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Abstract: L-asparaginase is an essential drug used to treat acute lymphoid leukemia (ALL), a
cancer of high prevalence in children. Several adverse reactions associated with L-asparaginase
have been observed, mainly caused by immunogenicity and allergenicity. Some strategies have
been adopted, such as searching for new microorganisms that produce the enzyme and applying
protein engineering. Therefore, this work aimed to elucidate the molecular structure and predict the
immunogenic profile of L-asparaginase from Penicillium cerradense, recently revealed as a new fungus
of the genus Penicillium and producer of the enzyme, as a motivation to search for alternatives to
bacterial L-asparaginase. In the evolutionary relationship, L-asparaginase from P. cerradense closely
matches Aspergillus species. Using in silico tools, we characterized the enzyme as a protein fragment
of 378 amino acids (39 kDa), including a signal peptide containing 17 amino acids, and the isoelectric
point at 5.13. The oligomeric state was predicted to be a homotetramer. Also, this L-asparaginase
presented a similar immunogenicity response (T- and B-cell epitopes) compared to Escherichia coli
and Dickeya chrysanthemi enzymes. These results suggest a potentially useful L-asparaginase, with
insights that can drive strategies to improve enzyme production.

Keywords: L-asparaginase; immunogenicity; ALL; Penicillium cerradense

1. Introduction

The utilization of microbial enzymes in biotechnological and therapeutic applications
dates long back in science, and it is still a fertile ground with the prospects of exploring
new activities from the biodiverse environment, aiming at improved scalability, kinetics,
and safety, to list a few [1].

There is an ongoing quest to characterize the enzyme L-asparaginase (ASNase), EC
3.5.1.1, from different microorganisms, given its use in the food industry to prevent the
formation of the carcinogenic by-product acrylamide, and mainly because of its use as an
anti-tumor agent. The therapeutic use arises from the fact that some auxotrophic cancer
cells, such as lymphoblasts in ALL, have diminished capacity to produce L-asparagine,
relying upon scavenging it from the surroundings. The administration of ASNase is used
to deplete the external pool of this amino acid, effectively causing disturbances in protein
synthesis and leading to apoptosis [2,3].

ALL is a malignant neoplasm of B or T lymphoid progenitor cells with rapid progres-
sion, resulting from clonal proliferation and accumulation of cells that exhibit markers
associated with early stages of lymphoid maturation [4,5]. It primarily affects children and

Int. J. Mol. Sci. 2024, 25, 4788. https://doi.org/10.3390/ijms25094788 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25094788
https://doi.org/10.3390/ijms25094788
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-4541-9177
https://orcid.org/0000-0002-8767-407X
https://orcid.org/0000-0002-5969-0806
https://orcid.org/0000-0002-5268-8690
https://orcid.org/0000-0002-1100-976X
https://orcid.org/0000-0001-8011-6940
https://doi.org/10.3390/ijms25094788
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25094788?type=check_update&version=3


Int. J. Mol. Sci. 2024, 25, 4788 2 of 19

young adults, with a significant occurrence between the ages of 2 and 5, and accounts for
75% of all leukemia diagnoses [6–8].

ASNase is used as a standard first-line option in remission-induction chemotherapy
treatment for recent diagnoses and to direct prophylaxis of systemic chemotherapy for
standard-risk and high-risk patients in ALL [9]. Thanks to advancements in innovation,
efficacy, and access to treatments, the cure rate in children has increased to 90%. Addi-
tionally, the 5-year survival rate has also improved significantly, with over 80% of patients
achieving disease-free survival, compared with 58% in 1970 [4,10,11].

ASNase catalyzes the hydrolysis of asparagine to aspartate and ammonium. This
enzyme is widely distributed across all the kingdoms of living organisms and can be
classified into different categories based on structural and biochemical criteria [12]. The
prototypic enzymes used therapeutically are derived from E. coli and from D. chrysanthemi
(syn. Erwinia chrysanthemi). Industrialized preparations of the enzyme are obtained from
bacteria in three forms—native and polyethylene glycol-conjugated asparaginase (PEG-
ASNase) from E. coli, and the native enzyme from D. chrysanthemi [2,13].

ASNase can be classified into three classes based on domains with distinctive structural
and phylogenetic characteristics [12]: Class 1—InterPro ID: IPR027474; Class2—InterPro
ID: IPR000246; and Class 3—InterPro ID: IPR010349. Each class is further divided into
subgroups that have common functional, mechanistic, and structural characteristics [12].
The above-mentioned enzymes used for therapeutic purposes belong to Class 1; they are
periplasmic and adopt a tetrameric catalytic state [12]. The WHO classified ASNase as a
cytotoxic drug for ALL in the WHO Model List of Essential Medicines for Children and
Adults [14,15]. Critical adverse reactions and toxicity associated with E. coli and D. chrysan-
themi ASNase have been observed, such as hypersensitivity (clinical and subclinical),
hypertriglyceridemia, encephalopathy, liver dysfunction, hyperglycemia, myelosuppres-
sion, pancreatitis, thrombosis, organ toxicity, glycosuria, ketoacidosis, decreased protein
synthesis, hypoalbuminemia, and coagulopathies [7,16]. The most relevant toxic effects are
related to the hypersensitivity mechanism and protein synthesis inhibition [17,18].

