and CD8+ T cells turns the latter into exhaustion, diminishing its cyto-
toxicity against tumor antigens [17]. Anti-PD-1 interrupts the PD-L1/PD-1 interaction to
recover the cytotoxic capacity of CD8+ T cells and enhance tumor elimination [13,18].
However, ICI therapies have not yet achieved optimal efficacy owing to the distinct re-
sponse rates observed across different cancers, ranging from 4% for pancreatic cancer to
70% for melanoma [19]. A comprehensive understanding of cancer biology, particularly
regarding the cellular composition of the TME and the tumor–immune cell cross-talk, is
urgently required to improve patient response to ICI therapies.

Traditional bulk analyses have unraveled genetic changes that substantially modulate
tumor evolution and antitumor immunity, significantly enhancing our understanding of the
intrinsic and extrinsic factors that drive tumor growth. However, the average gene expres-
sions measured across numerous cells obscure the nuances between rare subpopulations
and cellular states, masking crucial biological details associated with disease development
and treatment response. Moreover, traditional proteomic assessments such as immunohis-
tochemistry, in situ hybridization, and flow cytometry rely on predefined panels featuring
limited antibodies, constraining their abilities to comprehensively and accurately depict
the cellular and molecular basis of cancer. Recent advances in single-cell technologies
enable whole-transcriptome sequencing at single-cell resolution. The tremendous amount
of data generated potentiates our understanding of tumor biology [20–23]. Meanwhile,
subsequent developments in bioinformatics tools facilitate the precise characterization and
visualization of the TME, enabling efficient and straightforward interpretation of massive
and complex results. Among these tools, transcriptomic analyses are highly mature, with
over 1400 bioinformatics approaches currently available [24]. Such advancement has dra-
matically improved the identification of gene markers to aid in defining and discriminating
patient heterogeneity and varied treatment responses.
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Cancer research using single-cell technologies is a four-step process, starting from
sample preparation and ending with clinical application (Figure 2). In this review, we
summarize and discuss the widely applied step-based bioinformatics tools for characteriz-
ing cellular composition and predicting cancer–immune cell cross-talk, providing helpful
guidance for study design and method selection. Moreover, we select key studies that
associate biological discoveries with therapy outcomes to demonstrate the translational
significance of bioinformatics results in clinical practices. We present the current challenges
faced by these methods while suggesting future directions to spark the advancement of
novel bioinformatics approaches, broadening their utility across a spectrum of diseases.
Publications from the past five years are the main focus of this review. Studies regarding
bioinformatics tools were selected based on their wide application in single-cell data analy-
sis; tumor-related articles were selected based on their high relevance to the subject matter.
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Figure 2. A flowchart demonstrating the critical steps that are sequentially performed in single-cell
technologies. Different types of tumor samples, including tumor dissociates or formalin-fixed paraffin-
embedded specimens, undergo preparation. Subsequently, these samples are subjected to single-cell
resolution sequencing using sequencing platforms, generating a FASTQ output file containing gene
expression profiles of individual cells. These gene profiles then undergo various bioinformatics
analyses to uncover biological insights, such as identifying drug targets and biomarkers, which are
mainly used for shrinking tumor size and helping stratify patients who likely respond or resist the
therapy. Abbreviations: FFPE—formalin-fixed paraffin-embedded.

2. Single-Cell Technologies

Single-cell technologies largely offset the limitations of bulk analyses by capturing
the subtle differences between cell types, refining our understanding of cancer and its
interactions with the TME (Table 1). This section provides an overview of single-cell
approaches in the aspects of gene sequencing and cellular spatial imaging, demonstrating
significant improvements in measuring analyte availability, amplifying throughput, and
improving detection resolution.
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Table 1. Application of single-cell technologies and bioinformatics analysis of different cancer types.

Cancer Type Single-Cell Technique(s) Platform(s) Analysis Tool(s) Key Finding(s) Reference(s)

Breast scRNA-seq Smart-Seq2 Seurat

Micrometastases display an upregulated OXPHOS
pathway with elevated levels of promoting metabolites
compared to primary tumors. OXPHOS inhibition
greatly attenuates metastasis in lung cancer models,
potentiating its value in breast cancer.

[25]

Melanoma scRNA-seq 10x Genomics Chromium Seurat CCR7-SELL-CD4+ T cell subtype strongly correlates to
developing severe immune-related adverse events. [26]

Prostate Spatial transcriptomic Slide-seq Conos

Stromal cells, including endothelial cells and pericytes,
are more chaotically aligned in cancerous prostate;
interactions between IGF1+ fibroblasts and IGF1R+
tumor cells are suggested by their colocalization.

[27]

Head and neck Spatial transcriptomic and
proteomic 10x Genomics Visium Seurat

Two distinct tumor phenotypes were identified: one
situated at the leading edge characterized by an
accumulation of highly proliferative tumor cells, and
the other located at the core with a high infiltration of
immune cells.

