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Abstract: Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide.
This study’s goal was to identify the signaling drivers and pathways that modulate glomerular
endothelial dysfunction in DKD via artificial intelligence-enabled literature-based discovery. Cross-
domain text mining of 33+ million PubMed articles was performed with SemNet 2.0 to identify
and rank multi-scalar and multi-factorial pathophysiological concepts related to DKD. A set of
identified relevant genes and proteins that regulate different pathological events associated with
DKD were analyzed and ranked using normalized mean HeteSim scores. High-ranking genes and
proteins intersected three domains—DKD, the immune response, and glomerular endothelial cells.
The top 10% of ranked concepts were mapped to the following biological functions: angiogenesis,
apoptotic processes, cell adhesion, chemotaxis, growth factor signaling, vascular permeability, the
nitric oxide response, oxidative stress, the cytokine response, macrophage signaling, NFκB factor
activity, the TLR pathway, glucose metabolism, the inflammatory response, the ERK/MAPK signaling
response, the JAK/STAT pathway, the T-cell-mediated response, the WNT/β-catenin pathway, the
renin–angiotensin system, and NADPH oxidase activity. High-ranking genes and proteins were
used to generate a protein–protein interaction network. The study results prioritized interactions
or molecules involved in dysregulated signaling in DKD, which can be further assessed through
biochemical network models or experiments.

Keywords: diabetic kidney disease; immune response; glomerular endothelial cells; biomedical text
mining; disease relatedness; functional ontology; machine learning; artificial intelligence

1. Introduction

Diabetic kidney disease (DKD) is a major microvascular complication in the kidney
that affects patients with type I diabetes and type II diabetes. Approximately 20–50% of
patients with type II diabetes will develop DKD [1]. DKD can lead to a decline in kid-
ney function and has the potential to develop into chronic kidney disease or end-stage
renal disease (ESRD) [2,3]. A high clinical and socio-economic impact of DKD is bur-
densome because of the risk of progression to ESRD and other related comorbidities [4].
The progression of chronic and end-stage renal failure is estimated to affect over 10%
of the general population, or more than 800 million people, worldwide [5]. The patho-
physiology of DKD is multi-factorial and characterized by metabolic impairment, an
uncontrolled inflammatory response, increased apoptosis, and tissue fibrosis [4,6]. In di-
abetes, aberrant glucose metabolism leads to dysregulation of the immune response and
signaling [6–8]. Metabolic abnormalities activate the mononuclear phagocyte system, which
releases pro-inflammatory cytokines and paracrine signals, leading to immune cell infiltration
[6–9]. In the early stages of diabetes, glomerular and tubular cells have increased expression
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of tumor necrosis factor (TNF) α, interleukin (IL)-6, IL-1, and adhesion molecules [10,11].
Previous experimental studies showed that hyperglycemia promotes the imbalance in
macrophage phenotypes and chronic glucose exacerbates the regulation of inflammatory
responses [12,13]. The dysregulated signaling response leads to progressive kidney damage
through loss of glomerular endothelial fenestrations, thickening of the basement membrane,
the detachment of podocyte foot processes, mesangial matrix expansion, and glomerular
fibrosis [7,14–17]. For excellent illustrations of the pathological processes, readers are
referred to [7,8,16,17].

Several mathematical models have demonstrated the pathophysiological processes af-
fected at the cellular or tissue scale due to underlying kidney disease [9,15,18–20] (Table A1).
Mathematical models integrate literature-based information into a quantitative framework,
identifying knowledge gaps and generating new experimentally testable hypotheses. Stud-
ies have demonstrated that it is relevant to comprehend previously applied knowledge and
relate it across disease domains to identify potential mechanisms and targeted treatment.
A recent mathematical model of the disease etiology of glomerular fibrosis in DKD has
successfully adapted and related the key attributes of glomerular fibrosis in lupus nephritis,
a type of kidney disease [15]. Hyperglycemia-induced podocyte injury in DKD has been
previously modeled using the local renin–angiotensin system in renal podocyte cells [18].
It is well known that dysregulation of the renin–angiotensin–aldosterone system is a phe-
nomenon implicated in the pathophysiology of both renal disorders [6] and cardiovascular
disorders, such as hypertension and congestive heart failure [21].

Mathematical models have also studied the pathophysiological interplay of the kidney
with other organ disorders related to cardiavascular conditions [22], cancer [23], or bone
metabolism [24,25] at a multi-scale and multi-organ level using existing individual cardiac,
renal, or metabolic bone disorder models (Table A1). Examples of such models vary across
a spectrum of first-principles-based mathematical models to complex network models.
In each case, the parameters are typically estimated from the literature, and decisions must
be made as to what concepts should be included. A few examples of such relevant models
of kidney disease are highlighted below.

A relevant mathematical model was developed to examine the progression from
tubulointerstitial inflammation to fibrosis in lupus nephritis using limited available knowl-
edge of the pathogenesis of inflammation in lupus nephritis [20]. The model was built
using the first principles of engineering and physics with parameters estimated using
experimental literature. The advantage of such a first-principles model is the inherent
interpretability. However, many pathophysiological concepts were simplified to make the
mathematics tractable.

A different approach to mathematically modeling kidney disease used a signaling
network topology and regulatory motifs in podocytes. The model contributed to the
understanding of the establishment and maintenance of the morphologically distinct state
of the podocytes in the kidney [19]. An extensive literature survey of cell culture studies
and proteomics data was performed to build network models with varying levels of detail
and provide insights into treatment strategies for kidney disease [19].

Another example of an approach to mathematically modeling kidney disease used a
protein–protein interaction network model (Figure 1). The model was proposed using inter-
action databases and produced in vitro experimental data to understand the progression of
early signs of endothelial dysfunction in DKD [9]. The multi-cell network was a manually
curated, simplified network of pathway interactions and signaling molecules that affect
glomerular endothelial fenestrations in the diabetic kidney. However, that biochemical
network [9] only incorporated a subset of the relevant pathways, interactions, or molecules
governing DKD progression that were derived from relevant publications.



Int. J. Mol. Sci. 2024, 25, 4503 3 of 27

A further way to understand DKD-related pathways is the use of bioinformatics
analyses across different cell types in DKD. A single-cell renal endothelial transcriptomic
atlas using differential gene expression revealed the alteration of signaling pathways
including oxidative phosphorylation and growth factor signaling in renal endothelial cell
subtypes [26]. The recent application of single-cell RNA and bulk RNA sequencing data to
study the co-stimulatory interactions between renal endothelial cells and macrophages has
been useful in identifying the immunological markers of DKD [27,28].

