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Abstract: Aphids are insect pests that suck phloem sap and introduce salivary proteins into plant
tissues through saliva secretion. The effector of salivary proteins plays a key role in the modulation of
host plant defense responses and enhancing aphid host adaptation. Based on previous transcriptome
sequencing results, a candidate effector cyclin-dependent kinase-like (CDK) was identified from the
grain aphid Sitobion avenae. In this study, the function of SaCDK in wheat defense response and the
adaptation of S. avenae was investigated. Our results showed that the transient overexpression of
SaCDK in tobacco Nicotiana benthamiana suppressed cell death triggered by mouse pro-apoptotic
protein-BAX or Phytophthora infestans PAMP-INF1. SaCDK, delivered into wheat cells through a
Pseudomonas fluorescens-mediated bacterial type III secretion system, suppressed callose deposition in
wheat seedlings, and the overexpression of SaCDK in wheat significantly decreased the expression
levels of salicylic acid and jasmonic acid signaling pathway-related genes phenylalanine ammonia
lyase (PAL), pathogenesis-related 1 protein (PR1), lipoxygenase (LOX) and Ω-3 fatty acid desaturase
(FAD). In addition, aphid bioassay results showed that the survival and fecundity of S. avenae were
significantly increased while feeding on the wheat plants carrying SaCDK. Taken together, our
findings demonstrate that the salivary protein SaCDK is involved in inhibiting host defense response
and improving its host adaptation, which lays the foundation to uncover the mechanism of the
interaction of cereal aphids and host plants.

Keywords: Sitobion avenae; salivary protein; defense response; aphid adaptation; bacterial type III
secretion system

1. Introduction

In nature, plants are attacked by various biotic factors such as pathogens and insect
pests. In response to these biotic stresses, plants trigger a series of defense responses
through various signaling pathways [1]. Phytohormones can act as important molecules
involved in defense signaling [2]. Among them, salicylic acid and jasmonic acid are two
typical phytohormones [3]. Changes in gene expression can be used as molecular markers
of defense signaling activation. For example, pathogen-associated molecular patterns
(PAMPs) or damage-associated molecular patterns can induce pattern-triggered immunity
(PTI) [4,5], which leads to reactive oxygen species bursts and callose deposition [6,7]. There
are also effector-triggered immune responses, which elicit hypersensitive reactions, causing
cell death [8,9]. It has also been shown that herbivore-related molecular patterns can also
trigger plant defense responses [10].

Hemiptera insects, such as aphids, possess piercing–sucking mouthparts. The stylets
of aphids can penetrate plant tissue and suck plant fluids [11]. Accompanied by the feeding
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process, these insects secrete two types of saliva from their salivary glands into plant
cells [12]. One is gelling saliva, which has the role of protecting the stylets and assisting
feeding, and the other is watery saliva, which has functions such as determining feeding
sites and digesting nutrients [13–15]. Salivary proteins in saliva can also be involved
in the regulation of host plant defense responses. C002 was the first well-characterized
salivary effector from the pea aphid Acyrthosiphon pisum, which is very important for aphid
survival on broad beans [16]. Aphid salivary proteins can trigger defense responses in host
plants as well. For example, Mp10 and Mp42 can lead to the chlorosis and cell death of
N. benthamiana and decrease the fecundity of the green peach aphid Myzus persicae [17].
There are also salivary proteins that can promote aphid infestation by inhibiting host plant
defense response. For example, MpC002, PIntO1 (Mp1) and PIntO2 (Mp2) of M. persicae
can inhibit host plant defense responses and significantly increase aphid fecundity [17,18].
Transient overexpression of Mp55 in Arabidopsis thaliana reduces the accumulation of a toxic
glucosinolate, callose, and hydrogen peroxide (H2O2), and improves the performance of
M. persicae [19]. Transient overexpression of the salivary proteins Me10 and Me23 of
the potato aphid Macrosiphum euphorbiae in N. benthamiana significantly increased the
fecundity of M. persicae, suggesting that they acted as effectors inhibiting plant defense
response [20]. In addition, the candidate effectors RpC002 and Rp1 from bird cherry-oat
aphid Rhopalosiphum padi enhanced aphid host susceptibility by inhibiting the expression
of defense-related genes [21]. Salivary proteins of other insects also have the function of
modulating host plant defense response. For example, salivary DNase II and salivary sheath
protein LsSP1 of the small brown planthopper (SBPH) Laodelphax striatellus can regulate
rice defense response. Rice plants infested by dsDNase II-treated SBPH accumulated
significantly more H2O2 and callose [22]. The overexpression of LsSP1 attenuated the
biosynthesis and response of SA induced by L. striatellus, suggesting the potential role
of LsSP1 in regulating plant defense in rice [23]. Silencing BtFer1, the salivary ferritin of
whitefly Bemisia tabaci, enhances the JA-mediated defense signaling pathway and leads
to increased callose deposition and proteinase inhibitor production, thereby preventing
persistent infestation of whiteflies [24]. In addition, the salivary protein BtFTSP1 of B. tabaci
significantly inhibited the ferredoxin-mediated defense response in tobacco [25].