Strategies to reduce ASNase toxicity are needed to improve ALL therapy outcomes [19].
Several studies have aimed to search for new sources of ASNase since it can reduce the
number and intensity of adverse effects [20,21]. Enzymes from eukaryotic origin, such as
fungi, are attractive candidates on the premises of displaying distinct immune response
elicitors to humans, compared with the standard bacterial sources [22,23].

Several studies have used bioinformatics tools to investigate structural, biochemical,
and immunogenic characteristics of ASNase. These studies include structural investigations
of ASNase from Cavia porcellus [24] and Ocimum tenuiflorum [25], heterologous expression
of ASNase from Aspergillus terreus in E. coli [26], immunogenicity of ASNase from E. coli
and D. chrysanthemi [27], and dehumanization of ASNase from E. coli and Pectobacterium
carotovorum [28].

The present work aims to use computational tools to explore fungal alternatives to
bacterial ASNase, centered on the investigation of the structure and immunogenic profile
of the enzyme from Penicillium cerradense, a recently characterized fungus isolated from the
Brazilian savannah [29].

2. Results
2.1. In Silico Analysis of P. cerradense L-Asparaginase Sequence Properties

The P. cerradense ASNase gene was identified from the genome sequence reported by
our group in a previous study [29]. The protein sequence of ASNase from P. cerradense
(NCBI accession: UDP03915.1) has 378 amino acids, a molecular mass of 39 kDa, and
5.13 isoelectric point, as predicted using ProtParam [30]. Protein domain prediction using
InterProScan [31] confirms that the enzyme belongs to the asparaginase/glutaminase-like
family (CDD id: cd00411) with a type II ASNase domain (IPR027474).

Prediction of signal peptides using SignalP [32] and Phobius [33] indicated a high
probability of this export signal. The estimated half-life using ProtParam-expasy [30] was
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30 h in mammalian reticulocytes. Calculations of the instability index (29.85) and the
aliphatic index (97.25) indicated a stable protein [34].

Similarity searches using NCBI-BLASTp showed that the P. cerradense ASNase identity
profile was as follows: Schizosaccharomyces pombe (NP_595021.1) 48.26% of identity; Sac-
charomyces cerevisiae (NP_013256.1), 47.73%; Bacillus subtilis (NP_388151.1), 48.17%; E. coli
(NP_311860.1), 44.55%; and E. coli (NP_417432.1), 43.64%; all ASNase.

2.2. Phylogenetic Analysis of Fungal L-Asparaginases

The sequence identity of P. cerradense, when compared to clinically relevant bacterial
ASNase, is 44.55% with E. coli (NP_311860.1) and 46.48% with D. chrysantemi (5F52_A). To
find alternatives to these sources, a phylogenetic analysis was conducted using ASNase
from several fungal genera. The maximum likelihood tree shown in Figure 1 reveals that
Penicillium sp. ASNase forms a paraphyletic group with representatives from the Aspergillus
genus (Figure 1), with the P. cerradense sequence placed in proximity to several Aspergillus
sp. enzymes, particularly to A. indologenicus (PYI32151.1: 81.43% identity), than to the
nearest Penicillium representatives (78.51% to P. steckii and 77.72% to P. sizovae). For instance,
a sequence similarity of 56.99% was found between P. cerradense ASNase and P. digitatum
(XP_014538187.1), a member of the divergent Penicillium clade in Figure 1.
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replicates. The tree was rooted using the E. coli sequence as the outgroup and bootstrap support 
values are indicated below node edges. The Penicillium sp. representatives are highlighted. 

 
Figure 2. Hinge region (HR), active-site llexible loop (ASFL), and active-site residues’ alignment. 
Alignment of the Penicillium and Aspergillus L-asparaginases including P. cerradense. HR is 
indicated in red, ASFL in green, the residues relevant to the catalytic activity are highlighted in 
orange, and variable N-terminus. Consensus is the identity percentage, and full alignment residue 
differences are shown (in blue) among the compared asparaginases. 

According to our analysis, P. cerradense, P. sizovae, and P. steckii ASFLs are closely 
related to the same region of the ASNase from Aspergillus genus yeasts. Other Penicillium 

Figure 1. Maximum likelihood phylogenetic tree of L-asparaginases from several fungal species
including P. cerradense. The consensus tree was inferred using IQ-TREE with 1000 ultrafast bootstrap
replicates. The tree was rooted using the E. coli sequence as the outgroup and bootstrap support
values are indicated below node edges. The Penicillium sp. representatives are highlighted.

