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Abstract: Oncolytic virotherapy is a promising immunotherapy approach for cancer treatment that
utilizes viruses to preferentially infect and eliminate cancer cells while stimulating the immune
response. In this review, we synthesize the current literature on the molecular circuits of immune
sensing and response to oncolytic virotherapy, focusing on viral DNA or RNA sensing by infected cells,
cytokine and danger-associated-signal sensing by neighboring cells, and the subsequent downstream
activation of immune pathways. These sequential sense-and-response mechanisms involve the
triggering of molecular sensors by viruses or infected cells to activate transcription factors and
related genes for a breadth of immune responses. We describe how the molecular signals induced
in the tumor upon virotherapy can trigger diverse immune signaling pathways, activating both
antigen-presenting-cell-based innate and T cell-based adaptive immune responses. Insights into these
complex mechanisms provide valuable knowledge for enhancing oncolytic virotherapy strategies.
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1. Introduction

Oncolytic virotherapy is a novel class of immunotherapy for cancer treatment. It
employs the use of natively occurring or genetically modified viruses with the ability to
preferentially infect and eliminate cancer cells [1]. Virus-induced infection and cancer cell
death further initiate a cascade of events that not only reduce the tumor burden but also
stimulate potent immune responses. This dual mode of action is regulated through the
release of infection-related danger signals, activating diverse innate and adaptive immune
pathways [2]. The intricate network of molecular signals and pathways, comparable to a
‘molecular circuit’, coordinates the activation of the immune response against cancer cells.

At the molecular level, infection by oncolytic viruses triggers the signaling pathways
of the immune response through the release of diverse immunogenic signals. For instance,
viruses can trigger target cells directly through pathogen-associated molecular patterns
(PAMPs) or indirectly through infection-induced cell death, releasing cytokines or danger-
associated molecular patterns (DAMPs) [3,4]. These signals are sensed at a molecular
level by the infected cell or neighboring immune cells. Upon detecting the presence of
PAMPs or DAMPs, these responder cells release supplementary cytokines and chemokines,
fostering a microenvironment conducive to robust antitumor immune responses [5]. As
oncolytic virotherapies differ in genetic design and type, specific virus–cell interactions
in terms of molecular sensing and response may shape immune-associated signaling
in the tumor. Therefore, a better understanding of specific molecular triggers induced
by specific viruses can potentially help in optimizing their efficacy. As an illustration,
talimogene laherparepvec (T-VEC) is an FDA- and EMA-approved oncolytic virotherapy
for advanced melanoma [6,7]. T-VEC employs a genetically modified herpes simplex
virus encoding granulocyte-macrophage colony-stimulating factor (GM-CSF). GM-CSF,
a key cytokine, plays a crucial role in dendritic cell activation and antigen presentation
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for effective anticancer T cell responses. Thus, understanding the molecular pathway
of GM-CSF-induced immune responses has been crucial for optimizing T-VEC’s design
and efficacy. Following this rationale, various virotherapy candidates are currently being
engineered to induce an optimal immune response in preclinical and clinical stages [8–10].

In the present review, we aim to provide a comprehensive synthesis of the current
literature surrounding the molecular circuits of immune sensing and response to oncolytic
virotherapy. To focus on molecular signaling, our review will not assess additional factors
that may influence the efficacy of virotherapy, such as virus tropism, dosage/administration
methods, or patient-specific factors like genetic variations [8,9,11]. Moreover, we will not
focus on virus-induced signaling that leads to therapeutic resistance, as this has been re-
viewed earlier [12,13]. By exploring the diverse pathways triggered by oncolytic viruses and
understanding the end response factors, our review aims to summarize key mechanisms
associated with the induction of immune responses. To achieve this, we will review studies
providing evidence on how oncolytic viruses and related signals are sensed by (i) infected
cells, (ii) neighboring immune cells, and how this subsequently leads to (iii) the activation
of the immune response in the tumor. Additionally, we review how various oncolytic
viruses, distinguished by their genetic composition, uniquely activate the immune system.

2. Molecular Sensing and Response to Oncolytic Viruses by Infected Cells

Cells, cancerous or healthy, utilize intricate molecular mechanisms to detect and
respond to infection with oncolytic viruses. The extracellular sensing of virus particles
or intracellular sensing of viral genetic material, such as double-stranded (dsRNA) or
single-stranded (ssRNA) RNA or cytoplasmic DNA molecules, has been widely studied
and found to induce innate immune responses in the tumor [3,4,10]. Cellular pattern
recognition receptors, including toll-like receptors (TLRs), retinoic acid-inducible gene I
(RIG-I)-like receptors (RLRs), and cyclic GMP-AMP synthase (cGAS), play a primary role
in the process of sensing and signaling in the response to oncolytic viruses [3,4].