The grain aphid Sitobion avenae (Fabricius) is one of the most seriously and widely
distributed pests of cereal crops, causing damage by directly feeding on phloem sap and
transmitting plant viruses [26], such as barley yellow dwarf virus (BYDV), resulting in
a decrease in wheat yield and quality [27,28]. Some salivary proteins of wheat aphids
have been reported to modulate wheat defense responses. Watery saliva from S. avenae
induces the expression levels of SA-related genes, enhancing resistance against aphids [29].
A total of 526 putative secreted salivary proteins were identified from the salivary glands of
S. avenae using transcriptome analysis [30]. Among them, the salivary protein SmCSP4 of
S. avenae acts as an elicitor that is involved in activating the SA signaling defense pathway
of wheat by interacting with TaWRKY76 [31]. The salivary effectors Sm10 and SmC002
enhanced host plant susceptibility and benefited aphid performance [32]. Sm9723 from
S. avenae and Sg2204 from the greenbug Schizaphis graminum were shown to suppress the
expression levels of both JA- and SA-responsive genes in wheat plants, thereby promoting
aphid fitness on hosts [33,34].

In this study, we screened cyclin-dependent kinase (CDK) from the salivary gland
transcriptome sequencing results of S. avenae. By overexpressing SaCDK in plants, the roles
of SaCDK in modulating wheat defense responses were investigated. Our results showed
that SaCDK acted as an effector that significantly impaired plant immunity and promoted
host susceptibility. This finding is of important significance not only for uncovering the
interaction of cereal aphids and host plants, but also as a potential target of gene knockdown
to improve host plant resistance to aphids.
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2. Results
2.1. Sequence Analysis of Candidate Salivary Effector SaCDK

The total length of the SaCDK gene contains a 363 bp open reading frame (GenBank
accession number: OR838788), encoding 121 amino acids, and the predicted molecular
weight is 13.76 kDa. Nine proteins with high homology similarity to SaCDK were selected
by BLAST analysis. Amino acid sequence analysis (Figure 1) showed that SaCDK had
91.67% homology similarity with A. pisum (GenBank accession number: XP_016659103.1),
while the sequence homology with Sipha flava (GenBank accession number: XP_025413680.1)
was only 52.14%. Phylogenetic analysis indicated that SaCDK was closely related to A.
pisum and M. euphorbiae, clustering into an independent clade (Figure 2).
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Figure 1. Multiple sequence alignment of cyclin-dependent kinase-like (CDK) and orthologs from
other aphid species. The deduced amino acid sequences from nine aphid species include Acyrthosiphon
pisum (XP_016659103.1), Macrosiphum euphorbiae (CAI6360476.1), Melanaphis sacchari (XP_025207209.1),
Rhopalosiphum maidis (XP_026817720.1), Sipha flava (XP_025413680.1), Myzus persicae (XP_022161581.1),
Cinara cedri (VVC29270.1), Aphis craccivora (KAF0758870.1), and Diuraphis noxia (XP_015368308.1).
Red shades indicate identical amino acids. Red fonts indicate similar amino acids, and blue boxes
include the sequences with identical and similar residues.
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2.2. Spatio-Temporal Expression Profile Analysis of SaCDK

The results of RT-qPCR showed that SaCDK was expressed at different feeding times
of wingless adults, and the expression level reached the highest at 24 h after feeding, which
was significantly higher than other feeding times (Figure 3A). The expression levels of
SaCDK in different instars of S. avenae were also different, with the highest expression
levels in the first and second instars, and significantly higher than those in the third and
fourth instars (Figure 3B).
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2.3. Transient Expression of SaCDK in N. benthamiana Suppresses Cell Death