2.3. Active Site Conservation

Representative ASNase sequences from Penicillium and Aspergillus species were
analyzed focusing in two regions relevant to the enzymatic activity: the hinge region (HR)
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and the active-site flexible loop (ASFL). These regions, although not essential for substrate
binding, exhibit conformational changes responsible for catalytic activity (conformations
cat+ and cat−) after the substrate is bound [35]. In the ASNase, HR is a highly conserved
glycine-rich octapeptide, with the canonical sequence GGTxyGGG (x = Ile or Leu; y = Ala
or Gly). In P. cerradense, the HR presents the sequenceG56GTIAGSG63. The ASFL in
P. cerradense presents the sequence S64SSTATTGYTAGAV77. However, there is no precise
delimitation between the two regions. Among the fungal species under study, the HR
region was highly conserved, with a difference only in the last two residues of this region
(Figure 2). The ASFL region is usually seen as a variable region for ASNase from different
microorganisms [36].
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Figure 2. Hinge region (HR), active-site llexible loop (ASFL), and active-site residues’ alignment.
Alignment of the Penicillium and Aspergillus L-asparaginases including P. cerradense. HR is indicated
in red, ASFL in green, the residues relevant to the catalytic activity are highlighted in orange, and
variable N-terminus. Consensus is the identity percentage, and full alignment residue differences are
shown (in blue) among the compared asparaginases.

According to our analysis, P. cerradense, P. sizovae, and P. steckii ASFLs are closely
related to the same region of the ASNase from Aspergillus genus yeasts. Other Penicillium
species (P. chrysogenum, P. digitatum, P. griseofulvum and P. italicum) presented a different
amino acid sequence pattern in the same region, but there were similarities among them.

The active site of different ASNase was well preserved and rigid, with five critical
residues for catalysis. These residues were a threonine in HR, a tyrosine in ASFL, and
three other residues (ThrXXX-Asp and LysXXX) located about 64–67 and 137–140 residues
apart, respectively, from the ASFL of the Tyr [37]. In P. cerradense’s ASNase these residues
were Thr58 (HR), Tyr72 (ASFL), Thr139, Asp140, and Lys212. Data on polymeric interface
and active site are the result of comparison with conserved residues and with crystallized
ASNase structures.

The N-terminal portion showed low conservation among fungal ASNase (variable
N-terminus), corresponding to the region of the first 38 residues for P. cerradense. This
region was variable for the Penicillium and Aspergillus ASNase under study.

2.4. Prediction of the Molecular Structure of L-Asparaginase

The P. cerradense ASNase three-dimensional model was predicted using AlphaFold2 [38,39]
and is presented in Figure 3. The prediction confidence scores are presented in Supplemen-
tary Figure S1, and are above 70% for most of the protein, with noticeable poor prediction
scores in the N-terminus (residues 1–31). Ramachandran analysis showed 96.00% of its
amino acid residues in regions favorable to the proposed model (Figure S2).
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Figure 3. Model of the monomeric three-dimensional structure of L-asparaginase from P. cerradense
obtained using AlphaFold2 v1.5.5.

Although phylogenetically distant, ASNase from P. cerradense presents close structural
proximity to E. coli ASNase (PDB: 3ECA) and maintains an almost identical fold, with the
presence of two α/β domains connected by a loop, displaying a Rossman fold topology
(Figure S3) [40]. Figure 4 shows the structural similarity between ASNase from P. cerradense,
E. coli, and D. chrysantemi. The comparison to the other bacterial commercially available
ASNase (from D. chrysantemi, PDB: 5I4B) showed a closer structural similarity (1.40 Å and
47% sequence identity) than the enzyme from E. coli (1.51 Å and 43% sequence identity).
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To examine the structural conservation of ASNase and gain insights into the sites
important for catalysis and antigenicity, we expanded the structural investigation by
generating AlphaFold2 predictions for all representatives of Penicillium and Aspergillus
sp. used in our phylogenetic analysis (Section 2.2). Pairwise structure alignments (RCSB
PDB) against the P. cerradense model presented structural proximity, with RMSD below
2.0 Å (Table 1). ASNase from P. cerradense is structurally closer to the enzyme from A.
indologenus (0.7 Å and 79% sequence identity), whereas P. sizovae enzyme is the closest
structure in the Penicillium genus (0.97 Å and 76% sequence identity).
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Table 1. Pairwise structure alignment of P. cerradense AlphaFold2 structural model against other
predictions of fungal L-asparaginases. The X-ray experimental structures from bacteria (E. coli and
D. chrysanthemi) are also shown. Alignment evaluation parameters were RMSD (root mean square
deviation) and TM score (template modeling score).