2.1. Extracellular Sensing of Oncolytic Viruses

The extracellular sensing of oncolytic viruses by toll-like receptors (TLRs) present
on the cell surface, such as TLR2 or TLR4, plays a pivotal role in stimulating immune
responses. For instance, TLR4-mediated sensing of vesicular stomatitis virus (VSV) by
cancer cells leads to the activation of MyD88 signaling, which results in the induction of
type-1 interferon signaling, tumor and lymph node infiltration of T cells and dendritic
cells, and overall anticancer immunity [14]. Similarly, the activation of TLR4 by oncolytic
adenoviruses has also been shown to promote systemic and specific antitumor immunity
upon therapy [15]. Additionally, oncolytic adenoviruses have been demonstrated to activate
TLR2 on cancer cells, leading to MyD88-dependent interferon responses and subsequent
immune activation [16]. Direct TLR2-mediated activation of NK cells by oncolytic herpes
simplex virus has also been shown to promote their anticancer function [17,18]. A combined
activation of TLR4 and TLR2 by cowpea mosaic virus has been shown to significantly
promote local and systemic antitumor immunity [19]. Although TLR-mediated sensing
of oncolytic viruses is generally favorable, it may also induce antiviral immunity and
undermine efficacy. For example, vaccinia virus naturally activates TLR2 to induce antiviral
antibody responses. In such cases, the blocking of TLR2 activation reduces antiviral
antibodies, enhancing virus infection and therapeutic efficacy [20]. Taken together, these
findings underscore the critical role of TLR-mediated sensing of extracellular viruses to
induce immune responses in the context of cancer therapy.

2.2. Sensing Viral RNA

Sensing and responding to RNA-based oncolytic viruses is a multifaceted process
crucial for the initiation of immune responses within host cells [3]. The cytoplasmic sensors
RIG-I and MDA5 play pivotal roles in detecting both single-stranded and double-stranded
RNA within infected cells (Figure 1A). The activation of these sensors elicits a cascade
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of events leading to the activation of transcription factors like nuclear factor kappa-light-
chain-enhancer of activated B cells (NFKB1) and interferon regulatory factors 3 and 7 (IRF3
and IRF7) [21,22]. Consequently, the expression of type-1 interferons-α and β (IFNα, IFNβ),
pro-inflammatory cytokines like interleukin-18 and -12 (IL-18 and IL-12), tumor necrosis
factor (TNF), and chemokines like C-X-C motif chemokine ligand 10 (CXCL10) is induced,
contributing to the establishment of an antiviral state within the host cell. For instance,
upon infection with oncolytic alphaviruses, proteins like RIG-I and TNF receptor-associated
factor-6 (TRAF-6) are engaged, leading to the amplification of antiviral responses. Conse-
quently, pro-inflammatory cytokines, including IL-1beta, TNF-alpha, IL-6, and CXCL9, are
expressed, enhancing the antitumor milieu and suppressing interferon-stimulated genes
(ISGs) partly through zinc-finger antiviral protein (ZAP) expression [23–30]. Similarly,
infection with coxsackievirus activates RIG-I, triggering both innate and adaptive immune
responses against tumors. This activation leads to the upregulation of IFN-inducible genes
and Th1-associated chemokines, facilitating effector T cell recruitment to the tumor mi-
croenvironment [31]. In hormone-refractory prostate cancer, Sendai virus also triggers
the activation of RIG-I, leading to the upregulation of IFN-related genes and subsequent
activation of the Janus kinase and signal transducer and activator of transcription proteins
(JAK/STAT) pathway, ultimately inducing apoptosis in cancer cells [32]. Oncolytic reovirus
is also known to trigger RIG-I and MDA5 to induce interferon signaling [33]. Virus-induced
oncolysis mediated by the RIG-I signaling pathway, can also occur by upregulation of TNF-
related apoptosis-inducing ligand, making it a promising target for cancer therapy [34].
This indicates the importance of viral RNA sensing pathways as a key mechanism to induce
immune responses in the tumor.