Transient overexpression of both mouse pro-apoptotic protein-BAX and Phytophthora
infestans PAMP-INF1 in tobacco leaves induced programmed cell death (PCD), whereas over-
expression of MgCl2, pCAMBIA-1300-GFP, which was used as a blank and negative control,
did not cause PCD (Figure 4). Meanwhile, overexpression of SaCDK also did not induce PCD
symptoms, and significantly inhibited PCD induced by BAX and INF1, which indicated that
SaCDK could significantly inhibit the PCD symptoms induced by BAX and INF1.
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2.4. Delivery of SaCDK Inhibited Callose Deposition in Wheat Leaves

In order to investigate the effect of SaCDK on host plant defense response, SaCDK
was cloned into the pEDV6 vector and transferred into wheat via a bacterial type III
secretion system (T3SS). As shown in Figure 5A, wheat leaves expressed with AvrRpt2
showed a chlorinated phenomenon, and a large amount of H2O2 accumulation could be
observed after DAB staining, which indicates that Pseudomonas fluorescens-mediated T3SS
was effective, and effector proteins could be stably expressed and secreted into wheat
leaves. Wheat leaves injected with DsRed did not show chlorosis and only a small amount
of H2O2 accumulation. In addition, the infiltration of EtAnH expressing SaCDK did not
induce any chlorosis symptoms or H2O2 accumulation on the wheat leaves.
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EtAnH carrying SaCDK at 2 and 4 days. Leaves infiltrated with MgCl2, DsRed or AvrRpt2 were set
as blank, negative and positive controls, respectively. (B) Aniline blue staining was performed to
examine callose deposition in wheat leaves infiltrated with EtAnH carrying SaCDK at 2 and 4 days
using epifluorescence microscopy. (C) Average number of callose deposits per mm2 in wheat leaves
inoculated with SaCDK at 2 and 4 days. Wheat leaves treated with MgCl2, DsRed or AvrRpt2 were
set as controls. Standard error (SE) is represented by the error bar. Different lower-case letters above
the bars indicate significant differences between controls and treatments. Bar = 330 µm. Six replicates
were conducted for each treatment.

Aniline blue staining showed that the infiltration of EtAnH expressing DsRed induced
significant callose deposition in the infiltrated region of leaves. However, inoculation of the
EtAnH strain carrying SaCDK significantly inhibited callose deposition in wheat leaves
when compared to the controls (Figure 5B). And as can be seen in Figure 5C, the number of
callose deposits in wheat leaves delivered with SaCDK was significantly reduced compared
with AvrRpt2 and DsRed.

2.5. SaCDK Inhibited the SA and JA Defense Signaling Pathways

To further investigate the roles of SaCDK on modulating wheat defense response, the
expression levels of SA and JA signaling pathway defense response genes in wheat leaves
were detected at 2 and 4 days post infiltration. As shown in Figure 6A, the expression levels
of SA-responsive genes PR1 and PAL in wheat leaves expressing SaCDK were significantly
decreased at 2 and 4 days compared with the control group, and the results in Figure 6B
showed that the expression levels of JA-associated genes FAD and LOX genes were also
significantly downregulated at 4 days.
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Figure 6. Delivery of SaCDK into wheat leaves suppressed the relative expression of salicylic acid
(SA) and jasmonic acid (JA) signaling-related genes. (A) Expression levels of pathogenesis-related
1 protein (PR1) and phenylalanine ammonia lyase (PAL) genes involved in SA signaling pathway.
(B) Expression levels of Ω-3 fatty acid desaturase (FAD) and lipoxygenase (LOX) genes associated
with JA defense pathway. The values are represented as mean ± SE. Asterisks above the bars
indicate significant differences between controls and treatments (Student’s t test; * p < 0.05; ** p < 0.01;
ns, not significant).
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2.6. SaCDK Enhanced the Survival and Fecundity of S. avenae

S. avenae feeding on wheat leaves overexpressing SaCDK resulted in increased survival
compared to the control during the recorded three-week period (Figure 7A), and the number
of nymphs produced by each aphid on wheat leaves treated with SaCDK was significantly
higher than the control.
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3. Discussion