[28]

Colon scRNA-seq; Spatial proteomic 10x Genomics Chromium;
PenoCycler Seurat; CACTI

Single-cell analysis discovered the interactions
occurring between SPP1+ macrophages and
cancer-associated fibroblasts (CAFs) which are high in
integrin receptors; spatial analysis demonstrates the
spatial proximity between CAFs and SPP1+
macrophages, further suggesting their interactions.

[29]

Lung scRNA-seq; Spatial
transcriptomic

10x Genomics Chromium;
10x Genomics Visium Seurat

Four cancer subpopulations were identified. The
UBE2C+ cell type is strongly correlated with the
invasion of lung adenocarcinoma, reflected by its
constant increase during the invasion process. The
UBE2C+ subpopulation is predominantly located
within the peritumoral region and is associated with
highly active tumor activities.

[30]
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2.1. Single-Cell Sequencing

Single-cell RNA sequencing (scRNA-seq) workflows are primarily categorized into
plate-based or droplet-based methods. The plate-based SMART-seq2 and MARS-seq use
conventional fluorescence-activated cell sorting (FACS) to isolate each cell to a well on a
multi-well plate [31,32]. Sequencing of full-length transcripts is allowed this way, making
it particularly useful for detecting rare cell types and low-abundance genes. However,
the plate-based approach significantly increases workload as only a limited number of
cells (up to hundreds) can be simultaneously processed. On the contrary, droplet-based
methods, including 10x Chromium, Drop-seq, and inDrop, spare the use of FACS by
encapsulating cell suspension into individual partitions, in which single cells are isolated
and tagged [33,34]. This method not only provides a more accessible entrance and shorter
processing time but also exhibits high throughput, as thousands of cells are processed
within a single batch. Nevertheless, detecting only 3′ or 5′ transcripts may disadvantage
their ability to identify differentially expressed genes. Therefore, the choice of technology
should be made based on specific study objectives.

2.2. Spatial Single-Cell Technologies

Recent advancements in spatial omics technology allow a larger number of markers
to be detected in spatial contexts. Current approaches use either fluorophore-tagged
antibodies to detect protein markers at cellular levels (imaging-based) or RNA probes to
recognize mRNA transcripts at transcriptomic levels (next-generation sequencing-based
[NGS-based]). Imaging-based approaches such as ChipCytometry, CyCIF, and MICs
involve iterative cycles of antibody staining, imaging, and stripping using a customized
multiplexed panel [35–37]. Since the panel is typically restricted to 30–50 antibodies
and the results are relatively qualitative, complementary genomic information using the
NGS-based approaches is required for validation. MERFISH, SeqFISH, Slide-seqV2, and
Visium HD enable the detection of up to 10,000 transcripts from which quantitative results
are generated, significantly addressing the shortage of using antibody-based methods
alone [38–40]. Notably, methods including PhenoCycler (CODEX), DBiT-seq, CosMx, and
Xenium enable the simultaneous detection of both protein and RNA markers while allowing
for the integration of transcriptomic and proteomic data, leading to a more comprehensive
interpretation and visualization of the spatial results [41–44].

3. Bioinformatics Tools for Single-Cell Data Analysis
3.1. Bioinformatics Dissection of Tumor–Immune Cell Microenvironment

Single-cell technologies have helped us better understand the complexity and dynam-
ics of the TME. The massive amount of data generated by scRNA-seq poses challenges to
downstream analysis due to the complex high-dimensional data structure and intensive
workload. Bioinformatics analysis helps extract biologically relevant information from
high-dimensional data through data preprocessing, normalization, confounder correc-
tion, dimensionality reduction, clustering, and annotation (as summarized in Table 2).
Standardized pipelines such as Seurat [45], Scanpy [46], and Bioconductor-based Sin-
gleCellExperiment [47] provide comprehensive guidance for each step, while additional
approaches are recommended to accomplish peripheral analysis tasks.
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Table 2. A summary of scRNAseq analysis steps with corresponding analysis tools and functions.

scRNA-seq Data
Analysis Step Method Package(s) Advantage(s) Limitation(s) Example Study Platform Ref.

Quality control

Ambient RNA
removal

SoupX,
CellBender

• SoupX has a low computational cost.
• SoupX offers automated estimation

of contamination.
• CellBender allows for simultaneous

cell type identification and
contamination removal.

• SoupX requires prior knowledge
on the RNA markers.

• CellBender leads to ambiguous
signal-noise deconvolution if UMI
counts within empty droplets are
not significantly lower.

[48,49]

R
(SoupX) and

Terra
(CellRender)

[50,51]

Doublet
removal scDblFinder • High doublet detection accuracy;

• Computationally efficient.
• Detection accuracy reduces with

increasing batch.
[52] R [53]

Normalization

Scaling-based sctransform

• Uses model-based approach to
estimate size factor.

• Prevents data overfitting
through regularization.

• Unsuitable for complex data due to
assumption of linearity.

