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Abstract: The mesocotyl is of great significance in seedling emergence and in responding to biotic
and abiotic stress in maize. The NAM, ATAF, and CUC2 (NAC) transcription factor family plays an
important role in maize growth and development; however, its function in the elongation of the maize
mesocotyl is still unclear. In this study, we found that the mesocotyl length in zmnac17 loss-of-function
mutants was lower than that in the B73 wild type. By using transcriptomic sequencing technology,
we identified 444 differentially expressed genes (DEGs) between zmnac17-1 and B73, which were
mainly enriched in the “tryptophan metabolism” and “antioxidant activity” pathways. Compared
with the control, the zmnac17-1 mutants exhibited a decrease in the content of indole acetic acid (IAA)
and an increase in the content of reactive oxygen species (ROS). Our results provide preliminary
evidence that ZmNAC17 regulates the elongation of the maize mesocotyl.
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1. Introduction

The mesocotyl is of great significance in seedling emergence, root development, and
stress resistance. Maize seedlings with long mesocotyls have stronger germination ability
and higher rates of seedling emergence [1]. The mesocotyl cortical aerenchyma supports
shoot-borne crown roots [2,3], and its parenchyma plays a substantial role in regulating
stress signal transduction in the xylem [4]. Various genes have been reported to play critical
roles in maize mesocotyl elongation. Chen et al. (2023) reported that ZmCOP1 mediates
mesocotyl elongation through the brassinosteroid signaling pathway [5]. Moreover, it
has been found that ZmMYB59 negatively regulates mesocotyl elongation through the
gibberellin signaling pathway [6]. Zhang et al. (2023) found that the overexpression of
ZmWRKY28 in maize leads to an increase in mesocotyl length under dark conditions [7].

Auxin levels and distribution influence growth and development in plants [8], and
previous studies have suggested that auxin also directly or indirectly promotes the elon-
gation of maize mesocotyl. For example, ZmLA1 (a functional ortholog of LAZY1 in rice)
affects maize mesocotyl elongation in the dark [9], and coronatine inhibits auxin synthesis
by increasing the release of endogenous ethylene, thereby suppressing cell elongation and
subsequently reducing the length of the mesocotyl [10]. In line with this, auxin-binding
protein 1 (ABP1) has also been found to promote mesocotyl elongation in maize [11].

Reactive oxygen species (ROS) are involved in plant growth, hormone signaling, and
biotic and abiotic stress responses [12,13]. ROS production and processing are linked to
NADPH oxidase, superoxide dismutase (SOD), class III peroxidase (POD), etc. [14], where
POD participates in the formation of maize lignin, which is related to cell wall hardening
and mesocotyl elongation [15]. Additionally, ROS affect auxin metabolism, distribution,
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transport, and signal transduction [16]. Interestingly, based on previous reports, auxin also
participates in ROS production, and the dynamic equilibrium between auxin and ROS is
related to the redox balance [17–19].

The NAM, ATAF1,2, and CUC2 (NAC) transcription factor family influences various
growth and developmental processes in plants, including seed development, hormone
signal transduction, crop yield and quality, etc. [20–23]. Xie et al. (2000) reported that
AtNAC1 promotes lateral root development by transducing the auxin signal downstream
of transport inhibitor response 1 (TIR1) [24]. In rice, OsNAC2 affects plant height and flow-
ering time by mediating the gibberellic acid pathway [25]. AtRD26 (an NAC transcription
factor) enhances stress resistance in post-harvest fruits by increasing the expression of
stress-related genes [22]. Arabidopsis thaliana NAC transcription factor 1 (ATAF1) binds to
and regulates the 9-cis-epoxycarotenoid dioxygenase 3 (NCED3) gene, which is responsible for
ABA biosynthesis [26]. NAC transcription factors can negatively regulate leaf senescence
by influencing the contents of salicylic acid (SA) and ROS [27]. The NAC transcription
factor, NAC with transmembrane motif 1-like (NTL4), during drought stress, promotes the
production of ROS by directly binding to the promoters of genes related to ROS biosynthe-
sis and accelerates leaf senescence [28]. Another NAC transcription factor, SNAC, has been
reported to enhance tolerance to high temperatures, drought, and oxidative stress in rice by
regulating the dynamic balance of ROS [29].

