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Abstract: Adipose tissue is a multifunctional organ that regulates many physiological processes
such as energy homeostasis, nutrition, the regulation of insulin sensitivity, body temperature, and
immune response. In this review, we highlight the relevance of the different mediators that control
adipose tissue activity through a systematic review of the main players present in white and brown
adipose tissues. Among them, inflammatory mediators secreted by the adipose tissue, such as
classical adipokines and more recent ones, elements of the immune system infiltrated into the adipose
tissue (certain cell types and interleukins), as well as the role of intestinal microbiota and derived
metabolites, have been reviewed. Furthermore, anti-obesity mediators that promote the activation of
beige adipose tissue, e.g., myokines, thyroid hormones, amino acids, and both long and micro RNAs,
are exhaustively examined. Finally, we also analyze therapeutic strategies based on those mediators
that have been described to date. In conclusion, novel regulators of obesity, such as microRNAs or
microbiota, are being characterized and are promising tools to treat obesity in the future.

Keywords: adipose tissue; metabolism; obesity

1. Introduction

Adipose tissue (AT) has traditionally been considered a mere fat depot, but in reality,
it is a complex and dynamic organ involved in the regulation of multiple physiological
processes, including energy homeostasis, nutrition, insulin sensitization regulation, body
temperature, and immune response [1]. AT is composed of different cellular types includ-
ing endothelial cells, immune cells, mature adipocytes, and their progenitors. Different
subtypes of adipocytes have been identified in mammals, but three main types are pri-
marily recognized, having been named the three types of AT: white, beige, and brown
adipocytes [2,3].

White adipocytes typically exhibit a unilocular structure, characterized by a single
large lipid droplet occupying most of the cell volume. In the human body, WAT is primarily
located beneath the skin, concentrated in the abdominal and gluteofemoral depots, and in
the abdominal cavity, forming the subcutaneous white adipose tissue (sWAT) and visceral
white adipose tissue (vWAT), respectively [4]. These two locations have different metabolic
and physiological implications: sWAT is related to protective effects on energy homeostasis
and vWAT is associated with a higher risk of metabolic disorders [5]. The main function
of WAT is to store and release energy by storing triglycerides (TGs) and releasing fatty
acids (FAs) for energy synthesis in response to changes in systemic energy levels (Figure 1).

Int. J. Mol. Sci. 2024, 25, 4659. https://doi.org/10.3390/ijms25094659 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25094659
https://doi.org/10.3390/ijms25094659
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-2960-6175
https://orcid.org/0000-0002-8082-9323
https://orcid.org/0000-0001-6550-3838
https://orcid.org/0000-0002-2807-3776
https://orcid.org/0000-0002-8249-1645
https://doi.org/10.3390/ijms25094659
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25094659?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 4659 2 of 25

However, an imbalance in these processes caused by an excessive energy intake that exceeds
the individual’s energy expenditure leads to the expansion of WAT through two strategies:
hyperplasia and hypertrophy of adipocytes. An excessive accumulation of TG in the WAT,
and consequently in other tissues, leads to a pathological metabolic state known as obesity.
This disease is considered a pandemic by the World Health Organization. Particularly in
Europe, the prevalence of obesity in men ranges from 4.0% to 28.3%, and in women from
6.2% to 36.5%. Obesity and its comorbidities, e.g., type 2 diabetes (T2D), cardiovascular
disease, hypertension, liver dysfunction, and cancer, among others, represent a serious
public health problem. Therefore, a multidisciplinary approach to the treatment of the
disease, as well as the search for anti-obesity therapies, are of crucial importance [6–8]. WAT
exerts its actions through the secretion of adipokines, cytokines, lipokines, and extracellular
vesicles (EVs), among other elements. This enables it to establish a close communication
with crucial organs such as the pancreas, heart, or liver [9].
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Brown adipose tissue (BAT) is composed of the so-called thermogenic adipocytes,
and its main function in mammals is thermoregulation. The adipocytes that make up this
tissue have a high density of mitochondria, and multiple lipid droplets (Figure 1). BAT
is found in cervical, supraclavicular, axillary, paravertebral, mediastinal, and abdominal
regions in adult humans [10,11]. The brown adipocytes are characterized by expressing
the mitochondrial uncoupling protein 1 (UCP-1). This protein is in the inner side of the
mitochondrial membrane and is involved in the physiological response to cold to generate
heat: once activated by FAs or β-adrenergic receptor (β-AR) agonists, it uncouples the
electron transport chain inducing the release of energy as heat. Moreover, different ther-
mogenic mechanisms independent of UCP-1 have also been described [11]. Furthermore,
the existence of molecular and metabolic adaptation strategies to cold in white adipocytes
has been demonstrated [12]. Brown adipocytes preferentially utilize glucose and FAs
as energy substrates for thermogenesis. Specifically, exposure to cold increases glucose
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uptake, which is metabolized through glycolysis and mitochondrial oxidation to produce
energy. Additionally, glucose is an efficient carbon source for glycerol and acetyl-CoA
production, both essential in lipogenesis. Regarding the use of lipids by BAT, it is capable
of taking up extracellular lipids as well as metabolizing intracellular TG through lipolysis.
Other metabolites can act as energy substrates in BAT, for example, succinate, lactate, and
branched-chain amino acids [13]. BAT acts as an endocrine organ through the secretion of
different factors, called “batokines”, implicated in the regulation of metabolic homeosta-
sis [14]; this point is discussed in detail in Section 3.2 of this review. Taking into account
the described functions of BAT, several therapeutic strategies have been proposed, e.g.,
increasing thermogenic activity may be useful for treating obesity and T2D, and synthetic
analogs of certain batokines have been shown to provide metabolic benefits in overweight
humans [14,15].

Beige adipose tissue (BeAT) is composed of adipocytes similar to brown adipocytes,
which are characterized by multilocular lipid droplets and abundant mitochondria express-
ing UCP-1 (Figure 1). Beige adipocytes predominantly reside in sWAT depots, located
in humans at the cranial, facial, abdominal, femoral, and gluteal regions [1,16]. These
cells are generated in WAT in response to certain stimuli, such as cold exposure, and can
come from progenitors (de novo beige adipogenesis) [17] or from the transdifferentiation
of existing white adipocytes in a reversible process known as WAT “browning” [18]. These
beige adipocytes are capable of absorbing circulating glucose and lipids, increasing energy
expenditure and thermogenesis. Therefore, the activation of this special adipose tissue
represents an attractive therapeutic target for treating obesity and T2D [19].

The aim of this review is to broadly present an overview of novel mediators secreted by
the adipose tissue, as well as others of different nature that directly impact it and promote
the development of obesity. We also thoroughly cover numerous mediators that act on BAT,
or are secreted by it, exerting actions on other organs with anti-obesity properties.

2. Mediators Triggering Obesity

Due to its multifactorial nature, obesity requires the analysis of multiple mediators
across different tissues. This section attempts to describe the most relevant mediators
associated with increased obesity development, which may represent potential targets for
the treatment of obesity.