• May bias toward low gene count
and zero inflation.

[54] R [55]

Regression-based SCnorm

• Able to scale gene counts between
different conditions.

• Robust for lowly or moderately
expressed genes.

• High computational cost due to
iterative optimization for scaling
factor estimation.

[56] R [57]

Spike-in
RNA-based BASiCS

• Measures the technical variations
and biological heterogeneity
simultaneously.

• Difference in spike-in and
endogenous RNA transcripts may
confound the results.

[58] R [59]

Confounder correction

Technical-based scVI,
Harmony

• Corrects technical artefacts, e.g.,
batch effects and drop-out events.

• Lacks the ability to correct for
biological confounders.

[60,61]
R (Harmony)
and Python

(scVI and scGen)
[62,63]

Biological-based
Seurat or Scanpy

build-ins,
Tricycle

• Corrects biological confounding
features, e.g., low-quality cells,
mitochondrial content, and cell
cycle effects.

• Lacks the ability to correct for
technical confounders.

[64]

R
(Seurat) and

Python (Scanpy
and Tricycle)

[46,65,66]
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Table 2. Cont.

scRNA-seq Data
Analysis Step Method Package(s) Advantage(s) Limitation(s) Example Study Platform Ref.

Feature
selection

Deviance-based sctransform

• Selects both highly variable and
highly expressed gene features.

• Not effected by normalization due to
performance on raw UMI counts.

• Highly demanding for memory
when scaling large datasets (over
1 million cells).

[67] R [55]

Highly variable
gene-based Seurat • Straight-forward and reduce the risk

of losing interesting biological signals.

• Performance on normalized gene
counts makes it sensitive to
normalization.

[68] R [65]

Highly expressed
gene-based Monocle • Simple approach and practical to

avoid exhaustive memory runtime.

• Performance on normalized gene
counts makes it sensitive to
normalization.

• May detect less relevant genes that
have high but constant expression
across gene set.

[69] R [70]

Dimensionality
reduction

PCA Seurat, Scanpy
• Preserves the principal components

that highly reflect variations across
the dataset.

• Leads to the loss of underlying
biological features stored in the
complex data structure.

[71] R, Python [46,65]

t-SNE Seurat, Scanpy • Models and preserves the non-linear
data structure.

• Computationally expensive and
unable to preserve the global data
structure.

[72] R, Python [46,65]

UMAP Seurat, Scanpy
• Computationally efficient with

high-dimensional large datasets.
• Preserves the global data structure.

• Potential of data overfitting due to
over- emphasis on local structure
or noise.

[73] R, Python [46,65]
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Table 2. Cont.

scRNA-seq Data
Analysis Step Method Package(s) Advantage(s) Limitation(s) Example Study Platform Ref.

Clustering

Louvain Seurat, Scanpy

• Detects communities with optimal
modularity in small to medium-scale
datasets;

• Computationally efficient.

• Communities detected may have
poor or absent internal
connections.

[74] R, Python [46,65]

Leiden Seurat, Scanpy

• Improved version of Louvain;
computationally efficient.

• Guarantees intracommunity
connection.

• Offers optimal local
connectivity structure.

• Extra phase required to refine
the partition.

[75] R, Python [46,65]

Annotation

Classifier-based CellTypist,
Clustifyr

• Allows for the identification of new
genes or cell types.

• Can be performed on multiple
studies.

• Requires careful selection of
training data.

• Annotation quality effected by
batch effects.

[76,77] Python,
R [78,79]

Reference-based Azimuth,
SingleR

• Allows for the accurate identification
of known markers.

• Heavily dependent on prior
knowledge.

• Unable to identify novel markers
or cell types.

[26,80] R,
Python [81,82]

Abbreviations: scRNA-seq—single-cell RNA sequencing; PCA—principal component analysis; t-SNE—t-distributed stochastic neighbor embedding; UMAP—uniform manifold
approximation and projection.
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3.1.1. Quality Control

Quality control (QC) is the first critical step in data preprocessing. QC aims to remove
ambient RNA contamination and poor-quality cells, preserving only high-quality cells for
downstream analysis. Ambient RNAs are biologically irrelevant cell-specific transcripts
in the cell suspension. If not removed, they are likely misidentified in other cell types,
obscuring the distinction between different cell populations during the clustering step [50].
SoupX [50] and CellBender [51] are able to address the problem by estimating and re-
moving the cell-free gene markers in a supervised and unsupervised manner, respectively.
Moreover, scDblFinder [53], a Bioconductor-based package that detects and eliminates
doublets or multiplets, helps remove low-quality cells. It has recently been examined as
the best performer among the currently available doublet-detecting tools [83].