Int. J. Mol. Sci. 2024, 25, 4691 3 of 16 
 

 

2.2. Sensing Viral RNA 

Sensing and responding to RNA-based oncolytic viruses is a multifaceted process 

crucial for the initiation of immune responses within host cells [3]. The cytoplasmic sen-

sors RIG-I and MDA5 play pivotal roles in detecting both single-stranded and double-

stranded RNA within infected cells (Figure 1A). The activation of these sensors elicits a 

cascade of events leading to the activation of transcription factors like nuclear factor 

kappa-light-chain-enhancer of activated B cells (NFΚB1) and interferon regulatory factors 

3 and 7 (IRF3 and IRF7) [21,22]. Consequently, the expression of type-1 interferons-α and 

β (IFNα, IFNβ), pro-inflammatory cytokines like interleukin-18 and -12 (IL-18 and IL-12), 

tumor necrosis factor (TNF), and chemokines like C-X-C motif chemokine ligand 10 

(CXCL10) is induced, contributing to the establishment of an antiviral state within the host 

cell. For instance, upon infection with oncolytic alphaviruses, proteins like RIG-I and TNF 

receptor-associated factor-6 (TRAF-6) are engaged, leading to the amplification of antivi-

ral responses. Consequently, pro-inflammatory cytokines, including IL-1beta, TNF-alpha, 

IL-6, and CXCL9, are expressed, enhancing the antitumor milieu and suppressing inter-

feron-stimulated genes (ISGs) partly through zinc-finger antiviral protein (ZAP) expres-

sion [23–30]. Similarly, infection with coxsackievirus activates RIG-I, triggering both in-

nate and adaptive immune responses against tumors. This activation leads to the upreg-

ulation of IFN-inducible genes and Th1-associated chemokines, facilitating effector T cell 

recruitment to the tumor microenvironment [31]. In hormone-refractory prostate cancer, 

Sendai virus also triggers the activation of RIG-I, leading to the upregulation of IFN-re-

lated genes and subsequent activation of the Janus kinase and signal transducer and acti-

vator of transcription proteins (JAK/STAT) pathway, ultimately inducing apoptosis in 

cancer cells [32]. Oncolytic reovirus is also known to trigger RIG-I and MDA5 to induce 

interferon signaling [33]. Virus-induced oncolysis mediated by the RIG-I signaling path-

way, can also occur by upregulation of TNF-related apoptosis-inducing ligand, making it 

a promising target for cancer therapy [34]. This indicates the importance of viral RNA 

sensing pathways as a key mechanism to induce immune responses in the tumor. 

 

Figure 1. Direct sensing of oncolytic viruses and related immune responses. The figure illustrates 

essential pathways involved in molecular sensing and response during viral infection. (A) Cytoplas-

mic receptors RIG-I and MDA5 detect single- or double-stranded RNA, activating transcription fac-

tors NFΚB1, IRF3, and IRF7, leading to the production of interferons and pro-inflammatory cyto-

kines [23-33]. (B) Cytoplasmic DNA sensed by cGAS triggers the activation of transcription factors 

NFΚB1, IRF3, and IRF7, leading to the expression of key cytokines and chemokines [35]. (C) Cyto-

plasmic DNA detection by ZBP1 results in the activation of transcription factors IRF3 and IRF7, 

inducing the expression of interferons. (D) Methylated CpG DNA recognition by endosomal TLR9 

activates NFΚB1, leading to the expression of pro-inflammatory mediators [16,36].  

2.3. Sensing Viral DNA 

Various cellular sensors are also involved in sensing the DNA of oncolytic viruses. 

Cytoplasmic DNA sensing is facilitated by cGAS and Z-DNA binding protein 1 (ZBP1). 

Transcription factor

Sensor

Signal

Response

NFKB1,IRF3/7

RIG-I & MDA5

ss/ds RNA

IFNα,β, IL8, TNF, IL12

CXCL10

NFKB1

TLR9

CpG DNA

TNF, IL1B,6,12A

CXCL8, CCL5,3L3,4L1

NFKB1,IRF3/7

cGAS

Cytoplasmic DNA

IFNα,β, IL6, 
CXCL10, CCL5,4L1

IRF3/7

ZBP1

Cytoplasmic DNA

IFNα,β

Direct sensing of oncolytic viruses by infected cells

B C DA

Alphavirus 
Coxsackievirus
Sendai virus
Reovirus

Herpes virus, Adenovirus, Parvovirus

Figure 1. Direct sensing of oncolytic viruses and related immune responses. The figure illustrates es-
sential pathways involved in molecular sensing and response during viral infection. (A) Cytoplasmic
receptors RIG-I and MDA5 detect single- or double-stranded RNA, activating transcription fac-
tors NFKB1, IRF3, and IRF7, leading to the production of interferons and pro-inflammatory
cytokines [23–33]. (B) Cytoplasmic DNA sensed by cGAS triggers the activation of transcription
factors NFKB1, IRF3, and IRF7, leading to the expression of key cytokines and chemokines [35].
(C) Cytoplasmic DNA detection by ZBP1 results in the activation of transcription factors IRF3 and
IRF7, inducing the expression of interferons. (D) Methylated CpG DNA recognition by endosomal
TLR9 activates NFKB1, leading to the expression of pro-inflammatory mediators [16,36].