Obesity can be regulated through multiple interactions between endocrine tissues and
the nervous system. We are now aware of the importance of AT in metabolic homeostasis
and of the fact that its accumulation leads to chronic inflammation [20]. WAT is one of the
main regulators of metabolism, controlling energy storage, inflammation, and immunity.
The relationship between chronic inflammation and obesity is not completely understood,
and several mechanisms have been discussed previously [21]. In fact, it has been demon-
strated that WAT can secrete approximately more than fifty different signaling molecules
and hormones, namely adipokines [22], which play a relevant role in the metabolism of
glucose and immunity. Changes in its secretion profile may contribute to insulin and leptin
resistance and induce the development of obesity and T2D [23,24], whereas it has been ob-
served that the adipose tissue of lean individuals predominantly secretes anti-inflammatory
adipokines such as transforming growth factor-beta (TGF β), adiponectin, apelin, IL-4,
IL-10, and IL-13 [25].

Leptin is a hormone secreted by AT that regulates energy balance and appetite. It can
decrease food intake, alter neuroendocrine function, and influence the metabolism of lipids
and glucose. In fact, it has been demonstrated that leptin resistance may conduct insulin
resistance and lipid accumulation, both in obese mice and humans. Adiponectin can be
detected in low amounts in serum and is another hormone mainly secreted by adipocytes.
It has been also shown that adiponectin may have a positive impact on insulin sensitiv-
ity [26]. In fact, impaired adiponectin/leptin levels produced insulin resistance in obese
rats [27], and in adiponectin-deficient transgenic mice [28], improved insulin sensitivity
was observed. In fact, a study comparing morbidly obese subjects with non-morbidly obese
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subjects showed that only with the second group a real correlation between leptin and
adiponectin with different measurements of body composition could be found [29].

Cytokines secreted by WAT, such as TNF-α, IL-6, IL-1β, IL-8, or IL-18, are implicated
in inflammatory processes [25] and disrupted adipokine production and secretion are
strongly associated with obesity-related comorbidities [24]. In this sense, resistin seems
to be involved in insulin resistance and inflammation in humans and murine models [30].
Resistin has been demonstrated to be an antagonist to insulin both in vivo and in vitro
conditions [31]. In fact, resistin levels were increased in diabetic and obese mice. The
exogenous administration of resistin increases glucose production and plasma levels in
mice models [30]. Moreover, resistin is induced by TNF-α and has been shown to also play
a role in inflammation by stimulating the production of IL-6 in humans [31].

Visfatin, a novel cytokine originating from AT, was highly expressed in visceral regions.
Major human and mouse WAT accumulation positively correlated with visfatin expression
in mature adipocytes. In fact, visfatin mimicked insulin signaling mainly in skeletal muscle
and the liver, as observed in cultured cells and mouse models [32]. In humans, visfatin
has been demonstrated to participate in the early inflammation processes of obesity and
its levels are positively correlated with obesity and overweight patients with metabolic
syndrome diagnosis [33].

Apelin is another recent adipokine secreted by adipocytes and distributed all over the
body. Specifically, it is a regulatory peptide that has been described to be implicated in
energy metabolism and physiological homeostasis after binding to its main ligand APJ (a G-
protein-coupled-receptor), both in rodents and humans [34]. In fact, elevated concentrations
of apelin correlate with metabolic alterations in lipid and glucose metabolism of mouse
and human adipocytes, degenerating in obesity and diabetes [35,36].

Several other recent adipokines have been recently discovered and their role in obesity
and metabolic pathologies are being investigated. Chemerin, increased in inflammatory
conditions, has been implicated in the development of obesity and its complications [37]. In
fact, chemerin-deficient mice develop an impaired glucose metabolism in skeletal muscle
and the liver, mainly due to a reduction in the AKT phosphorylation pathway [38]. DPP4, a
protease secreted by visceral adipose tissue, is also a proinflammatory molecule elevated in
obese patients. It can affect both insulin signaling as well as macrophage infiltration [39]. In
fact, hepatocyte DPP4 has been demonstrated to induce insulin resistance and activate adi-
pose tissue macrophages in obese mice [40]. On the other hand, isthmin-1 and omentin have
been described as anti-inflammatory adipokines secreted by the adipose tissue. Their levels
are decreased in obese patients and in general, are correlated with an impaired glucose
uptake [41]. Nevertheless, isthmin-1 gene expression levels were recently demonstrated to
be correlated with the abdominal fat localization in humans, being a valuable biomarker for
the detection of major obesity risks [42]. On the other hand, plasma omentin-1 levels have
been demonstrated to be decreased in overweight and obese patients, recovering normal
levels after weight loss. In fact, omentin-1 can induce glucose uptake via Akt activation in
human adipocytes [43].

Multiple adipokines have been described to play a role in the resistance to insulin and
in the maintenance of the chronic inflammation detected in obesity patients and could be
classified as inflammatory mediators as mentioned previously [44]. Nevertheless, lipids,
including non-esterified FAs (NEFA), are also increased in obese subjects and participate in
triggering inflammation and causing lipotoxicity in different tissues [45]. FAs also played
an important role in regulating adipokines secretion and their function [46].

2.1. Cellular Mediators Involved in Obesity

Cellular immune mediators have also been described recently and linked to the devel-
opment of chronic inflammation and obesity [1]. In fact, it has been described that obesity
reduces the immune system by decreasing lymphocytes and modifying monocyte and
neutrophil levels. In fact, inflammation and insulin resistance in obese subjects have been
demonstrated to be triggered by an impaired immune response. As the severity of obesity
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increases, the size of macrophage aggregates also increases, similarly to other inflamma-
tory diseases. In obese subjects, proinflammatory cytokines produced by macrophages
and T-cells were found in abundance, while in the adipose tissue of lean subjects, anti-
inflammatory cytokines, M2 macrophages, and Th2 cells were mainly detected [47].

Macrophages play a fundamental role in the adipose tissue of humans and in fact are the
most expressed population of the immune system. M1 macrophages have been described to
trigger adipose tissue inflammation as well as insulin resistance in obesity [48,49]. However,
inflammation in AT can also be mediated by other immune populations such as neutrophils
or B and T-cells [50]. In fact, B-cells may produce autoreactive antibodies that increase the
inflammatory state while Th1 cells produce inflammatory cytokines such as IL-6 [50].

Immunosuppressive regulatory T cells (Tregs) decline in obesity, but their regulation
still requires further investigation. This decline produces major changes in the level of
different cytokines such as IL-10, driving insulin resistance in obesity as previously de-
scribed [51]. CD4+ Th17 cells have also been reported to be increased in the human visceral
adipose tissue of morbidly obese. This population seems to increase the inflammation in
adipose tissue, contributing to the development of obesity [52].

2.2. Novel Nediators

Novel obesity-related mediators include omics-based biomarkers such as microRNAs
(miRNAs), the microbiome, and metabolites. Although several biological mechanisms
have been described to trigger obesity, others, e.g., lipid metabolism (miR-181d), glucose
metabolism (miR-378a), adipogenesis (miR-138-5p), and the regulation of cytokines (miR-
122-5p), could be controlled by miRNAs as recently described [53]. Hence, elucidating
the main role of miRNAs in obese subjects is necessary to develop novel tools to improve
obesity [54], and this will be further discussed in the following section.