Figure 1. A multi-cellular protein–protein interaction network of crosstalk between macrophages (left,
grey shape) and glomerular endothelial cells (right, pink shape) stimulated with glucose (GLU) and
lipopolysaccharide (LPS), a pro-inflammatory stimulus, was created in our previous work through
manual curation of the literature [9]. Green nodes (ovals) are input nodes, blue nodes are output
nodes, and white nodes are regulatory nodes. Black arrows are activating interactions, a red line with a
flat-head arrow is an inhibiting interaction, and red circles indicate logic AND gates. An OR logic rule
connects two or more edges to a subsequent node throughout the network unless indicated otherwise
by an AND logic gate. The subscript (ec) denotes an intracellular species expressed in glomerular
endothelial cells. IL-6, TNF-α, IL-1β, and VEGF-A are protein levels expressed in extracellular space.
ROS, ROSec, VEGF-A (mRNA), and NO are expressed within the cells. The Gap Width node denotes
a fractional change in the glomerular endothelial cell fenestration size. The pJunction node represents
the phosphorylated junction protein levels. TLR: toll-like receptor. AGE: advanced glycation end
product. RAGE: receptor of advanced glycation end product. NADPH: nicotinamide adenine
dinucleotide phosphate. NFκB: nuclear factor kappa B. IL: interleukin. TNF: tumor necrosis factor.
PI3K: phosphoinositide 3-kinase. AKT: serine/threonine-specific protein kinases. ROS: reactive
oxygen species. VEGF: vascular endothelial growth factor. VEGFR: vascular endothelial growth
factor receptor. PLC: phospholipase C. NO: nitric oxide. ONOO: peroxynitrite. eNOS: endothelial
nitric oxide synthase. Ca: calcium. Reprinted/adapted with permission from Ref. [9], 2023, K. Patidar
and A. N. Ford Versypt.
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In short, regardless of the mathematical method implemented, the relevant pathway
interconnections to include are typically decided using domain knowledge and knowledge
acquired from manual literature curation. However, a human cannot read all possible
sources of important relationships that should be included in a multi-scalar, multi-factorial
model of a complex pathophysiology like DKD. Moreover, signaling molecules in the
disease pathway may be located further away from the target molecule or event of interest
within the scientific literature [29]. Thus, a manual literature search may be insufficient
for finding relationships not only within the DKD literature, but also in the cross-domain
literature (cardiology, endocrinology, immunology, etc.) where relevant concepts and
relationships may reside. In contrast, advanced high-throughput artificial intelligence
approaches to literature-based discovery (LBD) can provide a holistic understanding of
relevant dysregulated pathways and molecules. LBD approaches enabled by text mining
infer disparate sources of information [30] at a scale not otherwise possible.

An example of a recent, comprehensive LBD approach to identifying and ranking
relevant concepts is SemNet 2.0 [31,32]. SemNet is an open-source framework consisting
of a knowledge graph that identifies and ranks the most important concepts to a user-
defined target concept(s) (e.g., keyword). The graph consists of relationships extracted
from 33+ million published articles in the PubMed database. The nodes are concepts
defined by the Unified Medical Language System. The framework uses SemMedDB as
a relationship extraction system for making the graph [33]. The unsupervised learning
ranking algorithm within SemNet 2.0 examines relationship patterns in the literature to
rank cross-domain concepts with respect to the user-defined concept(s) [31]. SemNet 2.0
has been used for drug repurposing for COVID-19 [34] and Parkinson’s disease [35],
identifying unknown disease mechanisms of resistant hypertension following COVID-19
infection [36], predicting adverse events from chronic tyrosine kinase inhibitor therapy in
chronic myeloid leukemia [29], and identifying clinical features by which to better stratify
chemotherapy-related infection risk in pediatric acute leukemia [37].

The objective of the present study was to identify and rank cross-domain concepts
that comprise the complex multi-factorial and multi-scalar nature of DKD using advanced
artificial intelligence-assisted LBD software. In this study, SemNet 2.0 was used to iden-
tify and rank critical signaling molecules associated with the glucose- and inflammation-
mediated development and progression of DKD. The general workflow is shown in Figure 2.
This comprehensive evaluation enabled the prioritization of highly ranked concepts, as well
as the identification of concepts or phenomena missing from current mathematical network
models of DKD. Our study results indicate that the utilized LBD approach provided a less
biased and more comprehensive manner of integrating cross-domain knowledge into the
mechanistic understanding of DKD.

The contributions of this work are as follows:

• The developed workflow with SemNet 2.0 and additional post hoc analysis with
Gene Ontology (GO) networks and Cytoscape support the integrative prioritization of
literature relationships that advance the study of DKD.

• The top-ranked source nodes identified by SemNet 2.0 enable the more comprehen-
sive construction of protein–protein interactions, the efficient modeling of biochemical
pathways, and the expedited testing of literature-based hypotheses through experiments.

• The application of artificial intelligence-enabled LBD techniques to DKD research en-
ables faster integration and processing of new biomedical literature towards secondary
analyses that improve drug discovery and target treatment design.
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Figure 2. The baseline data used in this project included a knowledge graph with semantic text
relationships extracted from 33+ million PubMed articles. The workflow consisted of (A) performing
a SemNet 2.0 analysis to identify the top-ranked source nodes across domains, (B) performing a Gene
Ontology (GO) network analysis to summarize the biological functions of the top-ranked source
nodes, and (C) visualizing regulatory relationships from the top-ranked genes and proteins using
Cytoscape [38,39]. Note that the target domains are labeled as diabetes (DB), kidney disease (KD),
immune response (IR), diabetic kidney disease (DKD), and glomerular endothelial cells (GEC).
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2. Results

The LBD results from SemNet 2.0 identified and ranked the shared concepts among
five Unified Medical Language System (UMLS)-defined pathophysiological concepts rele-
vant to the study of DKD, including DKD itself, as well as diabetes (DB), kidney disease
(KD), the immune response (IR), and glomerular endothelial cells (GEC). The intersecting
top 10% of source genes and proteins at the intersection of the DKD, IR, and GEC domains
were used to map the biological functions with GO network analysis. Finally, the mapped
biological functions and potential regulatory relationships of the identified source nodes
were visualized in a Cytoscape [38,39] network to expedite subsequent biochemical models.
Collectively, these results provide a comprehensive, prioritized summary of key relation-
ships important to the study and treatment of DKD. The specific results are discussed
below with deeper supporting context.

2.1. Source Nodes Revealed by Cross-Domain Analysis

The distribution of source nodes in each semantic type for each pairwise domain anal-
ysis is shown in Figure 3. For instance, the distribution of source nodes at the intersection
of both the DB and DKD domains was found in the cross-domain analysis between the DB
and DKD (DB-DKD) domains. Higher distributions of intersecting nodes of the semantic
type gene (gngm) or type protein (aapp) were observed in each pairwise domain (Figure 3).
Nodes belonging to the gngm or aapp semantic type from the top 10% of source nodes
were selected for further evaluation of their biological themes and functional relevance in
the progression of DKD. The distributions of these top 10% of source nodes in each paired
domain are shown and characterized by their mean HeteSim scores and counts (Figure 4).
The source nodes are represented by a unique bubble with a color indicative of the pairwise
domain and a size indicative of the frequency of node occurrence (Figure 4). The top 10%
of source nodes obtained from the post hoc analysis belonged mainly to the GEC, DKD,
and IR domains. As seen in Figure 4, more source nodes were present at the intersection
of the GEC-IR, DKD-IR, and DKD-GEC domains relative to the other pairwise domains.
Most of the identified source nodes with a high mean HeteSim score were present at the
intersection of the DKD-IR and GEC-IR domains (Figure 4).

Figure 3. Semantic type distribution of source nodes identified at the intersection of each pairwise
domain. Arbitrary colors are assigned to each pie chart segment. Labels are provided in the diagram
for types that reach at least 4% share of a distribution. gngm: gene or genome. aapp: amino
acid, peptide, or protein. dsyn: disease or syndrome. phsu: pharmacological substance. fndg:
finding. imft: immunologic factor. orch: organic chemical. cell: cell. bacs: biologically active
substance. patf: pathologic function. bpoc: body part, organ, or organ component. topp: therapeutic
or preventive procedures. DB: diabetes domain. DKD: diabetic kidney disease domain. GEC:
glomerular endothelial cells domain. IR: immune response domain. KD: kidney disease domain.
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Figure 4. Bubble plot of source nodes identified by SemNet 2.0 at the intersection of each pairwise
domain. Source nodes (genes or proteins) are shown on the vertical axis, each pairwise domain is
denoted by a different bubble color, and the frequency (count) of each source node is distinguished by
the bubble size. Source nodes are either genes or proteins. For clarity, the source nodes are presented
in two plots (left and right). DB: diabetes domain. DKD: diabetic kidney disease domain. GEC:
glomerular endothelial cells domain. IR: immune response domain. KD: kidney disease domain.
Definitions of the source node abbreviations are provided in the Supplementary File S2.