Despite the fact that extensive research has been conducted on the NAC family, its
relationship with mesocotyl elongation has not been thoroughly studied. In this study, we
analyzed the phenotypic characteristic of two zmnac17 loss-of-function mutants in maize and
identified DEGs between zmnac17-1 and B73. We proposed that ZmNAC17 positively regulates
the elongation of the maize mesocotyl by mediating the auxin and ROS synthetic pathways.

2. Results
2.1. Phenotype of Maize zmnac17-1 and ZmNAC17-2 Mutants

In order to explore the effect of NAC transcription factors on the length of the maize
mesocotyl, we collected a loss-of-function zmnac17-1 mutant from the EMS-induced mutant
library, denoted as zmnac17-1. This was a start-loss mutant featuring a change in nucleotides
from ATG to ATA (Supplementary Figure S1A).

We measured the mesocotyl length of zmnac17-1 specimens, using B73 as a control
(Figure 1A). After having been grown in the dark for 7 days, B73 presented a mesocotyl
length of about 9.30 cm, and zmnac17-1 of about 8.00 cm; thus, the latter showed significantly
shorter seedling length than B73 (Figure 1B). In addition, the mesocotyl fresh weight was
about 0.30 g in B73, while in zmnac17-1, it was about 0.23 g, a significantly lower value
(Figure 1C). In order to ensure the accuracy of this experiment, we collected another loss-
of-function zmnac17 mutant, denoted as zmnac17-2, a stop-gain mutant featuring a change
in nucleotides from TGG to TGA at the 543rd nucleotide (Supplementary Figure S1B). We
measured the length and fresh weight of the mesocotyl in zmnac17-2 and obtained 8.40 cm
and 0.25 g, respectively. Both values were significantly lower than their counterparts in B73
(Supplementary Figure S2).
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Figure 1. Phenotypic analyses of B73 and zmnac17-1 (mutant). (A) Seedling phenotypes of B73 and
zmnac17-1 grown in the dark for 7 days. Red lines: mesocotyl. Bars: 3 cm. (B) Results of quantification
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of mesocotyl length. (C) Results of quantification of mesocotyl fresh weight. Data are means ± SDs
of at least 10 biological replicates. Statistical analysis conducted using Student’s unpaired t-test
(** p < 0.01).

2.2. GO and KEGG Enrichment Analyses

In order to gain further insights into which genes were differentially expressed, we
conducted RNA-seq analyses using zmnac17-1 because of both its start-codon lost genotype
and its more pronounced phenotype (Supplementary Table S2). In total, 148 genes were
up-regulated and 296 genes down-regulated in zmnac17-1 compared with B73 (Figure 2A,B).
We also performed GO and KEGG enrichment analyses to determine which processes
were affected. The GO enrichment analysis showed that the DEGs were enriched in
oxidoreductase activity and aldehyde oxidase activity in terms of molecular functions, and
in the abscisic acid metabolic process, auxin biosynthetic process, and tryptophan metabolic
process in terms of biological processes (Figure 2C, Supplementary Table S3).
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Figure 2. The RNA-seq results show that the zmnac17-1 mutation led to expression changes in some
genes. (A) The differentially expressed genes between the B73 wild type and the zmnac17-1 mutant.
(B) DEG volcano map, where the red dots represent the up-regulated genes in zmnac17-1, the green
dots represent the down-regulated genes, and the gray dots represent the non-differentially expressed
genes. (C) GO enrichment top 20 scatter plot, where the ordinate represents the GO entry, and the
abscissa represents the rich factor. (D) KEGG enrichment top 20 scatter plot, where the ordinate
represents the KEGG path, and the abscissa represents the rich factor.