2.3. Sensing Viral DNA

Various cellular sensors are also involved in sensing the DNA of oncolytic viruses.
Cytoplasmic DNA sensing is facilitated by cGAS and Z-DNA binding protein 1 (ZBP1).
Upon the detection of cytoplasmic DNA, cGAS catalyzes the production of cyclic GMP-
AMP (cGAMP), initiating downstream signaling events that culminate in the activation of
transcription factors NFKB1, IRF3, and IRF7 (Figure 1B) [37,38]. This results in the expres-
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sion of type-1 IFNs (IFNα, IFNβ), pro-inflammatory cytokines (IL6), and chemokine motif
ligands 5 and 4L1 (CCL5, CCL4L1), bolstering the cellular defense against viral invasion.
Similarly, ZBP1 activation leads to the induction of IFNs (IFNα, IFNβ), contributing to the
antiviral response elicited upon cytoplasmic DNA detection (Figure 1C). The cytoplasmic
sensing of viral signals has been described to potentially induce innate immune responses.
For example, cGAS-mediated sensing and activation of immune responses are crucial for
the therapeutic efficacy of oncolytic herpes virus [35]. Additionally, it has been shown
that the epigenetic downregulation of cGAS-mediated signaling in ovarian cancers also
leads to a downregulation of cytokine expression and related immune responses [16]. In
this case, compensatory signaling mechanisms such as those activated by dsRNA through
RIG-I/MDA5, remain largely unaffected and generate an immune response [16].

The recognition of methylated (CpG) DNA by endosomal toll-like receptor 9 (TLR9)
activates the transcription factor NFκB1 (Figure 1D), triggering the expression of pro-
inflammatory cytokines (TNF, IL1B, IL6, IL12A) and chemokines (CXCL8, CCL5, CCL3L3,
CCL4L1) [21,39]. TLR-9-mediated recognition of viral signals can potentially induce im-
mune responses in the tumor. This has inspired the development of genetically engineered
oncolytic parvovirus that induces TLR-9 activation [36]. Here, the incorporation of im-
munostimulatory CpG motifs into parvoviruses variants like JabCG1 and JabCG2 has
been found to boost their adjuvant capacity [36]. These variants trigger TLR-9-mediated
signaling, leading to enhanced immunogenicity in animal models of cancer. Notably,
JabCG2 demonstrated superior antitumor activity, inducing markers of cellular immunity
and dendritic cell activation, thus reducing metastatic rates compared to other treatments.
Alternatively, the loss of TLR9-mediated virus recognition has been shown to cause dys-
functional innate immune responses against oncolytic adenoviruses [16].

3. Molecular Sensing and Response to Infected Cells

Oncolytic virus-infected cells become active contributors to the intricate molecular
signaling within the tumor microenvironment. A myriad of immunostimulatory molecules
are released by virus-infected or dying tumor cells due to the diverse signaling pathways
triggered by oncolytic viruses [40–47].

3.1. Sensing Cytokines from Infected Cells

The production of cytokines, particularly interferons, by infected cells serves as a
critical component of the antiviral defense mechanism. One of the pivotal mechanisms
involves the recognition of extracellular interferon by interferon-alpha receptors (IFNAR)
on adjacent cells (Figure 2A) [48]. This interaction initiates a cascade of events that includes
the activation of transcription factors STAT1, STAT2, or IRF9, ultimately leading to the
induction of various genes such as CXCL9, CXCL10, CXCL11, and major histocompatibility
complex-I and II (MHC-I, and MHC-II) [49]. Therefore, interferons not only exert direct
antiviral effects but also facilitate the activation of neighboring immune and other stromal
cells. For instance, oncolytic adenoviruses and alphaviruses induce interferon responses
through various mechanisms. Adenoviruses trigger interferon signaling by activating
the STING pathway and promoting the release of type-1 IFNs (IFNα, IFNβ) in infected
tumor cells, which subsequently stimulate an antitumor immune response [50]. Similarly,
alphaviruses induce interferon responses by upregulating autophagy and endoplasmic
reticulum stress, leading to enhanced therapeutic efficacy through increased apoptosis and
reduced tumor proliferation [51,52].