2.2. Biological Themes Associated with Top 10% of Source Nodes

A unique functional ontology or biological process was mapped to each of the top 10% of
source genes and proteins using the mouse genome informatics (MGI) term mapper [40,41].
A total of 99 genes and 117 proteins comprised the intersection of the DKD, IR, and GEC
domains, which were mapped to 32 unique ontology IDs that described their biological
functions. Figure 5 represents the identified genes and proteins and their respective
mapped unique ontology IDs. These 21 unique ontologies (Figure 5) are also among the
most common biological themes associated with DKD progression, a dysregulated immune
response and inflammation, and the functional and structural integrity of endothelial
cells. About 25% of the intersecting source nodes were found to be related to apoptotic
function, 25% of the source nodes were related to the T-cell-mediated response, 22% of
the intersecting source nodes were related to the cytokine response and inflammatory
response, and 15% of the source nodes were related to growth factor signaling. Moreover,
cell adhesion, chemotaxis, and the ERK/MAPK signaling pathway were also among the
well-represented functional ontologies.

Further, the biological functions associated with these identified source genes (Figure 6)
and source proteins (Figure 7) are summarized. The top 10% of source nodes were associ-
ated with biological processes, including the ERK/MAPK signaling cascade, the JAK/STAT
pathway, NF-κB factor activity, growth factor signaling, the Wnt/β-catenin pathway,
and the TLR pathway. Moreover, these genes and proteins were found to have multi-
ple functional roles. The frequency of a biological process or function associated with
a source node qualitatively describes the relative importance of the biological function.
Figures 6 and 7 show heatmaps of the top 10% of identified source nodes and their re-
spective biological processes specified as a unique ontology ID. The frequencies of these
processes are represented by color bars on the right. These source nodes in the GEC, IR,
and DKD domains play a crucial role in the immune response, the T-cell-mediated response,
the cytokine response, apoptosis, and cell adhesion, among other critical biological func-
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tions (Figures 6 and 7). The biological processes, including the TLR pathway, the immune
response, apoptotic processes, calcium channel activity, and the response to cytokines, were
relatively more prevalent processes associated with the identified source genes (Figure 6).
The biological processes of the T-cell-mediated response, apoptotic processes, cell adhesion,
the response to cytokines, chemotaxis, and growth factor signaling were relatively more
prevalent processes associated with the identified source proteins (Figure 7).

Figure 5. The top 10% of genes and proteins that intersect in the three domains—diabetic kidney disease
(DKD), immune response (IR), and glomerular endothelial cells (GEC)—are grouped into their biological
processes (block headers). NFkB: nuclear factor κ B. TLR: toll-like receptor. ERK: extracellular signal-
regulated kinase. MAPK: mitogen-activated protein kinase. JAK: Janus kinase. STAT: signal transducer
and activator of transcription. WNT: wingless/integrated. NADPH: nicotinamide adenine dinucleotide
phosphate. The colors for the domains correspond to those used in Figure 9. The colors for the biological
processes are arbitrary and are purely for aesthetic purposes. Definitions of the source node (gene and
protein) abbreviations are provided in the Supplementary File S2.



Int. J. Mol. Sci. 2024, 25, 4503 9 of 27

Figure 6. Source node (gene) names and their biological processes (term label) in the diabetic kidney
disease (DKD), immune response (IR), and glomerular endothelial cells (GEC) domains. The frequency
(term count) of each biological process (x-axis) is color-coded in the range of 0–17. ECM: extracellular
matrix. ERK: extracellular signal-regulated kinase. MAPK: mitogen-activated protein kinase. JAK:
Janus kinase. STAT: signal transducer and activator of transcription. NADPH: nicotinamide adenine
dinucleotide phosphate. NF: nuclear factor. TLR: toll-like receptor. Wnt: wingless/integrated. Definitions
of the source node abbreviations are provided in the Supplementary File S2.

The mean HeteSim scores of the identified genes (Figure A1) and proteins were
provided and (Figure A2) mapped to their unique ontology IDs. The SPI1, SNAP23,
STMN2, and ZNF131 genes and TYK2, NFKBIA, and CREG1 proteins had the highest
mean HeteSim scores and were closely related to the user-specified targets. The CD3D,
CD8, LAMP2, SUV39H2, TCF7, and ZBTB7B genes (Figure A3) frequently recurred in the
cross-domain analysis and were associated with the T-cell-mediated response, the Wnt/β-
catenin pathway, cell differentiation, the immune response, the response to cytokines,
and the response to oxidative stress. The CCL1, CD226, HEY2, TAP2, and TMSB10 proteins
(Figure A4) frequently occurred at the intersection of the DKD, GEC, and IR domains
and were associated with biological processes like the JAK/STAT pathway, the Notch
signaling response, the T-cell-mediated response, cell migration, the response to cytokines,
chemotaxis, and the immune response.
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Figure 7. Source node (protein) names and their biological processes (term label) in the diabetic
kidney disease (DKD), immune response (IR), and glomerular endothelial cells (GEC) domains.
The frequency (term count) of each process (x-axis) is color-coded in the range 0–12. ECM: extracel-
lular matrix. ERK: extracellular signal-regulated kinase. MAPK: mitogen-activated protein kinase.
JAK: Janus kinase. STAT: signal transducer and activator of transcription. NADPH: nicotinamide
adenine dinucleotide phosphate. NF: nuclear factor. TLR: toll-like receptor. Wnt: wingless/integrated.
Definitions of the source node abbreviations are provided in the Supplementary File S2.

2.3. Interaction Network in Cytoscape

The interaction network between source genes or proteins and their respective regula-
tory relationships, generated in Cytoscape [38,39], is shown in Figure 8. The interaction
network assembles the annotated outputs from the semantic network together. Figure 8
shows a positive regulatory relationship and negative regulatory relationship, through
green arrows and red lines with a flat end, respectively, between source proteins and
genes. The source genes and proteins are shown with a blue node and a yellow node,
respectively. Upon analyzing the interaction network, it was observed that NF-κB, a tran-
scription factor, is involved in numerous signaling events, including the inflammatory
response; it is positively regulated by the PRDX3, EGFR, RIPK2, ABL2, and IRF3 genes
and negatively regulated by the SPI1, TRIM59, NLRC5, and PSMD10 proteins and the
NFKBIA gene. The VEGFA gene is central to the regulation of VEGF receptor 1 (VEGFR1),
VEGF receptor 2 (VEGFR2), the adherens junction, nitric oxide, p38/MAPK signaling
kinase, and ERK1/ERK2 signaling kinase. Vascular endothelial development and growth
in endothelial cells heavily rely on nitric oxide [9,17,42], which is positively influenced by
the VEGFA, EGFR, and FCER2 genes and negatively influenced by the the IL-10 protein.
RIPK2 and DDX58, as well as GSDMD, RIPK2, and HK1, play positive roles in regulating
pro-inflammatory cytokines like IL-6 and IL-1β. The anti-inflammatory IL-10 gene was cor-
related with the response to inflammatory cytokines, IL-1β, IL-6, IL-17, and IL-12. SUCNR1
is involved in both glucose homeostasis and macrophage activation and is a potential link
in understanding glucose-mediated macrophage cell polarization [43]. The adherens junc-
tion proteins are responsible for regulating the endothelial cell–cell junction and vascular
permeability in healthy and diseased states [9,44–47]. Our analysis identified that adherens
junction proteins are positively regulated by the SNAP23 protein and negatively regulated
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by the VEGFA gene. The NR3C1 protein encodes a glucocorticoid receptor and was found
to play a role in reducing vascular permeability within endothelial cells. The FCER2 gene
was one of the identified genes involved in positive regulation of macrophage activation.