Moreover, several studies suggested recently that the intestinal microbiota may also be
a principal mediator in the development of obesity. In fact, it has been demonstrated that
both inflammation and AT composition may be modified by the microbiota contributing
to the development of obesity. Moreover, the intestinal microbiota impacts directly the
metabolism and energy balance by controlling the energy extracted from nutrients and
affecting obesity directly. On the other hand, different studies have demonstrated that the
eating habits may modify the composition of the intestinal microbiota, impacting obesity
directly [55]. Beneficial bacteria (Bacteroidetes) can be reduced by fat and carbohydrate-
enriched diets, while a similar diet tends to increase pathogenic bacteria (Firmicutes).
The imbalanced equilibrium between beneficial and pathogenic bacteria triggers obesity
and diabetes due to the induction of an inflammatory response, hormone dysfunction,
and dyslipidemia [55]. Several mechanisms have been reported to link gut microbiota
with obesity, highlighting among others, an increased intestinal permeability that induces
dysbiosis [56] and modification of expression of host metabolism-related genes by gut
microbiota [57].

Gut microbiota also produces metabolites that change during obesity development and
metabolic disorders. Butyrate, propionate, indole derivatives, and polyamines, among oth-
ers, are examples of metabolites produced by intestinal bacteria after processing nutrients
that can mediate inflammatory responses and metabolic disbalances [58]. The short-chain
fatty acids regulate different signaling pathways including peptides that control insulin
resistance or inhibit appetite [59]. Moreover, acetate or propionate have been shown to
impact the nervous system directly, promoting obesity and its complications [60].

More recently, it has been shown that fasting-induced adipocyte factor (FIAF) may
be regulated by bacteria fermentation products and behave as an intestinal microbiota
modulator, inducing obesity through affecting lipid metabolism [61].

In conclusion of this section, the current literature indicates that obesity results
in the dysregulation of numerous body systems, including metabolic function, the im-
mune/inflammatory system, and the gut microbiota. Despite extensive research in this
field, no concrete mediators’ profiles have been found to correctly stratify the individuals
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at risk of obesity-related diseases and therefore, targeted preventive or therapeutic inter-
vention still is controversial. The use of an integrated multi-organs analysis may advance
obesity research by overcoming the challenges faced when analyzing the complex network
associated with obesity-related disease (Figure 2).
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3. Anti-Obesity Mediators

Between 2007 [62] and 2009 [63–66], the presence of active BAT deposits in human
adults was demonstrated and their metabolic relevance in human physiology was described.
BAT activity decreased with age [67–69] and is inversely correlated with BMI [70,71] and
visceral adiposity [72,73].

In obesity, it has been described that BAT whitening happens, consisting of several
changes in the morphology of the brown adipocyte as well as an altered gene expres-
sion profile. Alterations occur in the morphology of the tissue, where whitened brown
adipocytes can be observed surrounded by a significant number of collagen fibrils. In
addition, these adipocytes present an enlarged endoplasmic reticulum, cholesterol crys-
tals, and some altered mitochondria. More importantly, the gene expression profile of
whitening BAT could involve the upregulation of markers of activated inflammasome
and ER stress, and the downregulation of markers of vascularization, electron transport
chain, β-adrenergic signaling, and specific membrane receptors [74]. In this process of BAT
whitening, associated with obesity, there are many molecular mechanisms implicated. First,
the acetylation of peroxysome proliferator-activated receptor (PPAR)γ (Lys 293) present in
obesity and associated with aging, decreases UCP-1 mediated by the increase in adipisin
and favors the whitening of BAT [75]. On the other hand, the presence of pro-inflammatory
and senescent S100A8+ immune cells derived from bone marrow, primarily T cells and neu-
trophils, invade BAT in subjects with obesity during aging, compromising axonal networks
and thermogenic BAT function [76]. Moreover, in obesity, the activation of hypoxia in-
ducible factor 1α (HIF-1α), which inhibits BAT thermogenesis and cellular respiration and
promotes weight gain, is added to mTOR inhibition of peroxisome proliferator-activated
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receptor gamma coactivator-1-α (PGC-1α) [77]. Finally, the increase in brown adipocytes’
apoptosis and necrosis [78] together with the exhaustion or imbalance of the gut microbiota,
alters thermogenesis [79,80].

In opposition, various mechanisms of BAT activation have been described, which
could constitute future anti-obesity therapeutic strategies and which would also induce
the WAT browning, such as prolonged cold exposure, exercise, and following the Mediter-
ranean diet (rich in polyunsaturated and monounsaturated fatty acids, PUFAs and MUFAs,
and different molecules). The mechanisms involved in this process that improve the func-
tionality of BAT and beige cells involve a direct or indirect, chronic or acute activation of
UCP-1 and might be mediated by the activation of coactivators of UCP-1 transcription, such
as PGC1-α, β-cell factor 2 (EBF2), and PR domain zinc finger protein 16 (PRDM16) [81,82].
Moreover, other mechanisms could involve the activation of CaMKII or sirtuin 1 (SIRT1),
resulting in an increased expression of thermogenic genes, including PRDM16 and PGC-1α
and triggering UCP-1-mediated thermogenesis in brown adipocytes [82,83]. Another indi-
rect mechanism of UCP-1 activation is induced by AMPK activation, favoring thermogenic
BAT function by the production of free FAs or SIRT1 activation [82,84,85]. It is important to
keep in mind that one of the classical mechanisms of BAT activation is mediated by β-AR,
activating UCP-1 directly as targets of the CNS for fat burning or indirectly through cyclic
AMP (cAMP), resulting in FA generation [86,87]. In humans, β2-AR is the predominant
receptor for BAT lipolysis. On the other hand, the signaling through estrogen receptors also
increased UCP-1 gene expression [88]. Finally, in beige cells, the significantly decreased
ATP production by the inhibition of p38 and p-JNK signaling can upregulate UCP-1 gene
expression [89].

BAT is one of the tissues that contributes to energy expenditure through thermogenesis,
and it has been highlighted in recent decades how the loss of mass or function of this tissue
could contribute to the development of obesity. As we had previously described for WAT,
both BAT and beige cells communicate with the brain and peripheral organs through a
wide variety of secretions and absorption processes—controlling adipokines, miRNAs,
EVs, and metabolites—making them future candidates for the treatment of obesity and
associated metabolic diseases.

3.1. Anti-Obesity Mediators Secreted by Other Tissues with Effect in BAT and Beige Cells

In this context, we have mentioned that BAT is an endocrine tissue, and it is also a
receiver of molecules that are secreted by other tissues, such as WAT, liver, brain, or skeletal
muscle that might activate BAT, which, in turn, may induce WAT browning through the
beige cells’ activation. In this review, we are going to focus first on molecules secreted
by other tissues that have their effects on BAT and beige cells. The molecules we want to
focus on are myokines, hormones, amino acids, and new mediators such as long noncoding
RNAs (lncRNAs) and miRNAs.