Salivary proteins secreted by aphids perform an important role in the interactions
between aphids and host plants [35,36]. Several salivary proteins of S. avenae have been
demonstrated to be involved in modulating wheat defense responses. For example, the
salivary protein SmCSP4 secreted by S. avenae interacts with TaWRKY76 to activate the SA
signaling defense pathway in wheat [31]. The salivary effectors Sm10 and SmC002 enhance
host plant susceptibility by modulating defense signaling pathways [32]. CDK plays
important roles in the coordinated control of cell cycle progression and is used to regulate
plant growth and development [37,38]. For example, CDK8 can participate in JA-mediated
defense in Arabidopsis and regulate the biosynthesis of hydroxycinnamic acid amides,
secondary metabolites with defensive activity [39]. This study aimed to deeply investigate
the potential roles of a function-uncharacterized salivary protein SaCDK identified from the
transcriptome of S. avenae salivary glands in regulating wheat defense responses [30]. We
found that the expression levels of SaCDK were significantly upregulated after aphid attack
in wheat, indicating that this protein may be involved in the modulating the interactions
between aphid and wheat. Although the SaCDK sequence does not contain a signal peptide,
several studies have shown that salivary proteins without a signal peptide sequence can
also be secreted into plants and regulate the defense response of host plants [40,41], and
Western blot experiments will be carried out to verify that SaCDK protein can be secreted
into plant cells by aphids.

BAX and PAMP-INF1 induced PTI-related PCD [42–44]. In this study, our results
showed that SaCDK could inhibit PCD induced by BAX/INF1 in N. benthamiana. Wheat
crops are the main hosts of S. avenae [45]; therefore, the role of SaCDK in regulating wheat
immunity needs to be further confirmed. Agrobacterium-mediated transient expression
systems are inefficient in wheat, which seriously hinders the studies on the interaction
mechanism between pathogens and wheat plants [46]. Recently, a P. fluorescens-mediated
bacterial type-III secretion system (T3SS) was successfully utilized to deliver the effector
proteins of cereal pathogens into wheat [47–49], and a number of salivary proteins of
cereal aphids were also identified that stimulated or inhibited the wheat defense response
by using a T3SS system [31–34,50]. Here, we found that wheat leaves overexpressing
AvrRpt2 exhibited significant chlorosis and H2O2 accumulation, which was consistent with
previous studies [51–53], demonstrating that P. fluorescens-mediated T3SS was effective, but
no chlorosis phenotype and H2O2 accumulation were observed in SaCDK-overexpressed
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wheat leaves, indicating that SaCDK did not cause hypersensitive responses in wheat
leaves. Callose accumulation is a typical phenomenon of PTI reaction, which can improve
the resistance of host plants to aphids [54,55]. In this study, aniline blue staining showed
that overexpression of SaCDK also significantly reduced callose deposition in wheat leaves,
suggesting that SaCDK is involved in the inhibition of plant defense.

SA and JA are two important signaling molecules that mediate plant defense re-
sponse [56–58]. A previous study showed that exogenous application of SA and JA signifi-
cantly reduced plant mortality and the number of the sugarcane aphid Melanaphis sacchari
in susceptible sorghum genotypes [59]. Some studies have also shown that exogenous
application of SA enhances the defense ability of aphid-susceptible wheat varieties against
S. avenae [60], and that exogenous application of JA inhibits the growth of M. euphorbiae
population on tomato [61]. Salivary proteins of aphids have been demonstrated to affect
plant resistance by regulating SA and JA signaling pathways. Saliva of tomato aphid
Aphis gossypii activates the SA and JA signal defense pathways, reduces the growth rate of
A. gossypii population, and thus enhances the resistance of tomato [62]. The salivary protein
effector Rp1 of R. padi increased the susceptibility of barley by inhibiting the expression of
SA and JA defense pathway genes [21]. Transient overexpression of the salivary protein
Sm9723 of S. avenae and the salivary protein Sg2204 of S. graminum reduced the expression
of the SA and JA defense-related genes PAL, PR1, LOX and FAD, and enhanced the perfor-
mance of aphids, suggesting that salivary proteins could be involved in the inhibition of
plant resistance to aphids [33,34]. We also found that transient overexpression of SaCDK in
wheat leaves significantly reduced the expression of the SA signaling pathway key genes
PR1 and PAL and the JA signaling pathway key genes FAD and LOX. Meanwhile, we found
that the survival rate and fecundity of S. avenae after feeding on wheat leaves infiltrated
with SaCDK were significantly improved compared with the control group, which suggests
that salivary protein SaCDK enhanced aphid performance by suppressing wheat defense
responses. In addition, the effects of SaCDK silencing on plant defense and aphid fitness
via RNA interference are worthy of further study.