Figure 8. Regulatory relationship between top 10% of identified source nodes and signaling molecules
generated in Cytoscape [38,39]. The grey blocks are signaling molecules/outcomes. The yellow
blocks with an orange border are source proteins, and the blue blocks with a dark blue border are
genes obtained from SemNet 2.0 analysis. A green arrow indicates a positive regulatory relationship
between two nodes, and a red line with a flat end indicates a negative regulatory relationship.
Signaling molecules (grey blocks) are defined as follows: TLR: toll-like receptor. NF-kappaB: nuclear
factor-κB. ERK: extracellular signal-regulated kinase. MAPK: mitogen-activated protein kinase. JAK:
Janus kinase. STAT: signal transducer and activator of transcription. VEGF: vascular endothelial
growth factor. VEGFR: vascular endothelial growth factor receptor. CX3C: CX3C-chemokine. CX2C:
CX2C-chemokine. IL: interleukin. PLC: phospholipase. Additional definitions for other sources are
provided in the Supplementary File S2.

3. Discussion

The biomedical literature is a continuously growing repository of complex and deeply
interconnected information. Despite powerful, user-friendly scientific databases, it is dif-
ficult for scientists and clinicians to extract useful information in their niche from these
large and complex databases [34]. SemNet 2.0, an open-source literature-based discovery
technique applied in this study, assists scientists and clinicians by leveraging the power
of biomedical text mining to guide their research and development efforts. In this study,
novel cross-domain text mining with SemNet 2.0 identified signaling molecules and path-
ways that are often studied in relation to diabetes, the immune response, kidney disease,
and dysfunction of glomerular endothelial cells. The cross-domain analyses determined the
relatedness between five pathological events by identifying significant source nodes that
are mutually shared by these pathological events. The pairwise cross-domain analyses also
determined the distribution of these source nodes across different semantic types (Figure 3).

3.1. Top-Ranked Intersecting GEC-IR-DKD Nodes

Among the top 10% of predicted source nodes, 77 source nodes were common among
the GEC, IR, and DKD domains (Figure 4). The source genes or proteins with relatively high
mean HeteSim scores were highly associated with and prevalent in the GEC, DKD, and IR
domains (Figure 4). The observed intersection (Figure 5) indicates the importance of study-
ing the synergistic interaction between the immune system and glomerular endothelial
cells to better understand the early stage of DKD progression.
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3.1.1. Top-Ranked Intersecting Cellular Functions and Signaling Processes

The top 10% of intersecting source nodes were associated with various cellular func-
tions and cellular signaling responses. The cellular functions include angiogenesis, glucose
metabolism, cell apoptosis, cell–cell junction integrity, and cell adhesion. The cellular
signaling responses include growth factor signaling, the response to nitric oxide, the re-
sponse to oxidative stress, the cytokine response, macrophage signaling, the TLR pathway,
the T-cell-mediated response, NFκB factor activity, ERK/MAPK signaling, the JAK/STAT
pathway, the WNT/β-catenin pathway, and NADPH oxidase activity. Several of these
pathways are known to be implicated in GEC injury, inflammation, and fibrosis associated
with DKD [6,8,11,17]. Similarly, the analyses suggested that the apoptotic processes, the
response to cytokines, the T-cell-mediated response, the immune response, calcium channel
activity, and growth factor signaling were the most frequent and active biological processes
in DKD (Figures 6 and 7).

• Role of T-cells. This finding is consistent with other studies that report T-cells as
being the most studied immune cells that infiltrate kidney tissues and trigger in-
flammatory responses in DKD [48–50]. Given the prevalent role of T-cells and the
T-cell-mediated cytokine response in DKD [28,51,52], their highly ranked importance
by the unsupervised ranking algorithm in SemNet 2.0 was expected.

• Role of calcium. Increased calcium channel activity exerts significant vascular and
tubular effects on the kidneys, which leads to the enhancement of glomerular filtration
rate (GFR) and renal blood flow (RBF) [53–55].

• Role of VEGF. Growth factor signaling via VEGF, fibroblast growth factors, trans-
forming growth factor-β, and insulin-like growth factors in diabetes and diabetic
kidney disease has been studied in detail [56,57]. VEGF is a potent angiogenic and
vascular permeability factor and is responsible for endothelial cell proliferation and
differentiation and increased permeability [9,58]. VEGF also maintains endothelial cell
homeostasis, and a disturbance in basal VEGF levels is implicated in diabetes-related
complications, including kidney disease [59]. Specifically, VEGF-A is associated with
macrophage or monocyte differentiation, which suggests its role in the macrophage
response in pathological conditions [9,42,57,58].

• Role of TGF. An increase or decrease in the production of transforming growth factor -β1
(TGF-β1) has been associated with diabetic nephropathy and retinopathy [56]. The ex-
pression of TGF-β1 is increased in endothelial cells, which, in turn, triggers the activation
of TGF receptors, namely TGFBR2 and TGFBR3, on B lymphocytes, podocytes, glomeru-
lar endothelial cells, and mesangial cells, leading to epithelial–mesenchymal transition
and fibrosis in the development of diabetic nephropathy [17,57,59]. Insulin-like growth
factor-I is a naturally occurring single-chain polypeptide that has been widely used in
the treatment of diabetic glomerular and renal tubular injuries [56,57,60].

3.1.2. Top-Ranked Intersecting Genes

The identified genes were involved in multiple functional roles. Highlights for some
of the top-ranked genes are discussed below in the context of the literature.

• Role of succinate receptor 1 (SUCNR1). SUCNR1 is involved in both glucose home-
ostasis and macrophage activation. SUCNR1 is an extracellular receptor activated by
succinate, and SUCNR1 accumulation in macrophages is known to activate the pro-
inflammatory response [43]. Moreover, the role of SUCNR1 has been suggested in the
development of fibrosis in diabetes mellitus and other diabetes-related complications
such as diabetic retinopathy and metabolic syndrome [61]. SUCNR1 can serve as a
potential link in understanding glucose-mediated macrophage cell polarization.

• Role of hexokinase 1 (HK1). The HK1 gene encodes a ubiquitous form of hexokinase,
which localizes to the outside membrane of mitochondria. Mutations in HK1 have
been associated with hemolytic anemia due to hexokinase deficiency. However, its
role in DKD is more likely linked to dysregulated glucose metabolism. HK1 is also
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associated with the cytokine response, the inflammatory response, and growth factor
signaling [62].

• Role of ephrin. Ephrin receptors make up the largest subgroup of the receptor tyrosine
kinase family, which have a key role in vascular regulation. SemNet 2.0 has previ-
ously highlighted the role of tyrosine kinase pathways in resistant hypertension [36].
The protein encoded by this gene binds to ephrin-B2 and plays an essential role in vas-
cular development. Ephrin receptor EPHB4 is associated with angiogenesis in DKD,
the immune response, and GEC. EPHB4 receptor interactions between endothelial
cells and monocytes/macrophages are relevant for vascular development [57,59]. The
inhibition of proteins in the ephrin B family prevents endothelial cell sprouting and
initiates disorders in endothelial cell assembly [59].

• Role of serpin family B member 1 (SERPINB1). SERPINB1 is among the serpin protein
families that are found in GEC. SERPINB1 acts primarily to protect the cells from
proteases released into the cytoplasm during stress [63]. The results presented suggest
SERPINB1’s involvement in the inflammatory cytokine response. Previous research
has suggested serpin proteins to be associated with macrophage motility as well [59].