Microorganisms NCBI id RMSD TM-Score Sequence
Identity

Equivalent
Residues

E. coli 3ECA_A 1.51 0.82 43% 322
D. chrysanthemi 2JK0_A 1.40 0.82 47% 322
P. chrysogenum XP_002563013 1.23 0.40 54% 377

P. digitatum XP_014538187.1 1.11 0.38 57% 375
P. griseofulvum KXG45967.1 1.02 0.38 57% 375

P. italicum KGO77393.1 0.95 0.65 57% 364
P. steckii OQE28485.1 1.03 0.67 77% 377
P. sizovae MW291568 0.97 0.69 76% 377

A. ibericus XP_025570260.1 0.98 0.41 79% 373
A. indologenus PYI32151.1 0.70 0.71 79% 374

A. niger XP 001389884.1 0.85 0.59 80% 369
A. sclerotiicarbonarius PYI04731.1 1.12 0.31 79% 375

The predicted models for Penicillium and Aspergillus ASNase were expected to have a
close structural similarity, as their sequence similarity was found to be above 45.31%. How-
ever, sequence conservation varies and is higher between residues 49–236, corresponding
to the ASNase N-terminal conserved domain (InterPro: IPR027474). This is particularly
evident in the catalytic important regions HR and ASFL (Figure 2). By projecting the amino
acid conservation values onto the P. cerradense model structure and dividing the structure
with a frontal plane, two sections with distinct conservation arise: the more conserved
ventral face, which contains the active site, and the less conserved dorsal face (Figure 5).
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Figure 5. Sequence-structure conservation mapping for L-asparaginases from Penicillium and As-
pergillus genera (used in Figure 2), using the ASNase from P. cerradense as a model. Catalytic cavity is
indicated with a black arrow. The figure was generated using the ConSurf server v.3.

This high conservation in the catalytic site of ASNase may suggest similar enzymatic
kinetics for the genera Penicillium and Aspergillus, whereas the more divergent dorsal face
may produce distinct immune responses depending on the ASNase species.

AlphaFold2 modeling did not show the possible final oligomeric conformation of the
protein. Thus, for the prediction of the quaternary structure, the enzyme was modeled using
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SwissModel–Expasy, by homology. The sequence was predicted as a homotetramer (Qua-
ternary Structure Quality Estimate—QSQE 0.81), 46.30% aligned to the template sequence
obtained from Dickeya chrysanthemi (PDB 5I4B). The global model quality estimate (GMQE)
was calculated as 0.71 and the qualitative model energy analysis with distance constraints
(QMEANDisCo Global) was 0.77 ± 0.05. The modeled structure shows conformity with
previous reports of the tetrameric structure of ASNase [40]. The enzyme ASNase is com-
monly found as a tetramer, but monomeric, dimeric, and hexameric forms have also been
found in isolates from different sources [3]. In any case, other sources and post-translational
modifications can strongly influence the enzyme’s molecular structure [41].

2.5. Prediction of Immunogenicity, Allergenicity and Toxicity

The prediction of T-cell epitope density allows the inference of the degree of im-
munogenicity (DI) [42–44]. In this regard, evaluating the immunogenicity of proteins of
therapeutic value has commonly used the density of epitopes as an indicator [45–47].

This concept was used to assess the immunogenicity of the P. cerradense ASNase
compared with available clinical-use ASNase (E. coli and D. chrysanthemi) and ASNases
from other Penicillium and Aspergillus species. The density of epitopes and the DI were
evaluated using eight globally distributed alleles as a reference (HLA-DRB1*01:01, HLA-
DRB1*03:01, HLA-DRB1*04:01, HLA-DRB1*07:01, HLA-DRB1*08:01, HLA-DRB1*11:01,
HLA-DRB1*13:01, and HLA-DRB1*15:01) [48,49].

The DI of P. cerradense’s ASNase showed no significant difference compared with the
enzymes of E. coli, D. chrysanthemi, P. chrysogenum, P. digitatum, P. griseofulvum, P. italicum,
P. sizovae, P. steckii, A. ibericus, A. idologenus, A. niger, and A. sclerotiicarbonarius (Figure 6). In
comparison with the clinical ASNase, P. cerradense protein showed a higher DI (0.0149) than
E. coli (0.0142) and lower than the enzyme from D. chrysanthemi (0.0197). The ASNase of
D. chrysanthemi presented the highest DI. The results obtained are similar to those reported
by Belen et al. (2019), that the ASNase DI from D. chrysanthemi was higher than the ASNase
DI from E. coli [27].
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Evaluating the DI, it was verified that there was no significant difference in the
predicted immunogenicity among the ASNase of the microorganisms considered in this
study. However, when comparing the relative frequencies of fungal ASNase with those
of clinical use from E. coli and D. chrysanthemi, the predicted DI for fungal ASNase was
equivalent to or lower than that of bacterial enzymes.