4. Materials and Methods
4.1. Aphids and Plants

A clone of S. avenae was initially collected from a wheat field in Langfang city
(39◦51′53.21′′ N, 116◦61′45.96′′ E), Hebei Province, northern China. The population was
reared on 12-day-old seedlings of aphid-susceptible wheat plants (var. Mingxian 169)
under laboratory conditions (16 h light/8 h dark cycle, 20 ◦C ± 1 ◦C), and N. benthamiana
were grown in growth chambers with the following conditions: 23 ± 1 ◦C with 16 h:8 h
(light/dark) photoperiods for four weeks.

4.2. Sequence Analysis

The protein molecular weight of SaCDK was predicted by the Compute pI/Mw
tool (http://web.expasy.org/com-pute_pi/ (accessed on 27 February 2024 & 3 March
2024)) on Expasy. The multiple alignment of amino acid sequences was performed using
Clustal Omega (https://www.Ebi.Ac.uk/Tools/msa/clustalo/ (accessed on 27 February
2024 & 3 March 2024)). A phylogenetic tree was constructed by the neighbor-joining and
maximum likelihood methods via MEGA7.0, and 1000 bootstraps were set up to test the
sequences. Signal 5.0 (https://services.healthtech.dtu.dk/services/SignalP-5.0/ (accessed
on 27 February 2024 & 3 March 2024)) was used for signal peptide prediction.

4.3. Transient Expression of SaCDK in N. benthamiana

The full coding sequence of SaCDK was cloned into pCAMBIA1300-GFP, and then
pCAMBIA1300-SaCDK-GFP and the empty vector pCAMBIA1300-GFP were transferred
into the A. tumefaciens GV3101 strain (all primers are listed in Table S1). The recombinant
strain was cultured in LB liquid medium containing kanamycin (50 µg/mL) and rifampicin
(20 µg/mL) at 28 ◦C overnight, and the strains were harvested by centrifugation at 4000× g

http://web.expasy.org/com-pute_pi/
https://www.Ebi.Ac.uk/Tools/msa/clustalo/
https://services.healthtech.dtu.dk/services/SignalP-5.0/
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and resuspended to OD600 = 0.6–0.8 in buffer solution [10 mmol/L 2-(N-morpholine)
ethanesulfonic acid, 20 mmol/L acetosyringone, 10 mmol/L MgCl2]. The suspensions
were kept in the dark at room temperature for 3 h and soaked into the leaves of N. ben-
thamiana (4 weeks old) with a 1 mL syringe without a needle. MgCl2, pCAMBIA1300-GFP,
pCAMBIA1300-SaCDK-GFP, BAX and INF1 were injected into N. benthamiana leaves, and
BAX/INF1 was injected at the same location where pCAMBIA1300-SaCDK-GFP was
injected 24 h later [17]. The phenotype of tobacco leaves was observed after 4 days of infil-
tration. Leaves were immersed into the decolorization solution (ethanol/acetic acid = 6:1,
v/v) until complete decolorization and then photographed.

4.4. Delivery of SaCDK into Wheat via the Bacterial Type III Secretion System

The SaCDK sequence was cloned into the pEDV6 by gateway recombination (Thermo
Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s protocols. Then,
the recombinant vector was transferred into the Pseudomonas fluorescens strain EtAnH
via electroporation [47]. The EtAnH strain carrying the pEDV6: SaCDK recombinant
vector was incubated in KB liquid medium containing chloramphenicol (30 µg/mL) and
gentamicin (25 µg/mL) for 24 h. The bacterial solution was collected and washed twice with
10 mM MgCl2 and resuspended with 10 mM MgCl2 to OD600 = 1.5–1.8. Cell suspension
(OD600 = 1.7) was infiltrated into the second leaf of 12-day-old wheat seedlings at the
two-leaf stage using a syringe without a needle. Wheat leaves infiltrated with 10 mM
MgCl2 solution or EtAnH carrying pEDV6: DsRed or pEDV6: AvrRpt2 were used as blank,
negative and positive controls, respectively [63]. The infiltrated wheat plants were cultured
in a climate chamber at 25 ◦C, 16 h light/8 h dark photoperiod conditions.