3.1.2. Gene Count Normalization

The gene counts in high-quality cells must undergo normalization to minimize technical
variations introduced during the experimental process. The most popular normalization
approach is global scaling, whereby each cell is calculated with a “size factor” based on which
the gene expressions are scaled to a standard reference, making the expressions compara-
ble between cells [84]. Analysis pipelines, such as Seurat, Scanpy, and BASiCS [59], have
integrated normalization methods based on scaling, regression, and spike-in RNAs, respec-
tively [57,59,85–88]. The recently compiled regression-based method sctransform is becoming
more prevalent. It omits the heuristic steps while treating the sequencing depth as a covariate,
producing more objective and robust results with lower false positive rates [55].

3.1.3. Confounder Correction

Correction of confounding factors is another necessary step involved in data clean-
ing. Technical confounders, such as batch effects, are corrected by scVI and scGen for
the complex integration of multiple samples, or by Harmony for simple sample integra-
tions [62,63,89]. In addition, biological confounding factors, such as cell cycle effects, may
be directly modified by the built-in functions in Seurat or Scanpy, alongside methods such
as Tricycle, if the dataset displays highly heterogenous cell populations [66,90].

3.1.4. Feature Selection

This step ensures that only biologically informative gene features are selected and
preserved for downstream analysis. Townes et al. examined and compared the three
currently used approaches for feature selection—deviance, highly variable genes, and
highly expressed genes—across eight scRNA-seq datasets. The effectiveness of deviance
stood out mainly due to its ability to identify both highly expressed and highly variable
genes [91]. Moreover, deviance-based approaches perform feature selection directly on
the raw counts of unique molecular identifiers, making them insensitive to normalization
methods [92].

3.1.5. Dimensionality Reduction

The challenge of interpreting high-dimensional data with a sparse structure makes
dimensionality reduction essential for downstream analysis. Dimensionality reduction
simplifies the data by reducing the number of dimensions while preserving the essential
structure and variations within the data. A common approach is the principal component
analysis (PCA), which captures the maximal variances of the original variables, reducing
the total dimensions to a few principal components [93]. However, the linear model used
by PCA is unable to perfectly reflect the non-linear scRNA-seq structure, leading to the
inevitable loss of biological variations during the reduction process. Comparisons between
multiple approaches have revealed that the graph-based, non-linear methods such as t-
distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation
and projection (UMAP) exhibit higher robustness and accuracy, albeit they come with a
high computational cost [94,95].
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3.1.6. Cell Clustering

Following data preprocessing, individual cells with similar genetic profiles are grouped
into clusters to summarize and explain data heterogeneity. Louvain, the k-nearest neigh-
bor graph-based community detection algorithm, was reported with optimal perfor-
mance [96,97]. However, Traag et al. reported that the Louvain-based calculations resulted
in poorly connected (25%) or even disconnected (16%) communities [98]. The Leiden
algorithm was successively introduced, guaranteeing intercommunity connections while
increasing the clustering speed.

3.1.7. Annotation

Finally, the clusters are annotated with specific biological interpretations. The biggest
concern impeding accurate annotation is the lack of a standardized protocol, leading to
biased and subjective biological definitions that are highly inconsistent across different
studies. Heumos and colleagues proposed a three-step approach consisting of automated
annotation, manual annotation, and expert verification, aiming to minimize bias and in-
crease the objectivity and validity of annotation [99]. Automated annotation is implemented
using either the classifier-based methods, such as CellTypist [78] and Clustifyr [79], or the
reference-based approaches, such as Azimuth [81] and SingleR [82]. Notably, the results
generated by automated annotation heavily rely on the classifier type and the quality of
training datasets, suggesting the importance of carefully aligning study goals with the
chosen datasets. Meanwhile, clusters should be manually annotated by comparing the
cluster-specific differentially expressed genes, identified via t-tests or Wilcoxon rank-sum
tests, to the markers documented in well-referenced datasets. The final step is to seek veri-
fication from experts with solid immunology backgrounds, as their empirical knowledge
may provide valuable insights into studies under specific contexts.

3.2. Bioinformatics Analysis of Tumor–Immune Cell Communication

Advancements in scRNA-seq technologies and the compilation of protein–protein
interaction databases have enabled the inference and analysis of CCC. Currently used CCC
inference tools utilize different computational strategies emphasizing specific biological
aspects, including LR interaction, intracellular signaling, and spatial proximity [100]. Ap-
propriate approaches for CCC analysis should be carefully considered depending on the
data availability and overall study objectives. Here, we list the common bioinformatics
approaches of CCC analysis alongside a brief explanation of their algorithms, strengths,
and limitations.