Within the group of myokines, irisin is a 112 amino acid peptide formed from its
precursor fibronectin type III domain 5 (FNDC5) and secreted mainly by skeletal muscle in
response to exercise [90]. Activated via the PGC-1α pathway [91], this myokine is important
in metabolic regulation, protecting against insulin resistance and cardiovascular disease.
Specifically, its role in glycemic control and insulin sensitivity has been demonstrated
to be through the induction of the browning of WAT, thus contributing to global energy
expenditure. It has also been described that irisin could improve the lipid profile without
altering adipokine levels, which may help to prevent obesity [90]. In this sense, it has
been described how treatment with irisin during the differentiation of white adipocytes
significantly increased the basal mitochondrial respiration rate as well as the expression of
UCP-1 and PPARγ, promoting their browning and demonstrating the effectiveness of irisin
in reducing body weight [92]. Similar results were obtained years later when subcutaneous
white adipocytes treated with irisin significantly increased UCP-1 expression [93]. These
effects seem to be mediated by AMPK signaling since si-AMPKα1-injected mice showed
partial inhibition of irisin-induced browning of WAT by down-regulating the expression
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of UCP-1 [93]. In contrast to these studies, preadipocytes incubated with irisin did not
differentiate to brite human adipocytes and showed no changes in UCP-1 expression [94].

The thyroid hormone triiodothyronine (T3) induces thermogenesis through sym-
pathetic innervation via a synergistic effect on β-AR, mainly β1- and β3-subtypes [95].
Stimulation of β3-AR induces PKA activation, which targets the transcription factor cAMP
response element binding protein (CREB), stimulating expression of the Ucp1 gene. In
addition, the activation of PKA by the β3-AR can lead to the phosphorylation of ATGL,
which induces the hydrolysis of triacylglycerols and subsequent lipolysis, thereby trans-
forming the unilocular adipocytes into multilocular cells. T3 can also directly stimulate
the coactivator PGC1-α, which interacts with PPARα/γ transcription factors [95], thereby
inducing the expression of genes involved in FA oxidation, mitochondrial respiration, and
biogenesis [96], as well as UCP-1 levels mediated by irisin myokine secretion, as mentioned
above [90,91]. In this sense, hyperthyroid mice showed greater β-oxidation and a decrease
in amino acid levels, by increasing short- and long-chain acylcarnitines in BAT [90], whereas
hypothyroidism caused impaired BAT thermogenesis [97]. It is worth noting that it has
also been suggested that the T3 effects on BAT thermogenesis may be regulated in a UCP-1-
independent manner since the T3 treatment of thyroidectomized rats did not recover UCP-1
levels but conserved a norepinephrine-induced thermoregulatory response of BAT [98]. In
this way, autophagy plays a critical role in mitochondrial turnover in BAT, but there are
controversial data in the literature regarding the effect of T3 on autophagy. Yau et al. [96]
reported that an induction of thermogenesis in vivo by T3 required BAT-specific autophagy
activation, an effect associated with SIRT1 activation which in turn inhibited mTOR. How-
ever, others have shown that T3 acute administration to differentiated brown adipocytes
induced mTOR activation and suppressed mitochondrial autophagic degradation [99]. On
the other hand, T3 may be helpful in increasing leptin and adiponectin levels and in this
way reduce insulin resistance [90]. Therefore, the stimulation of BAT activity by T3 seems
to represent a potential therapeutic strategy for obesity.

Other mediators that might be used by BAT and have beneficial effects on energy
expenditure would be branched-chain amino acids (BCAAs) and it has been described
that BCAA supplementation is often beneficial for energy expenditure. Therefore, leucine
and isoleucine have very similar effects in improving insulin sensitivity, reducing lipid
depots, and promoting WAT browning [100]. On the other hand, an increase in circulating
levels of BCAAs has been observed in obesity and diabetes [101]. Through cold exposure,
BAT utilizes BCAA in mitochondria for thermogenesis and promotes systemic clearance
of BCAAs in experimental models and humans [102]. Interestingly, an administration of
Tirzepatide, a dual GIP and GLP-1 receptor agonist, to HFD-fed mice clearly increased the
catabolism of BCAAs in BAT, suggesting a new mechanism by which this revolutionary
treatment can account for significant weight loss in obese patients [103].

Regarding new mediators, long noncoding RNAs (lncRNAs) and miRNAs have been
shown to play a role in brown adipogenesis, BAT thermogenesis, and the promotion of
white fat browning, thereby increasing energy expenditure and decreasing body weight
gain. Both lncRNAs and miRNAs may be secreted into EVs from other tissues and have
their actions in BAT and beige cells. Within the group of lncRNAs, lnc266 was highlighted
as promoting the browning of white fat and thermogenic gene expression in obese mice,
increasing core body temperature, and reducing body weight gain. One of the mecha-
nisms involved in these effects is that lnc266 sponged miR-16-1-3p and thus abolished
the repression of miR-16-1-3p on UCP-1 expression [104]. There are many other different
miRNAs also involved in the differentiation of brown adipocytes, browning, or thermogen-
esis (Table 1). For instance, miR-21 was found to be positively correlated with BMI [105],
suggesting a causative role in adipose tissue expansion. However, miR-21 mimics up-
regulated browning and thermogenesis markers Ucp1, Fgf21, Pgc-1α, Tmem26, Sirt1, and
Vegf-A, both in 3T3-L1 adipocytes as well as in miR-21 treated-mice [106]. Similarly, miR-22
expression is increased in the BAT in response to cold exposure, and miR-22 deficiency,
global or specific in mice AT, showed BAT whitening, reduced thermogenesis, and im-
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paired cold tolerance [107]. In addition, miR-122-5p, a hepatic-specific miRNA, is increased
in the circulating exosomes of obese patients and is negatively associated with the BAT
activity [108]. In addition, miR-191-5p has been demonstrated to inhibit the conversion
of WAT to BAT, targeting PRDM16. Interestingly, circulating EVs from mice subjected to
long-term exercise showed reduced levels of miR-191-5p and a co-culture with 3T3-L1
fully differentiated adipocytes increased the expression of BAT markers such as Ucp1 and
Prdm16, while decreasing the expression of the WAT markers Leptin and Adipsin [109].

Table 1. Anti-obesity mediators secreted by BAT, BeAT, and/or other tissues with metabolic effects.

Mediator Metabolic Effects Study Models References
Main anti-obesity mediators secreted by BAT and BeAT with effects in other tissues

BAIBA

Improvement of hepatic β-oxidation
WAT browning

Glucose metabolism
Osteogenic differentiation

Humans, mice, cells [110–113]

BDEVs Protective effects for diabetes Mice, cells [114,115]

BMP7
Improvement of insulin sensitivity

WAT browning
BAT activation

Mice [116,117]

BMP8B Increase in p38MAPK, lipase activity,
and sympathetic activation of BAT Mice, cells [118]

CXCL14

Improvement of adaptive
thermogenesis

M2 macrophage recruitment
BAT activation
WAT browning

Mice, cells [119]

EPDR1
Improvement of β-cell function and

glucose homeostasis
Brown fat cell development

Humans, cells [120,121]

FGF21
Cardioprotective Mice [122]
WAT browning Mice [123]

MOVA/5-OP/BHIBA WAT browning
Improvement of Body Mass Index Humans, mice, cells [124]

miR-26

Regulates ADAM17, increasing UCP-1
and PGC1α

WAT browning
Brown adipogenesis
BAT thermogenesis

Cells [125]

miR-30d-5p Cardioprotective Mice, cells [126]

miR-32
WAT browning

Brown adipogenesis
BAT thermogenesis

Mice [127]

miR-99a
Improvement of hepatic lipid

metabolism and oxidative stress
Target (NOX4)

Mice [128]

miR-125-5p Cardioprotective Mice, cells [126]
miR-128-3p Cardioprotective Mice, cells [126]

miR-191-5p Inhibition of adipose differentiation,
BAT activation, and WAT browning Mice, cells [109]

Myostatin BAT Activation
Muscle Activation Mice, cells [129]

NRG4

Anti-inflammatory
Regulation of autophagy

Energy homeostasis
Glucolipid metabolism

Mice
Rats

Humans
Cells

[50]
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Table 1. Cont.