The KEGG enrichment analysis showed that the DEGs were enriched in plant hormone
signal transduction, tryptophan metabolism, plant–pathogen interaction (which has a tight
relationship with ROS homeostasis), etc. (Figure 2D, Supplementary Table S4). In conclu-
sion, the GO and KEGG analyses showed that the DEGs were related to plant hormone
signal transduction and the biosynthesis of metabolites. Therefore, we speculate that these
pathways may play an important role in how ZmNAC17 regulates mesocotyl length.
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2.3. Auxin Regulates Mesocotyl Length in zmnac17-1 Mutant

Auxin is a critical regulator of mesocotyl length [30]. In plants, the biosynthesis of
auxin includes two pathways: a tryptophan-dependent one and a tryptophan-independent
one [31]. In this study, we identified various tryptophan metabolism-related DEGs (Table 1).
The qRT-PCR results also confirmed the reliability of RNA-seq data (Figure 3A). Four genes
(Zm00001eb396770, Zm00001eb396780, Zm00001eb396760 and Zm00001eb396790) were
expressed at a lower level in the zmnac17-1 mutant, while Zm00001eb416690 was expressed
at a higher level in the zmnac17-1 mutant (Table 1, Figure 3A).

Table 1. DEGs related to tryptophan metabolism.

Gene ID Annotation B73_fpkm zmnac17-1_fpkm Log2FC

Zm00001eb396770 Aldehyde oxidase AA01 (possible
homologue gene in Arabidopsis) 11.89 0.80 −3.920

Zm00001eb396780 E3 ubiquitin-protein ligase UPL6 7.95 0.60 −3.76

Zm00001eb396760
Alpha hydrolases-like domain-containing
protein (possible homologue gene in
Arabidopsis)

3.43 0 −7.34

Zm00001eb416690 Tryptophan decarboxylase 1-like 0.11 0.64 2.45
Zm00001eb396790 Indole-3-acetaldehyde oxidase 2.85 0.31 −3.22
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Figure 3. DEGs related to tryptophan metabolism and IAA content in B73 and zmnac17-1 mutant.
(A) Verification of DEGs with RT-qPCR. (B) IAA content in B73 and zmnac17-1. Three biological
replicates were used. (C) Auxin signaling pathway. Substances in blue boxes represent up-regulated
genes, while those in green boxes represent down-regulated genes. Data presented are means ± SDs.
Statistical analysis conducted by using Student’s unpaired t-test (** p < 0.01).

Thus, we propose that the transcriptional changes in the auxin-related genes may
partially explain the short mesocotyl phenotype of the zmnac17-1 mutant. In order to verify
whether ZmNAC17 regulates the biosynthesis of auxin, we measured the IAA content in
zmnac17-1 and B73 (Figure 3B) and found that B73 presented about 13.97 ng/g IAA and
zmnac17-1 about 10.70 ng/g IAA; that is, the content of IAA was significantly lower (by
23.5%) in zmnac17-1. This result verifies that auxin participates in regulating mesocotyl elon-
gation. The KEGG enrichment analysis showed that the DEGs between zmnac17-1 mutant
and B73, such as ZmSAUR54 (Zm00001eb241870), ZmSAUR11 (Zm00001eb052590), and
ZmIAA32 (Zm00001eb301590) (Figure 3C), were enriched in auxin signal transduction path-
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ways. Taken together, our results show that the DEGs relative to tryptophan metabolism
and auxin signal transduction may be the reason for the decrease in IAA content.

2.4. ROS Level Change in zmnac17-1 Mutant during Mesocotyl Elongation

Based on a previous study, a change in auxin homeostasis could lead to altered ROS
levels in plants [19]. Moreover, it has been reported that the length of the maize mesocotyl
is negatively correlated with H2O2 content and POD activity [15]. Interestingly, in this
study, we also found that the DEGs were enriched in terms of oxidoreductase activity,
hydrogen peroxide catabolic process, and antioxidant activity. This result implies that the
ROS level may have changed during mesocotyl elongation in our specimens. qRT-PCR
was used to confirm the expression patterns of the DEGs related to antioxidant activity
(Table 2, Figure 4). Based on our results, we speculate that the shortened mesocotyl length in
zmnac17-1 may be related to the change in ROS content. We measured the total ROS content
and found that it was about 252.40 ng/mL in B73 and about 147.70 ng/mL in zmnac17-1;
i.e., the content of ROS was significantly higher (by 41%) in the mutant (Figure 5A).

Table 2. DEGs related to antioxidant activity.