• Role of integrins. Integrins regulate many biological processes, such as cell growth, mi-
gration, and signaling and cytokine activation, thereby contributing to inflammation
and angiogenesis [64]. In the present study, integrin ITGB1 was associated with several
cellular functions: angiogenesis, apoptosis, cell–cell junction integrity, and cell adhe-
sion (Figure 5). Studies have also suggested combined treatment strategies through
the inhibition of both ITGB and ITGA integrins to reduce macrophage filtration into
the glomeruli [59,65]. Such compelling evidence suggests that ITGB1 may have the
potential to be a clinical marker for the prognosis of glomerular diseases, immune cell
infiltration, and glomerular endothelial viability [59].

3.1.3. Top-Ranked Intersecting Proteins

Among the top 10% of predicted source proteins, the TYK2, CREG1, NFKBIA, and
SNAP23 proteins were highly associated with the user-specific target nodes based on the
calculated mean HeteSim scores (Figure A2).

• Role of tyrosine kinsase 2 (TYK2). Previous studies found an association of TYK2
candidate with type 1 diabetes mellitus and a role of TYK2 in regulating apoptotic
and pro-inflammatory pathways in pancreatic β-cells through modulation of the type
I interferon signaling pathway [66,67]. Likewise, tyrosine kinase inhibitor drugs were
previously predicted by SemNet 2.0 to be associated with hyperglycemia in patients
who were not initially diabetic [29].

• Role of cellular repressor of E1A stimulated genes 1 (CREG1). CREG1 has been
studied rigorously in relation to glucose uptake, renal dysfunction, angiogenesis,
and diabetes-related comorbidity [68–70].

• Role of NFKBIA. NFKBIA regulates the activity of NFκB, which plays a role in pro-
cesses such as the accumulation of advanced glycation end products and activation
of the renin–angiotensin system pathways, protein kinase C, and oxidative stress in
diabetic nephropathy [71].

• Role of synaptosome-associated protein 23 (SNAP23). Our analyses also identified
SNAP23 associated with adherens junction assembly in correlation to GEC, the im-
mune response, and DKD [72]. SPI1 and SNAP23 were genes highly associated with
the immune response, cell differentiation, cell migration, the response to cytokines,
and apoptotic processes (Figures 6 and A1). Some studies have previously identified
SPI1 gene involvement in regulatory mechanisms in DKD, but this may need more
experimental verification [73]. The SNAP23 gene is relatively abundant in the kidney
and primarily involved in exocytosis [74]. SNAP23 has been shown to reduce protein-
uria, reduce podocyte foot process fusion, and reduce endothelial cell damage upon
the inhibition of SNAP23-mediated exocytosis [75].
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3.2. Visualization of Literature-Based Discovery Network Predictions

Here the SemNet 2.0 analysis was conducted, and the prediction was visualized as
an interaction network using Cytoscape [38,39]. Such a representation of source nodes
using Cytoscape allowed for a straightforward interpretation of regulatory relationships
in our generated data set. The comprehensive text mining analysis provided potential
candidates involved in dysregulated signaling events (Figure 8) that can be used to address
the limitations of our existing network model [9]. Relevant similarities were identified
between the SemNet 2.0 findings and the previous network (Figure 1). Both networks
share some common pathophysiological outcomes and signaling nodes involving TLR4,
VEGF-A, VEGFR1, VEGFR2, IL-1β, IL-6, NO, PLC, NF-κB, the adherens junction, vas-
cular permeability, and macrophage activation (Figures 1 and 8). SemNet 2.0 analysis
is useful for recognizing proteins or genes that regulate these signaling nodes and/or
pathophysiological events of interest. The predicted source genes and proteins can be
further studied through network-based computational approaches and mechanistic model-
ing. The regulatory relationship visualized in Cytoscape could be a useful starting point
to build a network-based model or identify interconnections between genes or proteins
that may enable us to overcome the knowledge gaps or limitations of existing or pub-
lished network models. There are various open-source and paid alternatives to Cytoscape,
including Gephi [76], Tableau [77], NodeXL [78], and Neo4j [79], which can be used to
visualize data obtained from text mining techniques. CompositeView has many similarities
to Cytoscape and has been successfully implemented and customized to examine SemNet
and SemNet 2.0 results [80]. A detailed comparison of the strengths and limitations of
CompositeView against other similar software has been provided previously [80].

3.3. Comparing LBD Networks to Traditional Bioinformatics Networks

Including comprehensive biomedical literature in the cross-domain analysis provided
breadth in the mechanistic understanding of disease progression, which is often not achiev-
able through manual literature searches. This study demonstrated the compatibility and
ease of use of the LBD tool SemNet 2.0, with various pieces of open-source bioinformatics
software, to efficiently gather and assemble information that can be useful in the field of
systems biology. Specifically, the present study outlined a process and case study by which
to compare the similarities and knowledge gaps between signaling motifs obtained from
SemNet 2.0 and previously published traditional signaling networks.

Another modality that this study’s overall analysis can be qualitatively compared to is
the pathway enrichment analysis of differentially expressed genes. Recent meta-analyses
of gene expression datasets for diabetic nephropathy obtained the following top terms
from their pathway enrichment analyses: immune system, extracellular matrix organi-
zation, hemostasis, signal transduction, and platelet activation by Hojjati et al. [81] and
immune activation, T-cell activation, and cell adhesion by Zhong et al. [28]. While these
are not exactly the terms our analysis yielded, they are related. For example, hemostasis
broadly encompasses several of the cellular functions we listed in Section 3.1.1. Likewise,
signal transduction lumps together many of the cellular signaling responses we itemized
in Section 3.1.1. Immune system includes effects that resulted from our analysis, such as
the response to cytokines, the T-cell-mediated response, and the immune response. Extra-
cellular matrix organization is highly related to TGF and fibrosis. Among the previously
identified diagnostic markers for DKD from Zhong et al. [28], tenascin C (TNC), tissue
inhibitor metalloproteinase 1 (TIMP1), and tropomyosin 1 (TPM1) were also identified by
the cross-domain analyses here (refer to raw data “combined.csv” in [82]). All 15 of the hub
differentially expressed genes listed in Hojjati et al. [81] were also identified here (see raw
data “combined.csv” in [82]).

3.4. Limitations and Future Directions

Biomedical text mining and similarity-based clustering analyses have their limita-
tions. The clustering of these biomedical concepts or nodes based on similarity repre-



Int. J. Mol. Sci. 2024, 25, 4503 15 of 27

sents similarity in the patterns of associations with the user-specified target node. Thus,
the similarity-based association of source to target depends on the amount and quality
of literature data [83]. The implementation of additional link prediction algorithms with
SemNet 2.0, as was performed by McCoy and colleagues to use SemNet 2.0 to predict
COVID-19 drugs while the virus was new and was the subject of minimal studies [34], is
one way to overcome this limitation. Regardless, a larger sample size of data reduces any
bias from any lesser-quality publications. On the other hand, the user can control the loss
of information when less evidence for a subject is available in the literature [31,83].

SemNet 2.0 is a methodology for ranking relevance and relatedness among nodes in a
knowledge graph. This is similar to link prediction models, which enable the inference of
novel relationships from existing edges and nodes in a knowledge graph. Performing link
prediction leads to more nuanced search queries that build on SemNet simulation results.
The Python library Pykeen has built-in functionality that can predict the head, relation,
or tail (h, r, t) for an incomplete triple [84]. For example, given the incomplete triple (?, r,
t), candidates for the head are scored and ranked based on KG embedding models such
as RotatE, TransE, and ComplEx. Link prediction can be used for future research with the
SemNet simulation results presented here.