3.2.1. Ligand–Receptor Interaction

CCC inference largely relies on calculating the interaction strength, indicating the
probability of interaction between a specific ligand and its receptor(s). The key LR-based
bioinformatics approaches are listed in Table 3, with example studies and a brief explanation
of the methods. Differential combination-based tools, such as iTALK [101], CellTalker [102],
and PyMINEr [103], priorly compute the differentially expressed ligand- and receptor-
encoding genes, which are compared to the reference databases to identify the LR pairs.
However, since the differential genes are computed against the background gene expres-
sion, those with ubiquitously high expression are overlooked, thus potentially diminishing
their valuable biological relevance. Another widely applied method is based on permu-
tation that is integrated into platforms such as the CellPhoneDB [104], CellChat [105],
ICELLNET [106], and SingleCellSignalR [107]. Ligand- and receptor-encoding genes are
first selected and used to infer LR pairs, each calculated with a communication score infor-
mative of interaction strength. Significantly expressed LR interactions are selected based
on multiple permutations of communication scores through non-parametric tests. False
positive and negative rates are significantly reduced by this mean, making permutation the
standard practice for CCC analysis and inference.
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Table 3. A summary of the LR-based CCC inference tools with a method overview, platforms, and example studies.

CCC Analysis Tool Approach Advantage Limitation Platform Example Study Ref.

iTALK
Identifies general interaction patterns
between different cell types based on
gene expression profiles.

Enables the prediction of interactions
from multiple samples.

The scoring scheme accounts for only
abundant genes and thus likely
overlooks interactions between less
abundant genes.

R [108] [101]

PyMINEr

Integrates multi-omics data to identify
activating and inhibitory interactions;
primarily focuses on identifying
metabolic pathways.

Offers the full pipeline from clustering to
visualization; there is no requirement for
a reference database due to automatic
generation; provides additional
information on activator and inhibitor.

Signaling pathway-based CCC
inference may lead to false prediction
due to poor understanding of pathway
components, increasing false
positive rates.

Python [109] [103]

CellPhoneDB
Calculates the permutation-based LR
scores to identify significantly up- and
downregulated interactions.

Gives strengthened inflammation- and
proliferation-related gene sets; reduces
false positive rates by using heteromeric
complex-based inference.

Shortened in epithelial–mesenchymal
transition gene sets; may increase false
negative rates.

Python; Python
web interface [110] [104]

CellChat

Computes the communication score of
each LR pair’s interaction strength
that are permuted to identify
significant interactions.

Reduces false positive rates by using
heteromeric complex-based inference;
integrates information of mediators and
influencers; enables CCC inference in
continuous cell states.

Lacks predictions within cell groups;
pairwise comparisons limit analysis
under different conditions.

R [111] [105]

ICELLNET

Calculates both individual and global
communication scores to assess
cellular communications among single
cells or cell types of interests.

Particularly useful in predicting cytokine
interactions; enables the incorporation of
gene expressions from different datasets;
implements experimental validation of
the predicted interactions.

Comprises less interactions in the
database; lacks information of
signaling pathways and gene
regulatory networks.

R [106] [106]

SingleCellSignalR
Uses regularized product scores to
stabilize the noise and variability
present in the dataset.

The regularized product score generates
a stable threshold to reduce false
positive rates.

Unable to integrate information from
multiple samples. R [112] [107]
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Notably, these inference tools exhibit few limitations, requiring cautious selection to
minimize unexpected analysis results. Reference databases are curated based on the prior
knowledge of LR interactions, overlooking the potential biological influence exerted by the
novel interactions. Moreover, these platform-specific databases focus on different biological
aspects, likely producing biased inference results even from analyzing the same dataset.
For instance, the T cell receptor pathway was observed to be under-represented in most
of the tools but was overrepresented in OmniPath and Celllinker [113]. Such discrepancy
emphasizes the importance of strictly aligning the choice of platforms and databases with
study objectives.

Moreover, iTALK and SingleCellSignalR infer cellular communication on the basis
of single LR pairs, disregarding the influence of mediators or co-stimulatory molecules
in initiating and promoting cell–cell interactions [101,102]. Recently compiled tools, such
as CellChat and CellPhoneDB, mitigate this problem by using multiple LR pairs with
the consideration of heteromeric complexes to increase inference power and reduce false
positive rates [104,105]. Moreover, some may apply additional downstream analyses
to extract further information. For instance, CellChat adopted the network centrality
analysis that measures out-degree, in-degree, flow betweenness, and information centrality
to uncover the highly specific roles of ligands and receptors on the directed weighted
CCC networks. In consequence, this analysis unravels cellular components that mediate
(mediator) or influence (influencer) LR interactions in addition to signal senders and
receivers, providing deeper insights into the inferred cellular interactions and helping
better understand their biological functions [105].

3.2.2. Intracellular Signaling Communication

The subsequent signaling events following LR binding provide complementary infor-
mation that validates the surface-level interactions. The integration of LR interactions and
intracellular signaling thus greatly enhances the scope and accuracy for CCC inference at
both protein and gene levels. Approaches that compute intracellular signaling, including
NicheNet [114], scMLnet [115], CCCExplorer [116], scSeqComm [117], and CellCall [118],
model interactions based on the changes occurring among ligands and/or receptors, tran-
scription factors, and targeted genes, while others such as CytoTalk [119] measure the
change in all intracellular genes.