Gene ID Annotation B73_fpkm zmnac17-1_fpkm Log2FC

Zm00001eb330530 peroxidase 70 isoform X1 25.90 12.72 −1.06
Zm00001eb333290 peroxidase 72 precursor 18.69 9.29 −1.04
Zm00001eb111420 peroxidase 66 precursor 5.79 2.61 −1.18
Zm00001eb226370 Peroxidase 45 2.22 4.78 1.07
Zm00001eb109910 peroxidase 2-like 0.08 1.09 3.76
Zm00001eb348950 peroxidase 2 0.68 0.15 −2.20
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Figure 5. ROS content in B73 and zmnac17-1 mutant. (A–H) ROS, GSH, GSSG, GSH/GSSG ratio, CAT,
POD, SOD, and MDA content in B73 and zmnac17-1. Data are means ± SDs of at least 5 biological
replicates. Statistical analysis conducted using Student’s unpaired t-test (* p < 0.05 and ** p < 0.01).



Int. J. Mol. Sci. 2024, 25, 4585 6 of 11

The content of ROS in plants is closely related to glutathione (GSH), oxidized glu-
tathione (GSSG), catalase (CAT), POD, and SOD, among other factors [14]; therefore,
we tested the activity of these enzymes. The results showed that GSH was present at
0.65 umol/g in B73 and 0.75 umol/g in zmnac17-1; i.e., the content of GSH was 15% higher
in zmnac17-1. The GSSG content was 82.77 nmol/g in B73 and only about 40.61 nmol/g
in zmnac17-1, representing a 51% reduction in this parameter in the mutant. In addition,
the ratio of GSH/GSSG was higher in zmnac17-1 than in B73. We also measured the
contents of CAT, POD, SOD, and MDA. Interestingly, we found that CAT activity was
185.5 umol/min/g in B73, but only about 150.00 umol/min/g in zmnac17-1, i.e., we ob-
served a 19% reduction in this parameter in the mutant. POD activity was significantly
lower in B73 than in the zmnac17-1 mutant. SOD activity was about 247.50 U/g in B73, and
about 234.60 U/g in zmnac17-1. MDA content was about 4.30 nmol/g in B73, and about
4.53 nmol/g in zmnac17-1, with no significant difference between B73 and zmnac17-1
(Figure 5B–H). In summary, these results indicate that changes in ROS levels may be
responsible for the short mesocotyl phenotype.

3. Discussion

Based on the study conducted by Fan et al. in 2014 on Arabidopsis thaliana, ANAC074 is
a homologue gene of ZmNAC17 [21]. Interestingly, ANAC074 has been found to be related
to the secondary tissue differentiation of the hypocotyl [32]. However, the specific function
of ANAC074 in the latter has not been reported. In this study, we showed that ZmNAC17 is
involved in mesocotyl elongation in etiolated maize seedlings (Figure 1A and Figure S1).
The etiolated seedlings of the zmnac17-1 mutant exhibited a shorter mesocotyl compared
with B73 when grown in the dark.

In this study, the content of IAA was significantly decreased in zmnac17-1, indicating
that the auxin metabolism pathway was different in the mutant. The RNA-seq analy-
sis identified some DEGs between the zmnac17-1 mutant and B73, such as ZmSAUR54
(Zm00001eb241870), ZmSAUR11 (Zm00001eb052590), and ZmIAA32 (Zm00001eb301590).
We confirmed the lower expression of Zm00001eb396770, Zm00001eb396780, Zm00001e
b396760, and Zm00001eb396790 in zmnac17-1 using qRT-PCR. Since these genes are in-
volved in tryptophan metabolism, the lower expression of these genes may be the reason
for the decrease in IAA content. Previous research has shown that auxin promotes meso-
cotyl elongation [33]. In Arabidopsis thaliana, several genes encoding AUX/IAA and SAUR
proteins are associated with hypocotyl elongation [34,35]. Moreover, studies have reported
that NAC transcription factors regulate plant growth and development by inducing auxin
synthesis [36,37]. For example, in Arabidopsis, AtNAC1 promotes lateral root growth by
activating the expression of two auxin-related genes, DNA-binding protein (DBP) and
auxin-induced in root cultures 3 (AIR3) [24]. OsNAC2 regulates root development by regu-
lating the auxin and cytokinin signaling pathways [38]. Therefore, we infer that ZmNAC17
could regulate auxin-related genes, induce the auxin synthesis and signaling pathway, and
affect mesocotyl elongation.