Although important for immune activation, interferon signaling can also undermine
the therapeutic efficacy of oncolytic viruses. Multiple reviews on this phenomenon have
explained that infection with various oncolytic viruses leads to the induction of a wide
array of antiviral proteins in the tumor, which can potentially hinder viral replication and
tumor cell oncolysis [12,13]. Researchers have tried to overcome this challenge by either
selecting or engineering oncolytic viruses that maintain their function despite interferon
signaling. For example, the replication of oncolytic reovirus has been demonstrated to



Int. J. Mol. Sci. 2024, 25, 4691 5 of 16

remain unaffected even in the presence of interferon signaling and favorably promoting
robust innate immune responses [33]. The engineering of various interferon-resistant
oncolytic viruses has also proved to be an effective strategy to benefit from interferon-
mediated innate activation of immune responses while maintaining viral replication and
infection [12,53,54]. Alternatively, inhibition of interferon signaling using small-molecule
inhibitors like ruxolitinib has also been shown to improve the therapeutic efficacy of various
oncolytic viruses [55,56].
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Figure 2. Sensing of immunostimulatory signals released by infected cells. (A) Interferon alpha
and beta are recognized by IFNAR receptors, inducing expression of various antiviral genes and
antigen presentation. Endocytosed or phagocytosed debris containing viral PAMPs (e.g., double-
or single stranded-RNA) activates transcription factors like (B) IRF3 and IRF7 or (C) NFKB1 in
antigen-presenting cells, leading to pro-inflammatory cytokine production and upregulated antigen
presentation. (D) HMGB1, a DAMP, is sensed by TLR4, triggering immune responses.

3.2. Sensing Pathogen-Associated Signals from Infected Cells

Molecules such as viral PAMPs (e.g., nucleic acids) serve as potent danger signals,
triggering the activation of innate immune receptors in neighboring cells, thereby amplify-
ing the antiviral response. For example, endocytosed or phagocytosed debris containing
viral RNA is detected by Toll-like receptors-3, 7, or 8 (TLR-3, TLR7, or TLR-8) within
antigen-presenting cells like plasmacytoid dendritic cells (pDCs) and macrophages [39].
The recognition of double-stranded viral RNA in the endosomes is mediated through TLR3
(Figure 2B). Upon encountering dsRNA, TLR3 activates a signaling cascade leading to
the activation of transcription factors IRF3 and IRF7 [57]. Consequently, the expression
of pivotal immune mediators such as interferons (IFNα and IFNβ), as well as various
chemokines (CXCL9, CXCL10, CXCL11) and co-stimulatory molecules like clusters of
differentiation 40, 80, or 86 (CD40, CD80, CD86), is induced, orchestrating a robust antiviral
response. Single-stranded RNA derived from oncolytic viruses is sensed by endosomal
TLR7 and/or 8 (Figure 2B,C) [21]. The activation of these receptors triggers downstream
signaling pathways, culminating in the activation of the transcription factor NFKB1. This
activation prompts the expression of pro-inflammatory cytokines (TNF, IL1B, IL6, IL12A)
and chemokines (CXCL8, CCL5, CCL3L3, CCL4L1), fostering an inflammatory milieu
conducive to innate immune responses. This orchestrated response enhances the im-
mune surveillance against viral infections and contributes to the shaping of an immune
response in the tumor milieu. For example, Newcastle disease virus infection activates
various signaling mechanisms, including TLR-signaling in tumors to regulate immune
response and tumor susceptibility markers [58]. Oncolytic parvovirus exploits TLR sig-
naling to induce human immune responses, enhancing dendritic cell maturation and
stimulating NFκB-dependent activation of the adaptive immune system, thereby priming
immune responses against tumors [59]. It has also been shown that immune responses
induced by viral infection also synergize to enhance oncolysis. For example, IL-24 en-
hances apoptosis induced by influenza A virus via the TLR3 and caspase-8 pathways,
sensitizing cancer cells to TLR-mediated apoptosis [60]. Similarly, measles-virus-based
therapies induce oncolysis by activating plasmacytoid dendritic cells, resulting in the pro-
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duction of interferon-alpha and cross-presentation of tumor antigens, thereby facilitating
antigen-specific immune responses against tumors [61]. Alternatively, some variants of
parvoviruses escape TLR/RIG-I mediated immune sensing by tumor cells, resulting in
lower IFN production and subsequent immune responses [62].

3.3. Sensing Danger-Associated Signals from Infected Cells

The process of viral replication and cell lysis leads to the release of cellular DAMPs
from dying cancer cells, acting as an endogenous danger signal. For example, extracellular
high-mobility group box 1 (HMGB1) is a DAMP sensed by neighboring antigen-presenting
cells (Figure 2D) [63]. Interaction with Toll-like receptor 4 (TLR4) sets off a signaling cascade
that involves the activation of transcription factors NFKB1 or IRF5 [64]. This activation,
in turn, leads to the expression of a plethora of pro-inflammatory and immunomodula-
tory molecules including IFNα, IFNβ, TNF, IL1B, IL 6, IL 12A, CXCL8, CCL5, CCL3L3,
and CCL4L1. Thus, the recognition of and response to DAMPs further amplify the im-
mune response against viral infections and contribute to the overall activation of immune
responses in the tumor microenvironment. For instance, upon infection with oncolytic ade-
noviruses, tumor cells release DAMPs such as HMGB1 and ATP, which activate dendritic
cells and promote tumor-specific T cell responses, contributing to the antitumor immune
response [50]. Similarly, oncolytic parvovirus induces cell death in glioma cells, activating
dendritic cells and microglia, thereby breaking tumor tolerance and inducing long-term
memory responses against tumors [35].