Mediator Metabolic Effects Study Models References
Main anti-obesity mediators secreted by other tissues with effects in BAT and BeAT

BCAA Insulin sensitivity
Improvement of energy expenditure Humans, mice [101–103]

Irisin

Improvement of insulin resistance and
lipid profile

Glycemia control
WAT browning

Humans [90–94]

T3 Hormone

Increased mitochondrial biogenesis and
mitophagy

Improvement of insulin resistance
Glycemia control
WAT browning

Humans, mice [90,95,96]

Lnc266 WAT browning
(sponged miR-16-1-3p) Mice [104]

miR-16-1-3p Reduced UCP-1 Mice, cells [104]

miR-21
WAT browning

Brown adipocytes differentiation
Increased thermogenesis

Humans [105,106]

Let-7i-5p Inhibition of thermogenesis Humans, mice [130]
miR-22

WAT browning

Mice [107]
miR-27b Humans, mice [131]
miR-34a Mice, cells [132]
miR-133 Mice, cells [133]

miR-122-5p
Brown adipocyte differentiation

Increased thermogenesis

Humans [108]
miR-193b-365 Mice, cells [134]
miR-494-3p Mice, cells [135]
miR-669a-5p Mice, cells [136]

Other miRNA as miR-669a-5p plays a role in regulating adipocyte differentiation
and fat browning. Its expression was increased during the adipogenic differentiation of
3T3-L1 and C3H10T1/2 adipocytes and in the iWAT of mice exposed to cold, promoting
adipogenic differentiation and browning of adipocytes in vitro and in vivo [136].

Additional miRNAs whose increment could have a detrimental effect on BAT acti-
vation would be miR-27b and miR-34a, both of which are inhibitors of brown and beige
adipogenesis, and their levels are decreased in response to cold exposure and β-adrenergic
activation [131,132,137]. However, their levels increase significantly in obesity [132] and
during differentiation [125,131,134]. miR-34a directly regulates Fgfr1 and disrupts FGF21
signaling, thereby preventing PGC1-α activation and WAT browning [132]. In this sense,
let-7i-5p is also an inhibitor of thermogenesis, regulating browning marker genes such as
Ucp1, Prmd16, and citrate synthase [130].

Finally, different clusters and miRNAs have been described that negatively regulate the
expression of genes involved in brown adipocyte differentiation or white adipocyte brown-
ing. An miR-193b-365 cluster was described as the first miRNA that represses the myogenic
potential of preadipocytes, allowing for the differentiation of brown adipocytes [134]. miR-
133 directly and negatively regulates PRDM16, and the inhibition of miR-133 promotes
the differentiation of BAT and WAT precursors into mature brown adipocytes [133,135].
Similarly, the decrease in miR-494-3p levels during WAT browning regulates mitochondrial
biogenesis and thermogenesis through PGC1-α in beige adipocytes [135].

3.2. Anti-Obesity Mediators Secreted by BAT and Beige Cells with Effects in Other Tissues

In addition to the capacity of BAT to protect against chronic metabolic disease due
to its ability to use glucose and lipids for thermogenesis, BAT also has a secretory role,
which could contribute to the systemic effects of BAT activity. BAT and beige cells also act
as endocrine tissues, secreting diverse adipokines (batokines), such as: cytokines, factors,
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proteins, metabokines, and EVs, which could signal and mediate different metabolic effects
in target organs and contribute to an improvement in the obesity (Figure 3) [123].
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Figure 3. Mediators produced by BAT with anti-obesity effects. BAT activation by UCP-1 activators,
cold exposure, exercise, a diet rich in MUFAs and/or PUFAs, prebiotics, probiotics, symbiotics
administration, or natural products provokes the secretion of diverse adipokines (batokines), such as:
cytokines, factors, proteins, metabokines, and BAT-derived miRNAs in EVs, which could signal and
mediate different metabolic effects in target organs, contributing to an improvement in obesity. Green
arrow shows an increase in FA uptake and red arrow represents a decrease in blood glucose levels.

The first identified adipokine secreted by BAT under conditions of thermogenic acti-
vation was fibroblast growth factor 21 (FGF21). The heart, WAT, brain, and pancreas are
potential target tissues and are sensitive to FGF21 secreted from the BAT. In the heart, the
cardioprotective role of FGF21 has been recognized [122]. Another recently discovered
batokine is myostatin, which targets skeletal muscle and experimentally activated BAT by
cold exposure, reducing myostatin levels and increasing exercise performance [129].

Other batokines released by brown adipocytes that target sympathetic nerve endings
would be neuregulin-4 (NRG4), S100b protein, and nerve growth factor (NFG). NRG4
improves metabolic dysregulation in insulin resistance, obesity, NAFLD, and diabetes
through the activation of various mechanisms such as anti-inflammation, the regulation
of autophagy, pro-angiogenesis, and normalization of lipid metabolism [50]. The S100b
protein induced neurite outgrowth from sympathetic neurons in adipose depots [77].
However, the BAT production of NGF was higher in genetically obese rats and mice and
prolonged cold exposure decreased the BAT NGF synthesis in obese mice [138]. Bone
morphogenetic protein-8b (BMP8B), also released by BAT, targets WAT and vascular cells.
Both nutritional and thermogenic factors can induce the production of BMP8B in mature
BAT and its response increases norepinephrine through the activation of p38MAPK/CREB
and an increase in lipase activity [118].

In addition, the novel batokine ependymin-related protein 1 (EPDR1) has been de-
tected in human plasma and implicated in the regulating mitochondrial respiration linked
to BAT thermogenesis [120]. Moreover, EPDR1 is proposed to be a key regulator to main-
tain glucose homeostasis in obese people, due to the upregulation of EPDR1 that could
improve β-cell function by promoting glycolysis and the TCA cycle [120,121]. In addition,
active BAT is a source of C-X-C motif chemokine ligand-14 (CXCL14), which concertedly
promotes adaptive thermogenesis via M2 macrophage recruitment, BAT activation, and
the browning of WAT [119].
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Regarding the metabokines secreted by BAT, we could highlight several metabolites
that target the liver and WAT. The metabolite 3-aminoisobutyric acid (BAIBA), generated by
the breakdown of thymine, is inversely correlated with cardiometabolic risk factors. BAIBA
induces WAT browning and improves hepatic β-oxidation [110]. Other small metabokines
are 3-methyl-2-oxovaleric acid (MOVA), 5-oxoproline (5-OP), and β-hydroxyisobutyric acid
(BHIBA), which are synthesized by BAT and beige cells and are secreted by monocarboxy-
late transporters. They are associated and correlated with browning markers of WAT and
inversely associated with body mass index [124].