Moreover, with advancements in single-cell transcriptomics, near-single-cell pro-
teomics, and spatial metabolomics, there is emerging evidence and data for kidney tissues
and infiltrating macrophages [57,85–87]. The widespread availability of such integrated
and high-quality datasets [85] will enable better information gain when using LBD tech-
niques. Future work could involve validating or comparing the findings from SemNet 2.0
to single-cell RNA sequencing data [57,85–87]. Integrating data within and across domains
remains a big challenge due to heterogeneity. Recent and ongoing progress towards the
collection, standardization, and integration of various metadata variables from data re-
sources, including Kidney Tissue Atlas Ontology, Precision Medicine Metadata Ontology,
and the Human Reference Atlas, has proven effective in identifying kidney-specific gene
biomarkers and cell types [88].

Currently, a wide knowledge gap exists between biology and drug development,
which results in sub-optimal treatment options against DKD [89]. Although glycemic
control treatments are useful in the management of DKD to some extent, there is still
potential for the discovery of new treatment strategies targeting inflammation, oxidative
stress, fibrosis, and other pathological events [15,90]. Future applications may involve ap-
plying cross-domain analysis for the identification of pathological mechanisms, treatment
strategies, and plausible hypotheses for DKD treatment and management. The proposed
LBD technique can aid in bridging the knowledge gaps between DKD etiology and treat-
ment. Applying LBD techniques to DKD research will enable faster processing of novel
and actionable knowledge from vast, diverse, and seemingly disconnected fragments of
information and the utilization of processed information towards treatment design [91].
The Kidney Precision Medicine Project (KPMP) has extensively contributed to the represen-
tation of kidney phenotype terms for acute and chronic kidney disease and increased the
ability to improve personalized treatment. Future analysis of the KPMP data using LBD
may be feasible in extracting information by profiling and integrating clinical, pathological,
cellular, and molecular characteristics associated with the increasing pool of patients with
specific diseases [88]. The highly associated genes or proteins observed at the intersection
of the DKD, IR, and GEC domains could be used in future assessment through either
experimental validation or a mathematical model.

4. Materials and Methods

The present study used advanced artificial intelligence-based text mining techniques
to identify relevant signaling molecules and their relation to glucose-mediated inflamma-
tion in DKD. The general workflow is shown in Figure 2. First, SemNet 2.0 simulations
were performed to identify the top-ranked nodes across multiple relevant domains us-
ing a knowledge graph of semantic relationships extracted from 33+ PubMed articles
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(Figure 2A). The top-ranked nodes represent the most relevant concepts to DKD and its
related pathophysiology. Next, using the top-ranked nodes, a GO network analysis was
performed to obtain a functional map of the biological processes (Figure 2B). This functional
map provides an intuitive means to summarize the thousands of relevant nodes into a
format that enables mechanistic hypothesis formulation and testing. Finally, a regulatory
interaction network was visualized in Cytoscape [38,39] using the top-ranked nodes and
their corresponding semantic relationships from the SemNet knowledge graph (Figure 2C).
In short, the regulatory interaction network provides the granular information necessary
for the construction of subsequent biochemical models or protein interaction networks.

Specifically, SemNet 2.0 was used to perform a cross-domain analysis across the following
five disease domains: diabetes (DB), kidney disease (KD), immune response (IR), glomerular
endothelial cells (GEC), and DKD (Figure 9). The user-specified target nodes for each domain
were chosen from observed interactions in the network model and published studies [9].
For instance, the binding of toll-like receptors (TLRs) is one of the key determinants of the
immune response. Therefore, it was considered as one of the target nodes in this study.
A complete list of target nodes is provided in the Supplementary File S1.

Figure 9. Workflow of cross-domain analyses in SemNet 2.0 performed to identify intersecting source
nodes across five domains: diabetes (DB), kidney disease (KD), immune response (IR), diabetic
kidney disease (DKD), and glomerular endothelial cells (GEC). Colored circles represent different
domains, which are also numbered here. Illustrated in the first box, the first step was to randomly
select two target nodes from each of the five domains. The specifics of the first step is illustrated in the
next box, where each domain pair formed a combination of four target hub nodes. This information
was provided as input to SemNet 2.0 to perform runs on each of these domain pairs. The process
of generating four domain pairs was repeated 50 times, such that each of the ten unique domain
pairs was sampled 20 times for a total of 200 SemNet simulations. This cross-domain text-mining
process is represented by the third box. The final box illustrates that the SemNet simulations yielded
intersecting cross-domain source nodes, and the top 10% of these source nodes were analyzed further.
See Section 4.2 for details in the text.
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4.1. SemNet 2.0

SemNet 2.0 [31] is a piece of open-source software that ingests publicly available
text relationships from PubMed and the National Library of Medicine [33] to perform
LBD tasks. SemNet 2.0 uses a heterogeneous semantic network to provide consistent and
valuable categorization of all concepts represented in the UMLS metathesaurus, and the
UMLS provides a universal ontology to relate concepts from the biomedical literature [92].
More information on the semantic networks and their types can be found in the UMLS
reference manual [92]. SemNet 2.0 queries a biomedical knowledge graph composed of
semantic triples extracted from PubMed’s 33 million abstracts. The original SemNet was
proposed in 2019 by Mitchell and Sedler [83] and was later optimized by Kirkpatrick and
colleagues in 2022 [31]. Each semantic triple consists of a head, a relation, and a tail, where
the head and tail entities are the nodes, and the relation is a directed edge. The underlying
mathematical theory and computational implementation of SemNet 2.0 can be found in the
original publication [31]. SemNet 2.0 is summarized below in the context of its use in the
present study.

SemNet 2.0 is available as Python code and uses natural language processing to
identify source nodes relevant to user-specified target nodes. The source nodes are the
set of nodes that the target nodes share in common; that is, they are reachable within the
search depth and metapath length, which are search parameters defined in the next section.
Each node is a biomedical concept, as defined in the UMLS, with a type such as “disease or
syndrome” (dsyn), “amino acid, peptide, or protein” (aapp), etc. There are 133 types and
54 relations. Each directed edge encodes a relation, such as treats, affects, inhibits, etc.

The user defines four inputs: the target nodes, source node types, search depth,
and metapath length. Target nodes are the nodes of interest, and SemNet 2.0 queries
surrounding nodes that are connected to those nodes. The source node types can be
restricted to certain semantic types, such as dsyn or aapp. Search depth is the number of
hops away from the source node (Figure 10). For a given target node, a search depth of
1 finds all adjacent nodes directly connected to it. It is ideal to increase the search depth
to find novel results, as the connections of neighbors to target nodes are more prominent
and commonly acknowledged in the scientific literature. Metapath length is the total path
from a target to a source node. Multiple paths can be consolidated into a single metapath
based on the types of source nodes. Hypothetically, an infinite number of paths can be
used to connect a target to a source node, and the metapath length can add a constraint
for identifying relevant or innovative pathways. Increasing both metrics can drastically
expand the scope of the search. As such, the metapath length and search depth inputs are
actually key model parameters that can change the model results.

SemNet 2.0 calculates a metric called HeteSim to quantify the relevance between
a source node and target node [31]. HeteSim was developed to quantify relevance in
heterogeneous networks [93]. There are two ways to calculate HeteSim: deterministic and
randomized. The deterministic HeteSim was used in all SemNet 2.0 simulations in the
present study to enhance accuracy at the expense of computational speed. HeteSim can be
further characterized by an exact (deterministic) mean or approximate mean. The exact
mean is found by aggregating the HeteSim scores of multiple target nodes to the same
source node. The approximate mean has a performance advantage over the exact mean,
especially for metapaths of greater length. For the simulations here, the exact HeteSim
mean was used.