4. Molecular Signaling Response for Immune Activation

The tumor microenvironment is composed of cancer cells, immune cells, fibroblasts,
blood vessels, and extracellular matrix components. In response to signals from viruses
or infected cells, various components of the tumor microenvironment engage in intricate
molecular signaling pathways [5], culminating in the activation of both innate and adaptive
immune responses [52]. Within this environment, antiviral tumor immune responses can
occur, where the immune system targets viruses present within tumor cells to hinder
viral replication and potentially support tumor growth [4,12,13]. Alternatively, molecular
signaling may also contribute to antitumor effects, which encompass a range of biological
mechanisms aimed at inhibiting or regressing the tumor [2,5,10]. Among these mechanisms
are immune-mediated destruction of tumor cells, inhibition of tumor cell proliferation,
induction of apoptosis, and suppression of tumor angiogenesis [65,66]. Central to these
processes are tumor-specific T cell responses, where T cells recognize and target tumor
antigens displayed on the surface of tumor cells, leading to their destruction and potentially
aiding in the control or elimination of the tumor [66,67]. Together, these interactions
influence the outcomes of oncolytic virotherapy by regulating the interplay between the
immune system and tumor cells in the regulation of tumor growth and progression.

4.1. Innate Immune Signaling

The activation of innate immune responses by oncolytic viruses plays a pivotal role
in eliciting antitumor effects [4]. These include the recruitment and activation of innate
immune cells, including neutrophils, macrophages, natural killer cells, and dendritic cells,
which aid in antigen presentation and maintaining a pro-inflammatory environment [4].
Furthermore, this may also lead to the recruitment and activation of T cells with cytotoxic
antitumor activity [2].

Innate immune signaling is regulated through diverse chemokines recognized by their
respective chemokine receptors, triggering the activation of transcription factors such as
Forkhead box O (FOXO), NFKB1, and STAT, among others (Figure 3A). This activation
results in the expression of a wide array of genes promoting immune cell proliferation,
differentiation, and migration to sites of action [4,5]. For example, IL-2 or IL-4, sensed
by their receptors, IL-2 receptor and IL-4 receptor, respectively, activate the transcription
factor STAT5, leading to the autocrine expression of IL-2, IL-4, IL-2 receptor, IL-4 recep-
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tor, and other cytokines (Figure 3B) [68,69]. Similarly, interferon-gamma (IFNγ), sensed
by interferon-gamma receptor (IFNGR), triggers the activation of transcription factors
STAT1 and STAT4, inducing the expression of IFNγ, T-box transcription factor (T-bet), and
interleukin-12 receptor (IL12RB1) (Figure 3C) [70]. Taken together, this intricate network of
signaling pathways orchestrates a pro-inflammatory immune response that promotes the
recruitment and proliferation of immune cells in the tumor, facilitating antigen presentation
and immune-mediated killing of cancer cells. For example, replication-competent Sendai
viruses (rSeV) have been observed to activate dendritic cells through the RIG-I pathway,
inducing the production of type I IFNs, which contribute to their antimetastatic effects [71].
Similarly, measles virus exploits its receptors CD150 and CD46 on tumor cells to trigger
the immune response, leading to increased IFNγ levels and a favorable immune milieu for
tumor clearance [72]. Vesicular stomatitis virus induces type-I IFN responses, enhances
dendritic cell maturation, and promotes antigen presentation, thus facilitating the initiation
of adaptive immune responses against tumors [14,73,74].
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Figure 3. Non-specific immune activation. (A) Chemokines, recognized by their respective receptors,
activate various transcription factors promoting immune cell proliferation, differentiation, and
migration. For example, (B) IL2 and IL4 activate STAT5, inducing autocrine and paracrine expression
of cytokines and receptors. (C) Similarly, IFN gamma activates STAT1 and STAT4, inducing expression
of immune-related genes. Overall, these pathways regulate immune responses against infections
and cancer.