3.2.3. Spatial-Based Communication Inference

Recent advancements in spatial technologies at single-cell and subcellular resolutions
enable the measurement of spatial proximity among individual cells. The trend of spatial-
based CCC inference protocols increasingly prevails, given that physically proximal cells
are more likely to interact. The built-in statistical methods are mainly based on two as-
sumptions: Giotto [120], SpaOTsc [121], spaGCN [122], and DeepLinc [123] assume the
co-existence of ligand and receptors for CCC occurrence, whereas SVCA [124] assumes
that the gene expression of one cell relies on its interaction with the neighboring cells.
Notably, while the development of either intracellular- or spatial-oriented CCC inference
approaches is not mature enough for independent usage, combined strategies incorporating
LR interactions are highly recommended to optimize inference accuracy.

3.2.4. Experimental Validation of the Inferred CCC

The validation of predicted cell–cell interactions is crucial due to the probability-
based nature of CCC inference. Laboratory experiments, such as functional assessments,
examine the actual functions of the inferred ligands or receptors, while immunostaining
enables the visualization of proteins on the cell surface, further confirming the occurrence
of LR interactions [125]. The growing availability of spatial transcriptomic data offers
another dimension that allows for the measurement of spatial distances between cell
types to identify proximal cells, which are more likely to interact than those located far
away [126]. However, this method may not be applicable to endocrine interactions, where
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distant cells communicate through traveling signals and hormones. Moreover, previously
identified LR interactions serve as important validation sources. For instance, the presence
of chemokine ligand 13 (CXCL13) on follicular helper T cells and chemokine receptor
5 (CXCR5) expressed by B cells strongly suggests their interaction in the cancer setting,
supported by the previously identified CXCL13-CXCR5 chemotaxis in promoting cancer
invasion and metastasis [127].

4. Application of Single-Cell Bioinformatics Tools in Understanding Patient
Heterogeneity and Treatment Responses

Advancements in single-cell data analysis not only facilitate our understanding of
tumor biology but also help establish the relationships between biological intricacies
and clinical outcomes [128–136]. We have listed several studies that utilized single-cell
technologies to explore the “How” and “Why” tumors respond differently to various
treatments, with a focus on characterizing the diverse immune compartments, analyzing
the tumor–immune cell interactions, and their roles in developing response or resistance
to immunotherapies.

4.1. Utilizing Bioinformatics Analysis to Explore the Tumor Microenvironment (TME)

In the study on ICI-treated pancreatic ductal adenocarcinoma (PDAC) patients, Wang
et al. used Seurat to compare the dense- to the loose-desmoplasia samples and identified
eight major cell clusters, including tumor, immune, and cancer-associated fibroblast (CAF)
cells [137]. Further dissection uncovered six subpopulations, among which the metabolic
CAF (meCAF), a novel subtype with a high glycolysis rate, showed significantly high abun-
dance in loose-type samples. High meCAF abundance positively correlates to metastasis
and poor prognosis but is associated with an improved response to anti-PD-1, resulting in
an ORR of 65%.

Another example utilized scRNA-seq and identified two cellular subtypes from both
innate and adaptive immune systems. Team Krishna profiled samples from four ICI-
treated patients with clear cell Renal Cell Carcinoma (ccRCC) and performed analysis
via Seurat [138]. A positive correlation was identified between the pretreatment CD8+
tissue-resident T cell expression and patient response to ICI-based therapies. Moreover, the
ISGhi TAM subtype with elevated angiogenesis signatures was observed, evidenced by the
increasing FLT1, SPARC, and RGS5 expressions. Validated in multiple independent cohorts,
ISGhi TAMs are strongly associated with improved progression-free outcomes following
sunitinib therapy.

Bioinformatics analysis extends beyond characterizing individual cell types to the com-
putation of scoring schemes derived from multiple cellular states, enhancing the predictive
power for heterogeneous treatment responses. For instance, scRNA-seq data derived from
35 non-small-cell lung cancer (NSCLC) samples were analyzed using Seurat, revealing
49 distinct immune populations [139]. Within the immune compartment, a high corre-
lation among activated T cells, IgG+ plasma cells, and SPP1hiC1Qlo monocyte-derived
macrophages was identified and collectively computed to the lung cancer activation mod-
ule (LCAM) score, greatly aiding in patient stratification. Validation of the LCAM score
indicates that LCAMhi patients exhibit better responses to anti-PD-1 treatment compared
to those with a low LCAM score. The application of single-cell technologies unveils critical
cellular phenotypes influencing treatment responses and prognosis, enhancing our under-
standing of tumor–immune cell interactions and predictive roles in tumor development
and therapy response.