HeteSim is calculated by determining the cosine similarity between two probability
vectors. Let x be defined as the path length between a given target node and a source node.
HeteSim takes the middle layer of nodes or the nodes at an x/2 path length away from
the target. From the target and source nodes, weights of 1 are distributed evenly across
nodes. Each subsequent layer continually redistributes the weights until the middle layer
is reached. A left probability vector and a right probability vector are generated from either
side. The cosine similarity is calculated between them, which is the HeteSim score. When
combining the results from multiple SemNet 2.0 simulations, the mean HeteSim scores are
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normalized and the percentiles ranked to adjust for differences in node count, path count,
etc. The normalization process allows the simulation results to be directly compared.

Figure 10. Two subgraphs with nodes (ovals) connected by edges (lines). The blue ovals are source
nodes, the orange ovals are target nodes, and unlabeled green ovals represent nodes in the subgraph
that are neither source nor target nodes. Red lines show the HeteSim metapath between target and
source nodes, and the numbers near the lines provide running counts of the HeteSim metapath length
that increases with each green node between the target and the source. In the subgraph on the left,
the source node is at a depth of 1 away from the target, but the HeteSim metapath length is 2. On the
right, the same source node is also at a depth of 1 away, but the HeteSim metapath length is 4.

As described above, SemNet 2.0 uses unsupervised learning rank aggregation to
calculate the importance of a source node using the HeteSim score. Because SemNet 2.0
is an unsupervised model, there is no ground truth set of rankings by which to explicitly
compare them. Domain knowledge provides an important layer of validation. The results
of SemNet 2.0 studies have been successfully evaluated in COVID-19 [34,36], Parkinson’s
disease [35], chronic myeloid leukemia [29], and pediatric acute leukemia [37]. In fact,
the majority of repurposed drug candidates recommended by SemNet early in the pan-
demic advanced to successful clinical trials as adjuvant therapies [94].

Note that the data for SemNet 2.0 simulations are based on processed semantic re-
lationships from SemMedDB [31]. All data in the knowledge graph are available to be
queried. However, the identified source nodes are limited by the search parameters, namely
the search depth and metapath length parameters, as described above. The ranking results
produced for a given query will remain consistent unless (1) a different (updated) version
of the knowledge graph is deployed that contains additional new literature relationships or
(2) the user changes the target node input(s) or specified search parameters.

SemNet 2.0 contains around 100 million semantic predictions (subject, object, predicate
triples) extracted from PubMed articles. SemNet 2.0 separates the papers from their links
and aggregates relation triples. SemMedDB is the basis of SemNet’s corpus of entities and
relations [33].

Other biomedical-domain knowledge graphs exist, such as KnowLife, which uses
UMLS as its dictionary and 13 binary relations [95]. It encompasses entities in health and
life sciences, built from various web sources, including online communities. PubMed
Knowledge Graph comprises entities from 29 million PubMed abstracts, in addition to
providing granular-level details about the articles themselves, including each author’s
educational background and affiliation history [96]. PrimeKG draws from only 20 resources,
but it describes over 17,000 diseases and around 4 million relationships, with a focus on
precision medicine analysis [97]. This knowledge graph allows the user to examine helpful
indications and contraindications for drugs and how they impact disease progression.
For drug repurposing, the model DREAMwalk—Drug Repurposing through Exploring
Associations using Multi-layer random walk—uses “guilt-by-association” between drugs
and diseases to generate hypothetical drug and disease node sequences, using a novel
multi-layer approach that leverages node semantic neighbors [98]. Nonetheless, the unique
properties of SemNet 2.0 made it the best choice for the present study.
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4.2. SemNet 2.0 Simulations for DKD

Several relevant user-specified target nodes for each domain are given in the Supple-
mentary File S1. Each of these targets was assumed to be a “hub node”, which is a singular
node that is well connected in a graph. These were based on prior domain knowledge.
Networks of hub nodes enable improved cross-domain analysis by functionally increasing
the search depth in areas of the knowledge graph of chief interest [29,36].

In general, a SemNet 2.0 run is performed on cross-domain pairs to find the source
nodes in common between four target nodes. To sample the user-specified target nodes
between pairs of domains, the first step was to randomly select two target hub nodes
from each of the five domains, resulting in each domain pair having a combination of
four target hub nodes (Figure 9). Five domains with two hub nodes each yielded ten hub
nodes and four domain pairs. A SemNet run was performed on each of these domain pairs.
The process of generating four domain pairs was repeated 50 times, such that each of the ten
unique domain pairs was sampled 20 times (Figure 9) for a total of 200 SemNet simulations.
The search depth was 2, and the metapath length was 3. Due to computational limitations,
if the number of source nodes exceeded 1000, a random sample of the source nodes was
taken such that no more than 1000 nodes had their HeteSim scores calculated and ranked.
If the number of source nodes exceeded 1500 or was less than 10, the random combination
of target nodes was deemed unproductive, and a new simulation with a different set of
target nodes was performed.

Some simulations had several hundreds of nodes within the <1500 range, but they
were limited by a certain target node (e.g., “Disorder of mineral metabolism”). Throughout
this study, each node or concept’s name and semantic type follow the UMLS ontology.
SemNet 2.0 predicted source nodes associated with the target nodes and ranked these
source nodes based on the optimized HeteSim similarity metric [31]. The association of
the source nodes with user-specified target nodes in each pairwise domain was measured
using a mean HeteSim score, calculated by averaging the HeteSim score of recurring nodes.

An exhaustive list of predicted source nodes was obtained at the intersection of each
pairwise domain analysis. These identified source nodes were categorized into semantic
types such as genes, proteins, and enzymes. These source nodes appeared more than once
in each pairwise domain analysis. Each unique source node’s occurrence was counted
as the source node’s frequency and denoted as count. A mean HeteSim score for each
source node was generated and used for further analysis of the source nodes. The top
10% of normalized and highly ranked source nodes were aggregated from the simulations
(Figure 9). The top 10% of the source nodes were chosen based on the overall predicted
relevance using the mean HeteSim score.

4.3. Analysis of Source Nodes Revealed by SemNet 2.0
4.3.1. Functional Ontology Mapping

The biological process or function of the source nodes revealed by SemNet 2.0 simulations
is not always available. Due to the vast simulation data, understanding the biological role
of these source nodes through a literature survey may not be feasible. The SemNet 2.0
simulation generated a large amount of data. Thus, data-mining techniques were employed
to map the source concepts to their biological functions. A common way of searching shared
functions among genes is to incorporate the biological knowledge provided by biological
ontologies [99–101]. The Gene Ontology resource is a major bioinformatics initiative that
provides tools to annotate genes to their biological processes [102,103]. The mouse genome
informatics (MGI) term mapper was used to provide ontologies or biological processes of
the top 10% of genes or proteins [40,41]. Specifically, the list of identified source node names
was input into the MGI Batch Query, and the respective functional ontology terms available
were retrieved from the GO database. However, this method generated multiple functional
classifications for a unique source node. Therefore, these functional ontologies were grouped
by a unique ontology ID when duplicates or similar biological functions were listed. A unique
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numeric label was generated for each unique ontology ID (term label), and the frequency of
each ontology term mapped to a source node was recorded (term count).