Among Penicillium species, ASNase DI values exhibited similar epitope density: P. cer-
radense (0.0149), P. chrysogenum (0.0147), P. digitatum (0.0150), P. griseofulvum (0.0144), and
P. italicum (0.0142), whereas P. sizovae and P. steckii ASNase presented values of 0.0132
and 0.0119, respectively, which were the closest to the value that was computed for E. coli
(0.0142). Analyzing the Aspergillus species, DI values exhibited the largest variation in
epitope density: A. ibericus (0.0158), A. sclerotiicarbonarius (0.0161), A. indologenus (0.0135),
and A. niger (0.0141). Considering the DI by genus (Penicillium and Aspergillus), the results
presented may suggest a trend of DI by genus, but at the same time, possible particularities
of each species can be perceived.

Figure 7 represents the T-cell epitope density for each of the eight alleles (HLA-
DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-DRB1*07:01, HLA-DRB1*08:01,
HLA-DRB1*11:01, HLA-DRB1*13:01, and HLA-DRB1*15:01). The predicted immunogenic
T-cell epitopes are presented in Table S1. The results show heterogeneity in distribution for
each species depending on the allele. Compared with the enzymes of clinical use (E. coli
and D. chrysanthemi), ASNase from P. cerradense showed a similar or lower density value of
the eight evaluated alleles. In general, similar distribution behavior can be observed with
the trends for each allele for the ASNase evaluated.
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Figure 7. Bar graph representing the epitope density of different L-asparaginases, via predicting
T-cell immunogenic epitopes for eight independent alleles.

Specifically, the HLADRB1*07:01 allele is well recognized as being associated with a
high risk of hypersensitivity reactions and a higher risk of allergies after treatment with
bacterial ASNase, possibly because it is an allele that confers high-affinity binding [50,51].
Based on these assumptions, the epitope density and prediction of ASNase allergenic pep-
tides from P. cerradense for the HLA-DRB1*07:01 allele were compared with the same results
for the native enzymes from E. coli, D. chrysanthemi, and species of the genera Penicillium and
Aspergillus to determine the amino acids and regions that could contribute to allergenicity.
Figure 8 presents the epitope density of allergenic T-cell epitopes for the HLADRB1*07:01
allele of ASNase from P. cerradense and other microorganisms in comparison.
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Figure 8. Epitope density of T-cell allergenic epitopes for the HLA-DRB1*07:01 allele of L-asparaginase
from the evaluated microorganisms.

ASNase from P. cerradense showed the density of allergenic epitopes (0.603) larger
than the enzyme from E. coli (0.526) and lower than the enzyme from D. chrysanthemi
(0.653). The ASNase of D. chrysanthemi presented the highest density of allergenic epitopes
(0.653), followed by P. digitatum (0.647), P. italicum (0.634), A. idologenus (0.632), and A.
sclerotiicarbonarius (0.625). Conversely, the ASNase of P. steckii and P. sizovae presented the
lowest densities of allergenic epitopes (0.450 and 0.492, respectively).

The mapping of the allergenic peptide fragments in the ASNase structures showed
a different distribution profile for the enzyme from P. cerradense compared with E. coli
and D. chrysanthemi (Figure 9). The structural determinants for providing the allergenic-
ity characteristics are summarized in Table S2. Despite the difference in distribution,
the ASNase from P. cerradense, E. coli, and D. chrysanthemi showed similar structural re-
gions in concentration of allergenic epitopes (Figure 10). There are six regions: chain
Nβ1/HR, Ncoil7, helix Nα4, chain Nβ6, linker interdomain, and helix Cα2, respec-
tively in the I52FGTGGTIA60, M165RPSTATSA173, F177NLLEAVTV192, Y208YVTKTNAN218,
F252DITATKEI260, and F298NHAIEDVI310 positions in the ASNase model P. cerradense. The
epitopes concentrated in these regions showed divergence in terms of amino acid sequence
despite the same spatial location, which suggests that these are allergenic regions mainly
determined by spatial conformation and surface exposure.
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Figure 10. Structural conservation mapping of T-cell allergen epitopes for the HLA-DRB1*07:01
allele in the L-asparaginases of P. cerradense, E. coli, and D. chrysanthemi. Gray zones represent
non-allergenic regions. Blue zones represent E. coli allergenic epitopes. Green zones represent
D. chrysanthemi allergenic epitopes. Red zones represent P. cerradense allergenic epitopes.

Linear B-cell epitope prediction was performed to evaluate the enzyme’s ability to
generate antibodies. Linear B-cell epitope diagnosis was performed for ASNase from
P. cerradense and compared with E. coli, D. chrysanthemi, and species of the genera Penicillium
and Aspergillus to determine the amino acids and regions that could contribute to generate
antibodies. Figure 11 represents the B-cell DI for this comparison. Table S3 presents the
linear B-cell epitopes identified in the amino acid sequence of these ASNase.
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Figure 11. Bar graph representing the epitope density of B-cell epitopes of L-asparaginase from the
evaluated microorganisms.