During thermogenesis induced by cold exposure, it has been described that the secre-
tion of human BAT EVs (BDEVs) increases significantly, suggesting their possible participa-
tion in this activity [139]. Similarly, beige adipocytes release more EVs when activated by
cAMP signaling and contain factors that could have a protective effect for diabetes [138].
So, BAT-derived miR-378a-3p in BDEVs reprogramed systemic glucose metabolism by in-
ducing hepatic gluconeogenesis targeting p110α during cold stress [114]. Moreover, when
BAT was activated by cold exposure, miR-132-3p was also increased in BDEVs attenuating
Srebf1 hepatic expression, and in consequence it regulates hepatic lipogenesis [115]. In
addition to cold exposure, exercise also increases the secretion of EVs by BAT that had
a cardioprotective effect with the release in the heart of cardioprotective miRNAs, such
as: miR-125b-5p, miR-128-3p, and miR-30d-5p [126]. The other miRNAs produced by
BAT, miR-26 and miR-32, are also involved as positive regulators of brown adipogenesis,
BAT thermogenesis, and inguinal WAT browning [125,127]. In addition, miR-32 increases
Tob1, and both appear to be modulators of FGF-21 signaling [127], and miR-26 targets
metallopeptidase domain 17 (ADAM17), increasing UCP1 and PGC1-α [125]. Finally, it has
been demonstrated that BAT transplantation partially improved liver lipid metabolism,
oxidative stress, and fibrosis in diabetic mice through increasing circulating miR-99a, which
targets NOX4 in the liver [128].

4. Therapeutic Strategies for Obesity

Along with cold, exercise and diet are the physiological triggers known to activate the
thermogenic activity of BAT [140,141] (Figure 3). Healthy subjects under controlled cold
exposure conditions showed an increase in FA uptake by BAT and oxidative metabolism
by up to 182%. Likewise, BAT volume increased by 45% in the 3 h after exposure to
cold, indicating a rapid reduction in TG content [140]. These data indicate that cold
exposure is a powerful stimulus that targets insulin sensitivity and lipid metabolism to
promote WAT browning. Accordingly, tissue-specific loss of p85α in BAT is able to prevent
HFD-induced obesity in mice by promoting the activation of BAT, the amelioration of the
proinflammatory profile, and consequently leading to the improvement of systemic insulin
sensitivity due in part to increased IRB/IRS-1 association and insulin signaling, as well as
decreased JNK activation [142]. On the contrary, BAT insulin receptor knockout mice show
severe brown lipoatrophy and a strong susceptibility to obesity together with metabolic
alterations [72,143]. Recently, UCP-1-activated thermogenesis has received much attention
among various AT proteins as a potential target for the treatment of metabolic diseases
such as obesity.

One of the new possible therapeutic targets described in metabolic diseases is 12,13-
dihydroxy-9Z-octadecenoic acid (12,13-diHOME), an oxylipin, which is a bioactive metabo-
lite released after the oxidation of PUFA, a product of linoleic FA metabolism provided
in the diet [144,145]. Its blood levels increase after exposure to cold in both humans and
mice [144,146]. In humans, plasma levels of 12,13-diHOME are negatively correlated with
BMI, insulin resistance (HOMA-IR), and the expression of enzymes involved in protein
synthesis has been shown to be selectively regulated in the BAT of mice after exposure to
low temperatures [147]. The molecular mechanism indicates that this oxylipin increases FA
absorption by inducing the translocation of FA transporters such as FA transport protein
1 (FATP1) and CD36 to the cell membrane increasing thermogenesis [146]. In a human
lipidomic analysis, the authors demonstrated that 12,13-diHOME was a circulating lipokine
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released during moderate-intensity training independent of age, sex, activity levels, BMI,
or fat mass [148]. An original work demonstrated that prolonged high-intensity cycling
exercise in male athletes elevated serum 12,13-diHOME levels and other linoleic acid
metabolites such as 9,10-diHOME [149]. Additionally in humans, after a cardiopulmonary
exercise test an increase in plasma 12,13-diHOME of 23% was obtained [150], whereas
in human patients with heart disease it was decreased [151]. On the other hand, works
performed in mouse models showed that BAT was the main source of exercise-induced
circulating 12,13-diHOME, increasing FA uptake and oxidation by skeletal muscle [147].
These results propose 12,13-diHOME as a lipokine with a promising potential for the
treatment of metabolic disorders. However, many more studies would be necessary to truly
understand its mechanism of action.

BAIBA, a muscle-derived exercise mimetic, has been reported to participate in lipid
regulation, promoting white fat browning and increasing FFA acid oxidation via the
AMPK and PPARδ signaling pathway. In addition, it decreases blood glucose, attenuates
insulin resistance [110,111,152], and promotes osteogenic differentiation [112]. One of these
recent studies in which BAIBA is related to lower postprandial glucose concentrations in
adults with obesity, suggests that adiponectin would modulate this effect by favoring the
expression of the insulin gene or the exocytosis of insulin granules [111]. On the other
hand, in human aortic or umbilical vein endothelial cells BAIBA treatment induced a
downregulation of proinflammatory genes and enhanced the expression of antioxidants
and molecules related to mitochondrial biogenesis through an enhanced expression of
PGC-1β [113]. Studies have not observed side effects, suggesting that BAIBA could be
used for cardiovascular and metabolic protection, considering that it confers the benefits of
exercise, especially in older sedentary subjects.

There are currently numerous molecules of synthetic and natural origin under study
(Figure 3). For example, a phosphodiesterase inhibitor such as sildenafil increased UCP-1
expression approximately 4.6-fold and improved thermogenesis in overweight adults [153].
β1-AR stimulation with isoproterenol and dobutamine activates UCP-1 through cyclic
AMP, resulting in generation of FAs in a human BAT cell model and fresh human BAT
biopsies [154]. However, in another study, the predominant receptor for BAT lipolysis
and UCP-1-mediated thermogenesis was shown to be the β2-AR (formoterol) through its
chronic activation in human BAT from the deep neck region rather than β3-AR signaling
pathway clearly established in rodents [155]. In explants of human visceral (omental) and
abdominal sWAT, PPARγ agonist rosiglitazone induced the transcription of regulators of
brite/beige adipocytes (PGC1α, PRDM16), triglyceride synthesis (GPAT3, DGAT1), and
lipolysis (ATGL). Furthermore, rosiglitazone increased the expression of genes involved
in FA oxidation (UCP-1, FABP3, PLIN5 protein), FA oxidation rates, and levels of elec-
tron transport complex proteins, suggesting better respiratory capacity as confirmed in
newly differentiated adipocytes [156]. Studies with glucagon-like peptide-1 (GLP-1) re-
ceptor agonists on the impact on BAT in humans are more limited [157]. In this regard,
exenatide reduced body weight primarily due to a reduction in lean body mass. Using
18F-FDG-PET/CT, it was noted that exenatide increased the metabolic volume and mean
standardized uptake value of cervical and supraclavicular BAT depots, as well as superior
mediastinal, axillary, and paravertebral BAT depots in men [158]. In animal models, the
effect of centrally administered proglucagon-derived peptides such as GLP-1 was explored
on BAT activity. Intracerebroventricular injection of these peptides reduced body weight
and increased BAT activity, related to an increased activity of sympathetic nerve fibers
innervating BAT [159].