4.2. Adaptive Immune Signaling

In addition to innate immune activation, oncolytic viruses also stimulate adaptive
immune responses, which are crucial for sustained antitumor effects. In the context of
antigen-specific or target-specific immune activation, viral or tumor antigens presented by
MHC-I and II molecules and sensed by T cell receptors initiate signaling cascades [75,76].
This activation leads to the engagement of transcription factors like extracellular signal-
regulated kinases 1 and 2 (ERK1, ERK2) and nuclear factor of activated T cells (NFAT),
prompting the expression of perforin, granzyme, and FAS-ligand (FAS-L), ultimately
resulting in the killing of target cells (Figure 4A). Similarly, antigens presented by MHC
molecules and sensed by T cell receptors activate transcription factors NFKB1, NFATC1,
protein c-Fos (FOS), and protein c-Jun (JUN), resulting in the expression of IFNγ, T-bet,
TNF, GM-CSF, IL-2, IL-4, IL-5, IL-10, and IL-13 (Figure 4B) [75,76]. Moreover, the loss or
downregulation of MHC molecules or the presence of unconventional MHC molecules,
recognized by NK cell receptors, activate transcription factors ERK1, ERK2, and NFAT,
leading to the expression of perforin, granzyme, and FAS-ligand, thereby facilitating
target cell killing (Figure 4C) [77–79]. Overall, it has been observed that various oncolytic
virotherapies facilitate the activation of antigen-specific immune responses. For instance,
Newcastle disease virus (NDV) oncolysis induces immunogenic cell death, leading to
tumor infiltration by effector T lymphocytes and long-term tumor-specific immunological
memory responses [80,81]. H-1 parvovirus selectively activates helper and not regulatory
CD4+ T cells, thus demonstrating its potential as an anticancer treatment without exhibiting
immunosuppressive effects [82]. The activation of helper CD4+ T cell responses by H-1
parvovirus further underscores its immunotherapeutic potential. These findings highlight
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the dual role of oncolytic viruses in triggering both innate and adaptive immune responses,
thereby enhancing their efficacy as cancer therapeutics.
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Figure 4. Target-specific immune activation. Antigenic exposure to T cells activates various tran-
scription factors, promoting (A) cytotoxic activity towards target cells and (B) release of various
pro-inflammatory molecules promoting antigen presentation and cancer killing. (C) Similarly, NK
cells recognize loss or downregulation of MHC molecules on target cells and activate cytotoxic
activity towards target cells.

5. Strategies to Exploit Immune Signaling in Favor of Oncolytic Virotherapy

Various avenues have been explored to improve the safety and efficacy of oncolytic
virotherapy. Inspired by the molecular mechanisms employed by virotherapy to trigger
immune response pathways, efforts have been made to boost their immunogenic potential.
These strategies include engineering viruses to enhance immune signaling, targeting tumors
specifically, and employing combinatorial approaches with immunomodulatory agents or
other viral therapies to amplify antitumor effects.

5.1. Engineering Viruses to Trigger Immune Signaling

Various oncolytic viruses have been engineered to bolster the immune response against
cancer [83,84]. One approach involves encoding cytokines and chemokines within these
viruses to enhance immune stimulation. For instance, adenoviruses can be armed with
molecules such as GM-CSF and B7-1 to activate dendritic cells and facilitate T cell infiltration
into tumors, thereby priming tumor-specific cytotoxic T lymphocytes [85]. Additionally,
interleukin-12 expressed by adenoviruses promotes Th1-type immune responses and en-
hances NK cell and cytotoxic T cell activity [86]. Furthermore, molecules like CCL5 and beta-
defensin-2 recruit and activate immune cells within the tumor microenvironment [15,87].
Incorporating CD40 ligand (CD40L) and IL-24 further amplifies immune-mediated tumor
cell killing [88,89]. Adenoviruses encoding combinations of cytokines such as IL-12 and
IL-18 could synergistically enhance antitumor immunity [90]. In HSV vectors, encoding
immunomodulatory cytokines like IL-2, IL-12, and GM-CSF enhances tumor regression
mediated by CD4+ and CD8+ lymphocytes [91–93]. Methods such as the HSVQuik system
expedite the generation of oncolytic HSV vectors expressing immunomodulators for cancer
gene therapy [94]. Similarly, oncolytic influenza A viruses armed with immune-stimulating
molecules like OX40L exhibit potent oncolytic effects, selectively destroying tumor tis-
sues and enhancing Th1-dominant immune responses [95]. Measles virus strains have
demonstrated oncolytic capabilities in hepatocellular carcinoma and glioblastoma cells,
inhibiting tumor growth and improving survival rates [96–98]. Recombinant Newcastle
disease virus strains expressing cytokines such as IL-2, IL-15, or TRAIL stimulate tumor-
specific CTL responses, inducing CD4+ and CD8+ T cell proliferation, leading to tumor
regression [99,100]. Genetically engineered Sendai virus carrying the IL-2 gene stimulates
antitumor effects by modulating immune cell populations [101]. Oncolytic vaccinia viruses,
armed with immunomodulatory molecules play a crucial role in activating molecular
immune responses against cancer [20,102–110]. These viruses enhance antitumor efficacy
by stimulating the activation of CD4+ and CD8+ T cells, promoting immune cell infiltration,
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and augmenting immune-based antitumoral activity through the delivery of chemokines
and immunomodulatory antibodies. VSV engineered to encode therapeutic genes like
IFN-beta enhances antitumor effects [111], although certain molecules like CD40L may not
significantly improve efficacy [112].