The P. cerradense’s ASNase showed a similar DI (0.069) to D. chrysanthemi (0.061), more
than 40% lower than the enzyme from E. coli (0.117). The ASNase from E. coli presented
the highest DI. This result is congruent with reports of increased hypersensitivity and
antibody formation by E. coli ASNase (60% of patients under treatment), more than reported
under D. chrysanthemi (8–33% of patients under treatment), which has been described as
immunogenically distinct [52–54].

Comparing fungal ASNase with those in clinical use produced by E. coli and D. chrysan-
themi, the predicted B-cell DIs for fungal ASNase were equivalent to or smaller than those
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of bacterial enzymes. Analyzing the Penicillium species, DI values displayed variation in
relative frequency: P. cerradense (0.069), P. chrysogenum (0.082), P. digitatum (0.071), P. griseo-
fulvum (0.092), and P. italicum (0.071), P. steckii (0.065), whereas P. sizovae (0.052) ASNase
presented a DI closest to the value that was computed for D. chrysanthemi (0.061).

Among Aspergillus species, B-cell DI values exhibited similar relative frequencies: A.
ibericus (0.037), A. idologenus (0.032), A. niger (0.042), and A. sclerotiicarbonarius (0.048). All
species of the genus presented the lowest B-cell DI among the microorganisms evaluated
in this study. The presented results may suggest that fungal ASNase from Aspergillus is less
able to generate antibodies through this pathway.

The mapping of B-cell epitopes on monomeric structures was performed for ASNase
from P. cerradense and compared with E. coli and D. chrysanthemi enzymes (Figure 12). The
structural distribution showed a different profile for ASNase from P. cerradense, E. coli, and
D. chrysanthemi.
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The length (predicted number of epitopes) of the immunogenic residues of P. cerradense
is dissimilar to those from E. coli and D. chrysanthemi. In the immune response to B-cell
epitopes, ASNase from P. cerradense may present itself in a distinct immunogenic manner.

Regarding the toxicity profile, from analysis on the ToxinPred server, interestingly, no
toxic peptide fragments were found in the sequence of ASNase from P. cerradense, a result
indicative of a non-toxic protein. In contrast, E. coli ASNase has been reported to have a
highly toxic region responsible for its adverse effects [55]. Among all studied species, only
P. italicum and P. sizovae presented toxic peptide fragments in their ASNase sequences.

Using computational tools, the antigenic structural determination that may contribute
to the generation of hypersensitivity response associated with ASNase from P. cerradense
was determined for the first time in the present study. The obtained results need still to be
confirmed through clinical or laboratorial validation of the immunogenic and allergenic
epitopes that would corroborate the in silico predicted activity. The potential of the compu-
tational analysis achieved for ASNase from P. cerradense could be validated by generating
mutants and evaluating their ability to elicit hypersensitivity reactions, considering that a
decrease in responses should be expected after the intervention of the identified epitopes.

3. Discussion

The sequence of the P. cerradense ASNase gene, identified from its complete genomic
sequence, has 1251 pb. The predicted protein showed homology to other ASNase from
Aspergillus genus. Among ASNases from Penicillium genus, it was closer to P. sizovae and
P. steckii ASNase. These two Penicillium species are phylogenetically close to P. cerradense
and belong to the same—citrine section—group [29].

The evolutionary relationships of ASNase gene differ among species-level trees, with
inconsistencies. This conflict can occur due to incomplete lineage sorting (ILS) and/or
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introgression by hybridization [56]. The ASNase from different species of Penicillium may
present distinct or discrepant functional behaviors, and/or similar behaviors to the species
of the genus Aspergillus. To the extent of our knowledge, this is the first time that the
evolutionary relationship for ASNase from Penicillium has been reported in the literature.
Differences in the gene region of ASNase may represent complexity and difficulty in
comparison studies using amino acid sequences. Likewise, this difference may suggest
a wide variety of the enzyme in regard to its immunogenicity, specificity, and stability,
according to the source [57].

From the sequence and structural analyses, it can be inferred that ASNase from
P. cerradense has type II asparaginase activity (periplasmic, with 17 aa signal peptide) with
5.13 pI, and that it is a tetramer with an estimated theoretical molecular mass activity of
156 kDa (39 kDa per monomer), similar to those purified from Citrobacter (166 kDa) [58]
and E. carotovora (130/152 kDa) [59]. With the pairwise alignment of the ASNases, it was
possible to compare the structure of P. cerradense ASNase with other, evolutionary distant,
ASNase. Remarkable structural similarity among ASNase monomers of microorganisms
was observed. This similarity relationship is in line with what was reported in the study by
da Silva et al. (2022) where they indicated that class 1 ASNase showed high conservation in
the tertiary structure even with low amino acid identity, suggesting a common evolutionary
ancestry [12]. When comparing the ASNase from P. cerradense with the two clinically
approved ASNases, a higher structural similarity is presented to the D. chrysanthemi enzyme.
This similarity may suggest a closer functional behavior to D. chrysanthemi ASNase than to E.
coli. For the fungi under study, the structural similarity is consistent with the characteristic
of a grouping of the evolutionary relationship for the enzyme ASNase and the formation of
a paraphyletic group.