4.5. Hydrogen Peroxide Accumulation and Callose Deposition in Wheat Leaves

After 2 days of infiltration, H2O2 accumulation in wheat leaves was examined using
3′-diaminobenzidine (DAB) staining followed by destaining with decolorization solution
(ethanol/acetic acid = 6:1, v/v) [64,65], and then observed and photographed using Olym-
pus SZX-16 (Olympus Corporation, Tokyo, Japan). Wheat leaves treated with MgCl2,
DsRed and AvrRpt2 were used as blank, negative and positive controls, respectively. Six
biological replicates for each treatment were conducted. Callose deposition was detected
with aniline blue according to the histochemical methods described previously [48]. Echo
Revolve Hybrid Microscope (Echo Laboratories, San Diego, CA, USA) was used for obser-
vation and photography. Fifteen sites were randomly selected on each infiltrated wheat
leaf for callose deposits quantity statistics. Six biological replicates were performed for
each treatment.

4.6. RT-qPCR

Total RNA from aphid S. avenae and wheat leaves was extracted using TRIzol reagent
(Invitrogen, Waltham, MA, USA) as described previously [30], followed by reverse tran-
scription using the HiScript III 1st Strand cDNA Synthesis Kit (+gDNA wiper) (Vazyme,
Nanjing, China). Then, RT-qPCR was used to analyze the relative expression level. Primers
were designed using Beacon Designer 7 software and listed in Table S1. RT-qPCR was
performed on an ABI 7500 Real-Time PCR System (Applied Biosystems (Waltham, MA,
USA)). The total reaction volume was 20 µL, including 1 µL cDNA, 10 µL 2× Tap Pro
Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China), 0.4 µL forward primer and
reverse primers, and 8.2 µL ddH2O. For the analysis of the Sa4636 spatio-temporal ex-
pression profile, thirty adults of S. avenae were fed on wheat leaves for 0 h, 6 h, 12 h, 24 h
and 48 h, and then collected to characterize the transcript levels of Sa4636 at different
feeding stages. Thirty aphids of different nymphal instars and adults were collected to
detect the expression of SaCDK. β-actin and NADH of S. avenae were selected as internal
reference genes.

The expression levels of salicylic acid- and jasmonic acid-related genes, including
PR1, PAL, FAD and LOX in wheat leaves incubated with SaCDK or DsRed, were examined
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using RT-qPCR [29], and the housekeeping gene β-actin of wheat was used as the internal
reference gene [66]. Three replicates were conducted for each treatment, and each replicate
contained three technical replicates. Differential expression was calculated using the 2–∆∆Ct

method [67].

4.7. Aphid Bioassay

Forty independent biological replicates were performed for each treatment using the
DsRed as control. Two days after infiltration of SaCDK and DsRed into wheat leaves,
eight adult aphids of S. avenae were transplanted into each plastic cage (2.5 × 2.5 × 2.5 cm)
clamped to the infiltration area. After 24 h, about five first-instar nymphs remained in
each plastic cage. The number of new-born nymphs was recorded and removed after
each count every day. The assay was conducted for three weeks, and at the end of the
experiment, the number of surviving aphids was recorded. New infiltrated wheat leaves
with the same treatment were replaced every four days to ensure continued expression of
the target proteins.

4.8. Statistical Analysis

All data were analyzed using SPSS Statistics 20.0 software (SPSS Inc., Chicago, IL,
USA). The differences among groups were examined using Student’s t test, one-way
analysis of variance (ANOVA) LSD test and Duncan’s new multiple range test. p < 0.05
was considered to be statistically significant.

5. Conclusions

Overall, our study suggested that the salivary protein SaCDK of S. avenae was shown
to be involved in the suppression of plant immunity by inhibiting callose deposition, JA-
and SA-associated defense signaling pathways, resulting in a significant enhancement of
aphid performance. The results of the current study suggested that SaCDK potentially acts
as an effector, playing important roles in suppressing wheat defense.
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