Taking into account the cardiometabolic side effects of some of these drugs, natural and
herbal products are being tested as alternative activating stimuli and it is hypothesized that
they are possible agents in the prevention and therapy of metabolic pathologies [160,161]
(Figure 3). However, the toxicological and pharmacological properties should always be
evaluated to verify the effectiveness of the herb or natural product against serious diseases
and its safe consumption for patients [162]. For instance, Chrysin, a flavonoid obtained
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from plant extracts from Passiflora species, honey, and propolis, has been proposed as a
potential anti-obesity drug since it inhibits pancreatic lipase in rats under a high fructose
diet. This enzyme participates in the hydrolysis and digestion of fat, cholesterol esters, and
fat-soluble vitamins [163]. The result of this flavonoid was to decrease body weight gain,
BMI, abdominal circumference/thoracic circumference ratio, adiposity index, calorie intake
while it induced an increase in fecal cholesterol, and the locomotor activity of the rats [163].
Moreover, in a recent study it has been described that the administration of Bergacyn®, an
innovative formulation that consists of a combination of bergamot polyphenolic fractions
and Cynara cardunculus, in mice fed a Western diet, induced a decrease in body weight and
total fat mass, and an improvement of the hyperglycemia, total cholesterol, and LDL levels.
The decreased WAT depots correlated to an increase in BAT mass and a downregulation
of PPARγ and prevented NF-κB overexpression, improving oxidative metabolism and
inflammatory status [164]. In this regard, berberine, which is commonly used to treat
diarrhea, increased BAT mass and activity and induced a decrease in body weight, and
improved insulin sensitivity in overweight patients with non-alcoholic fatty liver disease
after 1 month of treatment [165]. Furthermore, they showed an increase in the transcription
of PRDM16, a key molecule involved in brown/beige adipogenesis, associated with the
activation of AMPK, contributing to elevated systemic energy expenditure. Most of the
studies carried out with resveratrol, a polyphenol produced naturally in numerous plants
and fruits such as peanuts, blackberries, blueberries, and, above all, in grapes and red
wine, have been carried out in 3T3-L1 preadipocytes and animal models with effects on
obesity, thermogenesis, and lipid oxidation, as well as the main molecular mechanisms
involved [166]. Interestingly, in human Simpson–Golabi–Behmel syndrome (SGBS), where
weight is gained at an unusual rate, this natural polyphenol regulated the number and
function of human adipocytes in an SIRT1-dependent manner. This sirtuin was also
responsible in part for the effect of resveratrol on the lower expression and secretion
of IL-6 and IL-8 in those patients [167]. Through in vitro studies, resveratrol has been
shown to activate AMPK and subsequently PGC-1α, PRDM16, and PPARγ, leading to a
catabolism of stored TAG and generation of FA, as well as activation of thermogenesis
via UCP-1 [168]. However, the exact mechanism of its action in metabolic pathologies is
still unclear and needs further research. Another natural product such as capsaicin, used
topically to relieve pain in pathologies such as diabetic neuropathy, showed results such
as the direct activation of adipocyte browning, the expression of UCP-1, mitochondrial
biogenesis, energy consumption rates, and glycerol recycling in brown adipocytes obtained
from human dermal fibroblasts with chemical stimulation [169]. Most of its effects are
mediated by the activation of the sympathetic nervous system through the transient receptor
potential vanilloid 1 (TRPV1) [170] in sensory neurons [171,172], also promoting the release
of insulin and increasing the levels of GLP-1. Studies in preadipocytes obtained from
vWAT or adipocytes from sWAT have shown that incubation with genistein [173], an
isoflavone derived from soy, or with xanthohumol [174], a flavonoid from the hop plant,
increased the differentiation and browning of these cells. Genistein exerted positive effects
on cell viability and mitochondrial membrane potential, as well as antioxidant effects; and
xanthohumol modulated mitochondrial function through the expression of mitofusin 2
(Mfn2) and CIDE-A and TBX-1 as specific markers of beige adipocytes through the PGC1α
and AMPK signaling pathway.

It has been shown that breastfeeding is a key factor in the modulation of adipose
tissue and, therefore, in the development of overweight or obesity during childhood [175].
Breastfed infants showed elevated levels of UCP-1, and adipocytes with UCP-1-enriched
mitochondria and abundant multilocular lipid droplets. This effect is due in part to breast
milk alkylglycerols promoting the activation of BeAT and the number of mitochondria in
inguinal AT during infancy, in addition to preventing the transdifferentiation of BeAT into
WAT [176] (Figure 3). These bioactive compounds are found in the unsaponifiable material
of some marine oils, so they could be supplemented in the diet during the first stages of life.
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All these studies suggest that certain natural products could be a therapeutic strategy
for metabolic disorders related to obesity by activating BAT. However, further clinical trials
and studies of the dose range of phytochemicals and side effects are needed to expand the
potential use of drugs to induce browning or increase BAT activation with the perspective
of treating metabolic pathologies and associated comorbidities.

Another aspect that has become increasingly important is the modulation of BAT
function by the gut microbiota. Given that diet is a key factor that alters gut microbiota, the
administration of prebiotics, probiotics, and symbiotics exerts an effect on it, and could be
potential agents in browning and BAT activation (Figure 3). For instance, the administra-
tion of Clostridium butyricum Strain CCFM1299 (a butyrate-producing microorganism) in
C57BL/6J mice under HFD was able to reduce the weight gain by increasing the energy
expenditure and the expression of genes involved in BAT thermogenesis like Ucp1, Pparg,
Pgc1a, and Prdm16 [177]. In a similar way, in specific pathogen-free (SPF) male mice fed
with a high-fat diet, the use of prebiotics and symbiotics significantly reduced the body
weight gain, improved the HOMA-IR, and reduced circulating insulin and cholesterol
levels [178], suggesting that the restoration of certain microbial populations with novel
symbiotics is a promising approach for obesity treatment. Moreover, in overweight or obese
humans, SCFAs produced through the fermentation of dietary fiber and resistant starch by
gut microbiota increased fasting fat oxidation and resting energy expenditure, suggesting
their effects on insulin sensitivity. Furthermore, a significant positive association between
PRDM16, UCP-1, and thyroxine deiodinase 2 (DIO2) was demonstrated in sWAT and the
relative abundance of Firmicutes, which is positively associated with circulating acetate
levels [80].