The epitope density was applied to evaluate the immunogenicity of the enzyme
ASNase from P. cerradense, related to T-cell and B-cell responses, and, in parallel, the study
evaluated allergenicity and toxicity in comparison to commercially available ASNase.
ASNase from P. cerradense showed similar or less T-cell/B-cell immunogenicity compared
with the E. coli and D. chrysanthemi ASNase. While the density of epitopes presented was
close, the structural distribution of the allergenic epitopes of the ASNase from P. cerradense
was not the same when compared with the enzymes produced by E. coli and D. chrysanthemi,
which could predispose to a different pattern of response to allergenicity. It might be
possible to infer that Penicillium cerradense’s ASNase immunologic safety required for clinical
use is similar to those already marketed. However, in vitro and/or in vivo evaluation
is needed to confirm these assumptions. The results of this analysis can help in the
biotechnological improvement of new fungal ASNases like the one presented in this study
from P. cerradense, if they show promising clinical responses. To its advantage, the ASNase
from P. cerradense presents itself as a non-toxic protein, different from E. coli’s that contains
a highly toxic region responsible partly for its adverse effects [55].

This study shows that there were no significant differences in the level of immuno-
genicity between fungal and bacterial ASNase in the studied species. In contrast, bacterial
ASNase from D. chysanthemi showed a higher relative frequency of T-cell and allergenic
epitopes, and E. coli showed a higher relative frequency of B-cell epitopes. Penicillium
and Aspergillus ASNase presented a degree of immunogenicity compatible with clinical
use, and this study observed that immunogenicity seems to be associated with the species
but presents an individuality of behavior for each enzyme. Among the studied enzymes,
the best results regarding the prediction of the immunogenic response were achieved by
P. steckii ASNase.

Hypersensitivity reactions caused by ASNase from E. coli have been widely studied
in vivo [60–62]. However, there has been too little research in this area relating to fungal
ASNase. The data presented in this study may help further research on the clinical use
of fungal ASNase and provide a solution with less immunogenic response. Evaluating
the general results of hypersensitivity, fungal ASNase has the potential to be applied as a
clinical first choice, especially replacing the enzyme produced by D. chysanthemi.
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The data obtained in this work present the properties of P. cerradense ASNase and pre-
dict its possible cellular immune responses, improving the understanding of its molecular
structure, and complementing the initial research about the production of this enzyme
previously presented by our group [29]. Overall, the data presented are relevant to pave
the way toward the understanding of the functional behaviors of ASNase from the genus
Penicillium, in comparison with commercially available ASNase used in the treatment of
ALL (E. coli and D. chrysanthemi). The results of these predictions will help to develop
strategies to reduce adverse immune responses to this enzyme. Techniques based on struc-
tural modifications may bring answers and more effective approaches to ASNase enzyme
treatments.

4. Materials and Methods
4.1. Microorganisms and L-Asparaginase Gene Sequences

Previously, we isolated a fungus from the Brazilian savannah soil and identified it as a
new species of the genus Penicillium. This fungus, P. cerradense, was identified as a producer
of ASNase [29]. The enzyme gene sequence deposited under accession code MT742156 in
NCBI GenBank was used in the present research.

Amino acid structures and sequences of E. coli (3ECA) and D. chrysanthemi (2JK0)
ASNase obtained from the Protein Data Bank (PDB) were used as the standard for the
clinically available enzymes. The NCBI accession codes of other Penicillium species used
in the present work as sources of ASNase were P. chrysogenum (XP_002563013), P. digita-
tum (XP_014538187.1), P. griseofulvum (KXG45967.1), P. italicum (KGO77393.1), P. steckii
(OQE28485.1), and P. sizovae (MW291568). After the phylogenetic results, we added AS-
Nase of species from the Aspergillus genus because of their evolutionary proximity with
P. cerradense. The species and NCBI accession codes were A. idologenus (PYI32151.1), A.
ibericus (XP_025570260.1), A. sclerotiicarbonarius (PYI04731.1), and A. niger (XP_001389884.1).
Some of the selected species that showed experimental ASNase activity (P. chrysogenum,
P. digitatum, P. sizovae and A. niger [17,63–65]), while the others (P. griseofulvum [66], P.
italicum [67], P. steckii [68], A. idologenus, A. ibericus and A. sclerotiicarbonarius [69]) had their
ASNase sequence identified through their genome studies. All sequences are listed in
List S1.