Previous studies have shown that NAC075 directly up-regulates the expression of
catalase 2 (CAT2) and inhibits the accumulation of ROS in Arabidopsis thaliana [39]. Similarly,
we found that CAT activity was lower, while ROS content was higher, in zmnac17-1 than in
B73. Zhao et al. (2022) found that when H2O2 accumulates in the maize mesocotyl after
light stimulation, POD-induced lignin monomer oxidizes to form lignin, which leads to cell
wall hardening and inhibits mesocotyl elongation [15]. The POD activity in the zmnac17-1
mutant was significantly higher than in B73, which was consistent with Zhao’s study. In
addition, the RNA-seq results showed that among the antioxidant activity-related genes,
four (Zm00001eb330530, Zm00001eb333290, Zm00001eb111420, and Zm00001eb348950) were
down-regulated, and two (Zm00001eb226370 and Zm00001eb109910) were up-regulated.
Therefore, we speculate that changes in the expression of these genes could affect ROS
levels and be regulated by ZmNAC17.
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Changes in plant growth and development are often associated with the dynamic
equilibrium between auxin and ROS [19]. Mangano et al. (2017) found that there is a
molecular link between auxin and ROS-mediated polar root hair growth [17]. Previous
research has reported that ROS induce auxin [40]. However, in this study, the auxin content
decreased while the ROS content increased in the zmnac17-1 mutant. More research needs to
be carried out to reveal the function of ZmNAC17 in the auxin–ROS imbalance. In addition,
considering that the growth response of plants under environmental stress is affected by
the interaction between these two elements [19], we speculate that ZmNAC17 may also
affect growth and development in maize under environmental stress.

Based on the above results and previous studies, a possible molecular network of
ZmNAC17’s involvement in mesocotyl elongation in maize was constructed (Figure 6).
Briefly, the findings of this study indicate that ZmNAC17 may play a positive regulatory
role in mesocotyl elongation under dark growing conditions and that this may be involved
in the metabolism of endogenous auxin and ROS. Since the mutants we used were EMS-
induced, there might be some unknown mutation sites affecting the elongation of the
mesocotyl. It is important to confirm the phenotype by using CRISPR gene knock-out
lines. The functional verification of the ZmNAC17 gene in maize and the identification
of genes downstream of ZmNAC17 are also important directions for future research. Our
findings thus provide useful resources for gene discovery and functional identification of
seed germination in production.
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4. Materials and Methods
4.1. Plant Materials and Phenotypic Analysis

The zmnac17-1 and zmnac17-2 mutants were collected from the maize EMS mutant
library [41]. The B73 wild type from the same library was used as a control. All materials
were propagated in Jiaozhou, Shandong (36◦27′ N, 120◦03′ E) in summer and in Ledong,
Hainan (18◦45′ N, 109◦10′ E) in winter. Genotyping was evaluated using Sanger sequencing.
DNA from leaves was extracted using the CTAB method. Primers were designed using the
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NCBI website (Supplementary Table S1). PCR was performed using 2× Taq PCR StarMix
with Loading Dye (A012, GenStar). Sanger sequencing was performed by Sangon Biotech
Co., Ltd (Shanghai, China).

zmnac17-1, zmnac17-2, and B73 were used for mesocotyl elongation analysis. zmnac17-1
and B73 were used for physiological and biochemical analyses, hormone content determi-
nation, and RNA sequencing analysis. Seeds were sown in a 54 × 28 × 9 cm high-footed
seedling tray in the dark. Each hole was filled with vermiculite and then fully watered,
and the seedlings were grown in a dark incubator (25 ◦C). The mesocotyl lengths of the
7-day-old seedlings were measured according to previously published methods [5]. At
least 15 individual seedlings for each genotype were analyzed.