4.3.2. Cytoscape

Cytoscape [38,39] is an open-source software platform for visualizing complex as-
sociations and integrating these with any attribute data. Cytoscape can build network
models of interaction and tools for annotating and analyzing the connections or relation-
ships in a data set [104]. The architecture is flexible, and the input data can include genes,
proteins, chemicals, or enzymes [104]. Cytoscape [38,39] was used to generate a linked
protein–protein network using the top 10% of identified source nodes and their mapped
ontologies. The functional ontologies of each source node were analyzed. The functional
ontologies that indicated a positive or negative relationship with a signaling molecule
were considered. These relationships between source nodes and signaling molecules were
selected by searching for specific keywords: “positive regulation” or “negative regulation”.
A negative regulation in GO database terms refers to any process that stops, prevents,
or reduces the frequency or rate of covalent alteration of one or more amino acid residues
within a protein [103]. A positive regulation suggests any process that activates or in-
creases the frequency or rate of chemical reactions and pathways involving a protein [103].
A protein–protein interaction (PPI) file was created to store these source nodes as inputs and
signaling molecules as outputs using a simple interaction file (sif) format. The sif-formatted
file consisted of three main column entries: (1) inputs, (2) interaction type, and (3) outputs.
The interaction type used in Cytoscape was protein–protein interaction. The interaction
edges between source nodes and signaling molecules were based on the specified positive
or negative relationship using a +1 or −1 relation index, respectively. The PPI file was used
to create the interaction network in Cytoscape. Two additional column entries were added
to the PPI file—the edge relation indices and input node type—to visually distinguish
between regulatory relationships, genes, and proteins. More information on generating the
PPI file and the format can be found in the Cytoscape user manual [39].

5. Conclusions

This LBD study comprehensively and efficiently identified and prioritized relevant
signaling molecules and pathways associated with DKD. Cross-domain relationships were
queried and ranked from 33+ million PubMed articles using SemNet 2.0. The SemNet 2.0
analysis yielded two valuable outcomes: (1) the relatedness between source genes or
proteins that intersect the DKD-GEC-IR pathophysiology; (2) the creation of a protein/gene
interaction network using objective, comprehensive LBD findings in place of an inherently
more limited manual literature review. EPHB4, SERPINB1, ITGB1 TYK2, CREG1, NFKBIA,
SPI1, and SNAP23 were among the most highly ranked concepts at the intersection of the
GEC, IR, and DKD domains. These findings corroborate the relevance of studying the
synergistic interaction between the immune system and glomerular endothelial cells to
better understand the early stages of DKD progression. The results support the use of
LBD to aid in the prioritization of multi-scalar pathological mechanisms and drug targets,
the development of protein–protein interactions and biochemical models, the testing of
hypotheses through experiments, and the advancement of biomedical decision-making.
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Appendix A

Table A1 provides a summary of previously published mathematical models to study
inter-disease relatedness for DKD and the kidney more generally.

Table A1. Summary of mathematical models used to study inter-disease relatedness for DKD and the
kidney more generally.

Topic Data Type Model Type Main Contribution References

DKD kidney and
immune crosstalk In vitro Logic-based

ODE model

Identified critical interactions and chemical species associated with the
pathophysiology of glucose and immune-mediated glomerular
endothelial dysfunction using a network-based model.

[9]

Glomerular fibrosis
in DKD

Mice,
in vitro

Kinetic ODE
model

Clarified mechanisms behind diabetic glomerular fibrosis and the
reasons behind the failure of certain drugs to guide the creation of better
diabetes-related kidney damage therapies.

[15]

Hyperglycemia-
induced podocyte
injury in DKD

Human Kinetic ODE
model

Integrated mathematical modeling, optimization, and sensitivity
analyses to simulate the effects of glucose on the local RAS in podocytes
in diabetic nephropathy to achieve physiologically plausible model
outputs.

[18]

Podocytes in kidney
diseases In vitro

Multi-
compartment
ODE model

Analyzed feedforward motifs, spatial dynamics, and the roles of the
PKA and MAPK pathways and provided insights into factors that could
drive proliferation or differentiation in cultured podocytes.

[19]

Tubulointerstitial
inflammation and
fibrosis in
lupus nephritis

Human PDE model
Modeled disease progression and effects of dosing levels for novel
therapeutics by simulating various levels of inhibition necessary to
attenuate the inflammation to the fibrosis pathway.

[20]

Kidney and cardiac
disorders Human Kinetic ODE

model

Used QSP approach to understand the complex interactions between
cardiac and renal functions in HF-rEF and the effects of pharmacological
interventions such as ACEi and SGLT2i therapies.

[22]

Kidney and bone
metabolism Human QSP model Network topology enabled more effective targeting of key components

and better prediction of perturbation effects. [24]

CKD and bone Mixed QSP model

Conjugated individual existing cardiac and renal models to study
pathophysiological interplay and disease relatedness. This model can be
used in personalizing therapy and research settings and generating new
hypotheses.

[25]

Multiple myeloma
and kidney
disorders

Human Kinetic ODE
model

Captured the qualitative behavior of the cell and protein populations
and their interaction with the proximal tubule of the kidney, free light
chains, renal fibroblasts, and myeloma cells. This model may support
better patient prognosis in patients with multiple myeloma and renal
impairment.

[23]

ACE: angiotensin-converting enzyme. CKD: chronic kidney disease. DKD: diabetic kidney disease. HF-rEF:
heart failure with reduced ejection fraction. i: inhibitor drug classes. ODE: ordinary differential equations. PDE:
partial differential equations. QSP: quantitative systems pharmacology. RAS: renin–angiotensin system. SGLT:
sodium–glucose co-transporters.

Figures A1–A4 are provided to show further analysis results.

https://github.com/ashleefv/DKD_CaseStudy_SemNet2
https://github.com/pathology-dynamics/semnet-2
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Figure A1. Source node (gene) names and their biological processes (term label) in the diabetic kidney
disease (DKD), immune response (IR), and glomerular endothelial cells (GEC) domains. The mean
HeteSim score of each gene from the SemNet 2.0 simulation is represented by the color bar on the right.
ECM: extracellular matrix. ERK: extracellular signal-regulated kinase. MAPK: mitogen-activated protein
kinase. JAK: Janus kinase. STAT: signal transducer and activator of transcription. NADPH: nicotinamide
adenine dinucleotide phosphate. NF: nuclear factor. TLR: toll-like receptor. Wnt: wingless/integrated.
Definitions of the source node abbreviations are provided in the Supplementary File S2.

Figure A2. Source nodes (protein) names and their biological processes (term label) in the diabetic
kidney disease (DKD), immune response (IR), and glomerular endothelial cells (GEC) domains.
The mean HeteSim score of each protein from the SemNet 2.0 simulation is represented by the color
bar on the right. ECM: extracellular matrix. ERK: extracellular signal-regulated kinase. MAPK:
mitogen-activated protein kinase. JAK: Janus kinase. STAT: signal transducer and activator of
transcription. NADPH: nicotinamide adenine dinucleotide phosphate. NF: nuclear factor. TLR: toll-
like receptor. Wnt: wingless/integrated. Definitions of the source node abbreviations are provided in
the Supplementary File S2.
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Figure A3. Source node (gene) names and their biological processes (term label) in the diabetic
kidney disease (DKD), immune response (IR), and glomerular endothelial cells (GEC) domains.
The frequency (count) of each source gene (y-axis) is color-coded. ECM: extracellular matrix. ERK:
extracellular signal-regulated kinase. MAPK: mitogen-activated protein kinase. JAK: Janus kinase.
STAT: signal transducer and activator of transcription. NADPH: nicotinamide adenine dinucleotide
phosphate. NF: nuclear factor. TLR: toll-like receptor. Wnt: wingless/integrated. Definitions of the
source node abbreviations are provided in the Supplementary File S2.

Figure A4. Source node (protein) names and their biological processes (term label) in the diabetic
kidney disease (DKD), immune response (IR), and glomerular endothelial cells (GEC) domains.
The frequency (count) of each source protein (y-axis) is color-coded. ECM: extracellular matrix. ERK:
extracellular signal-regulated kinase. MAPK: mitogen-activated protein kinase. JAK: Janus kinase.
STAT: signal transducer and activator of transcription. NADPH: nicotinamide adenine dinucleotide
phosphate. NF: nuclear factor. TLR: toll-like receptor. Wnt: wingless/integrated. Definitions of the
source node abbreviations are provided in the Supplementary File S2.
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