5.2. Engineering Viruses for Tumor Targeting

Tumor-targeting strategies aim to enhance the immunotherapeutic potential of on-
colytic viruses by selectively targeting components of the tumor microenvironment. Utiliz-
ing tumor-specific promoters such as CXCR4-promoter allows for tumor-specific transgene
expression, driving high expression of therapeutic genes like GM-CSF and B7-1, thereby
enhancing immune cell activation and infiltration into tumors [85,113]. Various delivery
strategies, including gelatin gel-mediated co-delivery, myeloid-cell mediated delivery,
and mesenchymal stem cell-mediated delivery, improve the sustained release and tumor
targeting of oncolytic viruses, thereby enhancing their therapeutic efficacy [114–116].

5.3. Combinatorial Approaches to Boost Viral Immunogenicity

Combination strategies play a crucial role in enhancing the efficacy of oncolytic viruses
in cancer therapy. One approach, exemplified by the combination of oncolytic adenovi-
ral therapy with immune checkpoint inhibitors, involves leveraging immune signaling
pathways. Adenoviruses engineered to express TNF-alpha and IL-2, when coupled with
anti-PD-1 therapy, exhibit augmented tumor control through increased CD8+ T cell infiltra-
tion and reduced immunosuppressive cell populations [86,117]. Additionally, combining
oncolytic virotherapy with conventional treatments such as gemcitabine shows promise
in enhancing oncolytic activity and eliciting systemic antitumor immunity by reducing
myeloid-derived suppressor cells and promoting tumor regression [118]. Furthermore,
combining oncolytic vaccinia viruses with immune checkpoint blockade amplifies antitu-
mor immunity by increasing effector T cell infiltration, inducing PD-L1 expression, and
reducing exhaustion markers [119,120].

Immunomodulatory agents further enhance the efficacy of oncolytic viruses. For
instance, the combination of oncolytic virotherapy with the DTA-1 monoclonal antibody
enhances tumor growth inhibition by fostering CD8+ T cell accumulation and dimin-
ishing regulatory T cells [121]. Similarly, blocking TNFα, which can impede oncolytic
herpes virus replication by macrophages and microglia, augments virus replication and
improves survival rates in glioblastoma models [122]. Augmenting dendritic cell popu-
lations through FMS-like tyrosine kinase ligand (Flt3L) administration improves tumor
antigen cross-presentation and CD8+T cell responses, thereby enhancing the efficacy of
oncolytic Newcastle disease virus [123]. Finally, synergistic antitumor effects are observed
when combining oncolytic virotherapy with other viral therapies. Combining Newcastle
disease virotherapy with influenza HA2 gene therapy or viral sensitizer-mediated therapy
enhances immune responses and yields heightened antitumor effects [124,125].

6. Conclusions

In summary, our review delves into the intricate interplay between viral mechanisms
of molecular sensing and the immune response across diverse oncolytic viruses. We
systematically reviewed the literature concerning various molecular sensors, transcription
factors, and immune signals associated with different oncolytic virotherapies (Figure 5).
We summarize a sequential sense-and-response mechanism wherein diverse molecular
sensors such as TLRs, RIG-I, and others detect viral genetic material or signals emanating
from infected cells, ultimately triggering a cascade of innate and antigen-specific immune
responses. This intricate process is finely regulated by the activation of various transcription
factors, which in turn induce the expression of immune response genes. Notably, our
analysis provides comprehensive insights into these molecular interactions, shedding light
on the complex mechanisms underlying the efficacy of oncolytic virotherapies.
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Figure 5. Literature-based association of viral mechanisms of molecular sensing and immune response
to diverse oncolytic viruses. We collected abstracts of scientific articles from PubMed and looked for
the presence of molecular evidence on various sensors, transcription factors, and immune signals that
were associated with different oncolytic virotherapies. In a sequential sense-and-response manner,
diverse molecular sensors, like TLRs, RIG-I, etc., detect virus genetic material or signals from infected
cells to ultimately induce various innate and antigen-specific immune responses. This is regulated by
the activation of various transcription factors that induce the expression of immune response genes.
NA = not available. Each line in the figure represents connections between different components
involved in the molecular sensing and immune response to oncolytic viruses. These connections
visually illustrate how various sensors, transcription factors, and immune signals influence each other
in initiating and regulating the immune response. For instance, lines can associate the activation of
transcription factors by sensors or the regulation of immune response genes by transcription factors.
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