Numerous studies have identified AT as a potential therapeutic target in obesity and
related metabolic disorders [19,179]. Although there is no approved clinical study showing
a specific therapeutic effect on this tissue [180,181], there are many successful studies in
preclinical models in which gene therapy approaches have been validated. The pioneer
works using adeno-associated virus (rAAV) vectors with engineered serotype Rec2 were
able to transduce BAT without affecting the gastrointestinal track. With these tools, it was
demonstrated that overexpressing VEGF in BAT via the oral administration of Rec2-VEGF
vector induced an increase on BAT mass and thermogenesis. However, the lack of VEGF in
BAT disturbed cold adaptation and decreased BAT mass [182]. In this sense, in a murine
model of diet-induced obesity, the improvement of the antioxidant capacity of visceral
fat through lentiviral gene therapy to restore the expression of heme oxygenase-1 (HO-1)
prevented an increased adipocyte cell size, fibrosis, decreased mitochondrial respiration,
the induction of inflammatory adipokines, insulin resistance, vascular dysfunction, and
impaired heart mitochondrial signaling [183]. These data demonstrate that the specific ex-
pression of HO-1 in adipocytes has an important impact on distal organs. Moreover, during
obesity, hypertrophic enlargement of WAT promotes lipid deposition in other tissues such
as liver or muscle, inducing insulin resistance. In contrast, WAT hyperplasia is associated
with the maintenance of insulin response. Regarding this, a gene therapy approach in
ob/ob mice to induce BMP7 overexpression in WAT was able to improve insulin sensitivity
and white adipogenesis [116]. In a more recent study, the same authors have proven that
the treatment of HFD-fed mice and ob/ob mice with liver-directed AAV-BMP7 vectors
enabled a maintained increase in its circulating levels. The increased BMP7 concentration
was able to induce WAT browning and BAT activation, enhancing the energy expenditure,
and reversing WAT hypertrophy, liver steatosis, and WAT and liver inflammation, finally
resulting in an improvement in body weight and insulin resistance [117]. In a similar
way, in C57Bl6/J mice under a high-fat diet, Wagner, G. et al. were able to transduce
epididymal WAT (eWAT) with AAVs expressing LIM domain only 3 (LMO3), improving
insulin sensitivity, mitochondrial function, and healthy vWAT expansion paralleled by
increased serum adiponectin [184]. To understand some of the mechanisms associated
with these effects, the authors observed that the expression of LMO3 in 3T3-L1 adipocytes
increased the transcriptional activity of PPARγ, insulin-stimulated GLUT4 translocation,
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and glucose absorption, as well as mitochondrial oxidative capacity and FA oxidation,
where the PPARγ coactivator NCOA1 has a key role.

One of the newest strategies today could be to balance the metabolic functions of AT
by regulating gene expression through miRNAs or lncRNAs. In relation to the biology of
BAT, miR-26, let-7i, and miR-125b among others have been identified as common miRNAs
between mice and humans [185,186]. It is important to consider whether the results
obtained in animal models with metabolic alterations can be transferred to humans. It
must be taken into account that the amount of BAT in murine models is much greater
and therefore the darkening process is induced better than in humans, also considering
that overweight or obese patients have less functional BAT than healthy subjects [187].
Therefore, miRNA therapy could be less effective in humans than in the preclinical studies
performed to date.

In human multipotent adipose-derived stem cells, the miR-26 family, and its effec-
tor ADAM, a disintegrin and a metalloprotease domain (ADAM17) induced signaling
pathways involved in energy release, modified mitochondrial morphology similar to that
observed in BAT, and promoted respiration uncoupling by significantly inducing PPARγ
signaling and therefore UCP-1 expression [125]. Through pegylated lipid nanoparticles
complexed with miRNA (PEG-LNP), a study performed in human preadipocytes derived
from the stromal cell fraction of sWAT showed that transfection with miR-26a induced
a browning of white adipocytes with an increased number of mitochondria and higher
UCP-1 levels. On the contrary, miR-27 inhibited adipogenesis by downregulating PPARγ
and reducing the formation of lipid droplets [188]. Another miRNA that has been re-
lated to obesity is miR-21. Its levels were increased in WAT from non-diabetic obese
compared to normoweight humans and mice [106]. In addition, in in vitro experiments
performed in adipocytes, miR-21 mimics regulated genes involved in WAT function and
promoted browning and thermogenesis. More importantly, miR-21 mimics administration
in vivo blocked HFD-induced obesity by increasing WAT browning and BAT thermogene-
sis through VEGF-A, p53, and TGF-β1 signaling pathways. In a very recent study, the same
group has demonstrated that a new delivery approach based on a novel delivery tool based
on gold nanoparticles and Gemini surfactants (Au@16-ph-16) is able to work as a potential
anti-obesity drug even at low doses, replicating the positive effects of miR-21 mimics on
weight gain, browning, and thermogenesis [189]. Regarding lncRNAs, a gene therapy
approach with an adeno-associated virus expressing lnc266 in iWAT via in situ injection
was able to stimulate the thermogenic program in this tissue in a cold environment. The
molecular mechanism implies that lnc266 sponges miR-16-1-3p, inhibiting its repression on
Ucp1 expression [104].

In addition to gene therapy approaches focused on the adipose organ, there have
been many reported studies in which other tissues such as liver and skeletal muscle can
be targeted to improve the metabolic dysfunction observed in obesity. For instance, the
hepatic-specific expression of BMP4 in mature mice through AAVs, although it reduced
BAT activation through the decrease in UCP-1 expression, it was able to protect against
obesity by inducing the browning of sWAT through the induction of UCP-1 expression
and mitochondrial biogenesis [190]. Another tissue that can be targeted as an anti-obesity
approach is the skeletal muscle since this tissue secretes several myokines such as irisin
and FGF21 that participate in lipid metabolism. Recently, Zhu, H. et al. have demonstrated
in a mouse model of diet-induced obesity, that the CRISPRa-based activation of Fgf21 and
Fndc5 in skeletal muscle can improve obesity by increasing the secretion of FGF21 and
irisin by myocytes and the browning of white adipocytes through the induction of UCP-1
expression [191].

5. Conclusions

In this review, we have highlighted how the dysregulation of different mediators
secreted by adipose tissue itself, as well as cells of the immune system, miRNA, or the gut
microbiota, are implicated in the development of obesity. On the other hand, BAT activation
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and WAT browning have anti-obesity effects and different factors involved in this process
have been discussed: UCP-1 activators, cold exposure, exercise, a diet enriched in MUFAs
and PUFAs, an improvement in the intestinal microbiota populations, and supplements
with natural or herbal products as polyphenols, among others. Finally, we have collected
the most innovative treatments designed in experimental models and clinical trials that
have considered the different mediators of obesity as therapeutic targets. Those approaches
are mainly focused on the reduction of WAT inflammation, the improvement of BAT
functionality, mass, and activity, as well as the activation of beige cells and consequently
the browning of WAT.

Several limitations of the referenced studies should be noted. Most of them were
carried out in animal models, which offer several advantages, such as control of the
environment or the possibility of isolating the tissues or samples to be analyzed. However,
the biological and physiological gap between species seems to be a relevant limitation and
makes the translation of results difficult. In some cases, the reproducibility of the data
obtained in human studies is quite controversial. In the future, more clinical trials should
be developed to ensure the viability of the proposed therapies, and to apply the procedures
in a personalized way, taking into account the gender, race, and medical comorbidities of
the patients.
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