4.2. Determination of ROS and Antioxidant Metabolites

In this study, seven-day-old zmnac17-1 and B73 seedlings were used. The experiment
was carried out according to the instructions of the plant reactive oxygen species (ROS)
ELISA kit (mlROS-96), which was purchased from Shanghai Enzyme-Linked Biotechnology
Co., LTD. (Shanghai, China). GSH, GSSG, POD, SOD, CAT, and MDA contents were
detected using assay kits (Art. No. G0206W; Art. No. G0207W; Art. No. G0107W; Art. No.
G0101W; Art. No. G0105W; and Art. No. G0109W), which were purchased from Suzhou
Grace Bio-technology Co. LTD., Suzhou, China.

4.3. Determination of Endogenous IAA

Seven-day-old zmnac17-1 and B73 seedlings were used for endogenous IAA deter-
mination. The experiment was performed by Wuhan MetWare Biotechnology Co., Ltd.
(Wuhan, China).

Fresh seedlings were ground into powder with a MM400 mortar grinder (Retsch,
30 Hz, 1 min). Then, 50 mg powder was dissolved in 1 mL methanol/water/formic acid
(15:4:1, v/v/v) and 10 µL internal standard solution (Olchemim/isoReag). The mixture
was vortexed for 10 min and centrifuged for 5 min (12,000 rpm, 4 ◦C). The supernatant
was transferred to a new centrifuge tube, evaporated, and dissolved in 100 µL of methanol
(80%, v/v), then filtered with a 0.22 µm membrane.

An UPLC-ESI-MS/MS system (ExionLC™ AD; QTRAP® 6500+) was used for sample
extracts analysis. The analytical conditions were as follows: column, Waters ACQUITY
UPLC HSS T3 C18 (100 mm × 2.1 mm i.d., 1.8 µm); solvent system, (A) water with 0.04%
acetic acid, (B) acetonitrile with 0.04% acetic acid; gradient program, 5% B (0–1 min), 95%
B (1–8 min), 95% B (8–9 min), 5% B (9.1–12 min); flow rate, 0.35 mL/min; temperature,
40 ◦C; injection volume, 2 µL. The ESI source operation parameters were as follows: ion
source, ESI+/−; source temperature, 550 ◦C; ion spray voltage, 5500 V (Positive), −4500 V
(Negative); curtain gas, 35 psi.

Multiple reaction monitoring (MRM) was used for IAA content analysis. The param-
eters for IAA were Q1 176.1 Da; Q3 130.1 Da; Rt 5.12 min; declustering potential 20; and
collision energy 20. Analyst 1.6.3 software (Sciex, Framingham, MA, USA) was used for
data acquisition. Multiquant 3.0.3 software (Sciex) was used for IAA quantification.

4.4. RNA Sequencing and Data Analysis

The seven-day-old zmnac17-1 and B73 seedlings in four independent biological repli-
cates were further used for RNA sequencing analysis. Total RNA extraction, mRNA library
construction, and data analysis were performed by Wuhan MetWare Biotechnology Co.,
Ltd. (Wuhan, China).

The qualified mRNA library was sequenced using the Illumina NovaSeq 6000 sequenc-
ing platform. The sequencing reads were mapped to the maize reference genome (Zm-
B73-REFERENCE-NAM-5.0) using HISAT software http://ccb.jhu.edu/software.shtml
accessed on 15 April 2024 [42]. StringTie and featureCounts were used for gene annotation
and FPKM calculation [43]. DESeq2 was used to analyze the expression-related differences
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between B73 and zmnac17-1. Genes with false discovery rate (FDR) < 0.05 and |log2 Fold
Change| ≥ 1 were considered differentially expressed genes (DEGs).

4.5. qRT-PCR Analysis

A SteadyPure plant RNA extraction kit (AG21019; Accurate Biotechnology, Co., Ltd.,
Changsha, China) was used to extract total RNA. An Evo M-MLV RT Mix Kit (AG11728)
was used for reverse transcription. The SYBR® Green Premix Pro Taq HS qPCR Tracking
Kit (AG11733) and an ABI 7500 Real-Time PCR System were used for fluorescence quantifi-
cation. The relative gene expression was calculated with the 2−∆∆Ct method, and Actin was
used as an internal control [44]. The primers used for qRT-PCR can be found in Table S1.

4.6. Statistical Analysis

Student’s unpaired t-test was performed using SPSS (version 23.0) and GraphPad
Prism8 software (version 8.0.2; GraphPad Software, San Diego, CA, USA).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms25094585/s1.
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