4.2. Application of Bioinformatics Analysis Regarding Tumor–Immune Cell Communication

Additionally, these studies employed single-cell technologies to unravel the cell–
cell interactions, either to validate the single-cell results or directly correlate them with
patient heterogeneity and therapy response. Wang et al. utilized CellChat to define tumor–
immune cell cross-talks, revealing stronger interactions between the ECM matrix and
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dense-desmoplasia-specific PDAC cancer cells. These results underscore the crucial role
of cellular communication in shaping tissue phenotypes and the TME structure [137].
Moreover, the co-existence of highly tumor-infiltrated ISGhi TAMs and expanded CD8+
tumor-resident T cells in resistant patients suggests immunosuppressive effects exerted
on the latter by the former. CellPhoneDB analyzed their interactions, revealing multiple
suppressive interactions in between. The enhancement of T cell exclusion via TNFRSF1A-
GRN and the polarization of TAMs toward immunosuppressive phenotypes via ADRB2-
VEGFB highlight the complex interplay between immune populations. On the contrary,
interactions promoting pro-inflammatory responses (e.g., CXCR3-CXCL9) were observed
in patients with complete responses [138]. Furthermore, CellPhoneDB was employed to
define LR interactions among immune cells in the LCAM-based NSCLC patient groups. In
the LCAMhi group, greater interactions were observed between T and B cells, particularly
via CXCL13-CXCR5 and TNFRSF9-TNFSF9, to promote T cell activation. These strong
interactions support the use of LCAM for patient stratification and shed light on the impact
of tumor–immune cell cross-talk on shaping the LCAM axis [139].

5. Challenges and Future Directions

Single-cell technologies have developed to an unprecedented level, enabling detailed
investigation into the diverse cellular composition and tumor–immune cell interactions.
However, accurate sequence capture and analysis of high-dimensional data structures
remain challenging. Here, we briefly discuss the major concerns regarding the use of
single-cell technologies and bioinformatics analysis for TME characterization and CCC
inference, with potential solutions to alleviate the problems. Furthermore, we propose
the “bench-to-bedside” translational significance of the biological discoveries derived
from single-cell technologies to provide valuable insights into its real-life applications in
improving clinical outcomes.

5.1. Challenges Faced by TME Dissection via Single-Cell Technologies

One major challenge faced by scRNA-seq is the measurement of numerous “zero” gene
expressions. These missing values are largely attributed to technical variations, such as
degraded mRNA transcripts, inefficient transcript capture or amplification, or variable cell
library dilutions, which greatly impede downstream analysis. Imputation helps solve such
problems using model-based or deep learning-based approaches [140]. The former includes
SAVER [141], SCRABBLE [133], and scRecover [142],which utilize statistical models built on
existing data to predict missing data. However, biased results likely arise if the underlying
assumptions of the statistic models are not met. On the contrary, deep learning-based methods
train neural networks to “learn” the data patterns and their interconnected relationships,
minimizing subjective biases. However, they require substantial computational resources,
particularly for large datasets [143].

Limited biological understanding of gene expressions presents another challenge
for TME characterization. Without sufficient biological knowledge, transient or low
biological signals are easily confused with the background noise or artifacts, reducing
the signal-to-noise ratio, thus misguiding the identification of true cell phenotypes.
Moreover, the presence of specific stimuli and post-translational modifications further
hinder the accurate classification of cell phenotypes. A comprehensive understanding
of cellular features at single-cell multi-omics levels holds promise for improving the
current situation.

Current scRNA-seq technologies are mostly performed on dissociated tumor samples,
diminishing the spatial context of each cell, thus emphasizing the need to preserve cellular
spatial coordinates in situ. Fluorescent in situ hybridization (FISH)-based methods such
as fluorescent in situ sequencing (FISSEQ) [144], starMAP [145], and MERFISH [146]
allow for the in situ sequencing of ten to thousands of RNA transcripts. However, this
approach proposes a few limitations. First, supervised RNA sequencing requires prior
selection of transcripts of interest, compromising the unbiased nature of scRNA-seq. In
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addition, the measurement of a limited number of RNA transcripts fails to represent the
entire transcriptome. Alternatively, separate performances of RNA sequencing and spatial
imaging help preserve and combine the strengths of both methods. Strict alignment of
tumor dissociates with whole-slide tissue samples is required for generating comparable
expressions at gene and protein levels.

5.2. Challenges Faced by Cell–Cell Interaction Analysis via Single-Cell Technologies

Current CCC inference tools mostly rely on transcriptomic data, whereas LR interac-
tions primarily occur at the protein level. Transcriptomic analyses are unable to truly reflect
protein expressions due to the post-transcriptional and post-translational modifications,
likely leading to an inaccurate portrayal of the LR landscape [147]. Direct quantification
of cellular surface proteins using proteomic flow cytometry and mass spectrometry tech-
nologies helps generate more promising results, while RNA measurements may be used
complementarily to increase predicting confidence. An example refers to glycosylation,
which alters the structure of 80% of proteins following translation [148]. The glycosylated
Asn162 site on the FcγRIIIα receptor was reported with reduced affinities toward fucosy-
lated antibodies, resulting in the lowered interaction strength that crucially influences the
antibody-dependent cellular cytotoxicity.

While cell–cell interactions within species have gained heavy attention, those occurring
at the interspecies level, particularly between pathogens and human host cells in infectious
diseases, require more investigation. Incomprehensive curation of protein–protein interac-
tion databases between pathogens and host cells remains the major limitation to achieving
accurate inference [122]. The exponential growth of newly generated data has greatly
improved the database scope. Moreover, since pathogens tend to rewire host metabolism
for their own survival, the integration of metabolomics information with scRNA-seq data
thus provides information with additional biological relevance [149].

Another limitation of CCC inference tools is their failure to account for cellular lo-
calization, as only those in proximity enable LR interactions. The introduction of spatial
transcriptomic and proteomic technologies, or direct LR screening, which preserves the
in situ cellular localization, provides validation of the gene-based inference [150–152].
Alternatively, whole-tissue scRNA-seq methods such as PIC-seq mildly dissociate the tu-
mor samples while preserving in situ intracellular interactions to concurrently generate
transcriptomic and spatial information [153]. However, only two fluorescent markers
are currently available in PIC-seq. Thus, increasing the available markers would help it
generate more promising results.

5.3. Challenges of Integrating Diverse Single-Cell Datasets

The complex and dynamic biological processes necessitate appropriate integration
of single-cell data obtained from different samples, experiments, and measurement types.
However, such integration is challenging due to the requirement of flexible and robust
statistical models to extract relevant and meaningful biological information from various
sources with both accuracy and comprehensiveness. One challenge refers to the batch effects
that arise when samples from diverse sources, such as varying time points, tissues, locations,
and organisms, are pooled together to analyze similar patterns or differentially expressed
genes. Batch effects can also be exacerbated by technical variability including the use of
different experimental protocols and sequencing platforms. Standardized experimental
protocols, as well as statistical algorithms embedded within the bioinformatics packages,
such as Harmony and Scanorama, have been employed to minimize batch effects. Moreover,
the creation and constant update of commonly used reference databases, such as the
Human Cell Atlas, aids in cell classification and annotation that further support batch effect
correction [154].

Another challenge involves integrating multiple “omics”, such as genomic, proteomic,
and epigenomic technologies, owing to the distinctive analysis strategies used in each
modality. With the interconnections between DNA, RNA, and proteins, many chains of
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events are identified to form a comprehensive molecular network, providing increasingly
reliable reflection of the biological activities. However, single-cell data inherently exhibit
sparsity characterized by numerous drop-out events [155]. These missing values are usu-
ally estimated by “borrowing” information from other cells. Likewise, noise or sparsity
occurring within one modality may be compensated by “borrowing” information from
another modality. Over-simplification of the intermodality relationships stems from an in-
complete understanding of gene regulatory networks [156]. For example, mRNA-encoded
functions may greatly diverge from the actual protein-executed functions owing to post-
transcriptional and post-translational modifications. Therefore, there is a critical need to
advance our understanding of the underlying biological mechanisms within each modality,
along with their temporal dynamics.

5.4. Outlook: Translational Insights of Single-Cell Technologies in Clinical Application

The discovery of unique biological features from high-dimensional single-cell data
facilitates the creation of low-dimensional gene and/or protein panels suitable for clinical
practices. For instance, refined cell types from single-cell transcriptomic analysis can be
mapped to bulk RNA-seq samples using bioinformatics methods, allowing for the rapid
estimation of cellular compositions in routine clinical samples. Furthermore, protein mark-
ers identified through single-cell analysis can be applied to clinically accessible platforms,
such as multiplex immunohistochemistry, enabling effective patient stratification based on
the molecular features of tumor samples in clinical settings.

Furthermore, the results from single-cell technologies contribute to the curation of
public datasets such as the Human Tumor Atlas Network (HTAN), enhancing their utility
in clinical settings [157]. The translational potential of HTAN is multi-faceted. Firstly,
it aids drug discovery by improving our understanding of drug efficacy and resistance
mechanisms. In addition, it enhances diagnostic capabilities by identifying specific cell
types associated with early disease development. Moreover, it aids in identifying biomark-
ers for stratifying patients who likely respond to or resist the therapy. Ultimately, the
development of HTAN holds promise for advancing precision medicine, thus improving
patient survival outcomes.

6. Conclusions

Here, we summarized the bioinformatics tools and analytical steps that are extensively
employed in single-cell data analysis in the fields of cancer and immunology. The recently
developed single-cell technologies, the subsequent bioinformatics tools, and their applica-
tions in the field of cancer treatments have shed light on the underlying mechanisms of
immune response against tumor progression. A wide range of studies focusing on vari-
ous cancer types indicate the potential of single-cell technologies to revolutionize cancer
diagnosis in terms of patient stratifications, outcome prediction, treatment options, and
long-term monitoring. However, several challenges still remain that remind researchers of
the potential biases generated from their results. The future directions of these technologies
are briefly discussed, and solutions for improving technological effectiveness, efficiency,
and financial cost are proposed.
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