4.2. In Silico Analysis of L-Asparaginase from P. cerradense

The obtained nucleotide sequence was translated using the Expasy translation tool
and analyzed through database sequences using NCBI BLAST. The deduced amino acid
sequence’s molecular masses, theoretical pI values, and other physicochemical proper-
ties were predicted using Expasy’s ProtParam tool (https://web.expasy.org/protparam/
accessed on 1 August 2023). SignaIP 5.0 [32] was used to predict the presence of any
signal peptide in the translated sequence. The result was confirmed using Phobius
(https://phobius.sbc.su.se/ accessed on 1 August 2023) [33]. Evolutionary analysis of
the proteins was performed from 35 protein representatives with ASNase predicted activity
that had some degree of similarity to the ASNase from P. cerradense obtained from the Gen-
BanK/PSIBlast. Sequence alignment was performed considering the conserved domain of
ASNase through the IQ-TREE (version 2.2.0) [70] software using the maximum likelihood
method, using the Q.yeast+R3 model with 1000 bootstrap replicates. E. coli (ETI79984.1)
was chosen as an outgroup for the analysis. In addition, to determine the type of ASNase (I
or II) from P. cerradense, the NCBI’s conserved domain database (CDD) and the EMBL-EBI
InterPro tool (https://www.ebi.ac.uk/interpro/ accessed on 1 August 2023) were used
for superfamily and protein domain analysis. Functional sites and motifs were inspected
with Prosite/ExPASy (https://prosite.expasy.org/ accessed on 1 August 2023). The hinge
region (HR) and active-site flexible loop (ASFL), essential regions to the stabilization of the
catalytic site [37], were aligned and compared.

https://web.expasy.org/protparam/
https://phobius.sbc.su.se/
https://www.ebi.ac.uk/interpro/
https://prosite.expasy.org/
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4.3. Prediction of the Molecular Structure and Insights of L-Asparaginase from P. cerradense

Molecular modeling of the three-dimensional structure was performed using Al-
phaFold2 software v1.5.5 [38,39] (DeepMind/EMBL accessed on 1 July 2023). The reliability
of the proposed three-dimensional homology model was evaluated via Ramachandran
analysis using Verify3D accessed on July 2023 [71].

Molecular prediction of the oligomeric structure was performed using SWISS-MODEL
software (https://swissmodel.expasy.org/ accessed on 1 June 2023). The parameters for
reliability of the in silico evaluation were GMQE (global model quality estimation) [72],
QME-ANDisCo (qualitative model energy analysis with distance constraints) [73], and
QSQE (quaternary structure quality estimate) [74] in SWISS-MODEL.

4.4. Pairwise Structural Alignments L-Asparaginases

For structural comparison between the enzyme ASNase from P. cerradense and the
sources of ASNase available for clinical use, the files of protein structures from E. coli
(3ECA) and D. chrysanthemi (2JK0) obtained from the Protein Data Bank (PDB) were used.
Pairwise structure alignment was performed using the web service available at RCSB
PDB (Research Collaboratory for Structural Bioinformatics PDB) (https://www.rcsb.org/
alignment accessed on 1 July 2023) with the jFATCAT—flexible algorithm. Alignment
evaluation parameters were RMSD (root-mean-square deviation) and TM score with scores
between 0 and 1, where values > 0.5 represent models with the same protein fold.

4.5. Sequence-Structure Conservation of Fungal L-Asparaginases

Multiple sequence alignment using 3D structure support was performed using the
T-Coffee Expresso web server (https://tcoffee.crg.eu/apps/tcoffee/do:expresso accessed
on 1 April 2023). P. cerradense ASNase was used as the template for the alignment and
superposition of the other species’ enzymes. Mapping of structure sequences’ conservation
was performed using the UCSF Chimera program. Visualization of sequence conservation
onto molecular structures was performed using the UCSF Chimera program [75].

4.6. Prediction of Epitopes in T-Cells and Determination of Epitopes Density

The MHC-II binding predictions from the Immune Epitope Database (IEDB) (http:
//tools.iedb.org/mhcii/) were used for T-cell epitope prediction. The IEDB-recommended
(2023.05—NetMHCIIPan 4.1 EL) method for the program was selected [76]. The method
used was NetMHCIIPan 4.1 EL, consisting of a neural network that predicted the MHC
binding values from an amino acid sequence, based on a training set of peptide-MHC
class II quantitative binding data covering thousands of human MHC molecules, including
HLA-A, HLA-B, HLA-C, HLA-E, and HLA-G [76].

Peptides predicted as immunogenic epitopes were linearly established by percentile < 2
(“strong binder”) and < 10 (“weak binder”). For epitope density determination, the relative
frequency calculation (Equation (1)) was used:

fi = ni/N = ni/(Σjnj) (1)

where ni = number of predicted immunogenic epitopes, N = total number of epitopes pre-
dicted by the program, and Σjnj = epitopes predicted immunogenic and non-immunogenic.

The epitope density of each protein was determined for the alleles HLA-DRB1*01:01,
HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-DRB1*07:01, HLA-DRB1*08:01, HLA-DRB1*11:01,
HLA-DRB1*13:01, and HLA-DRB1*15:01. These alleles were selected for prediction with
reference to their high global distribution [48,49] and conferral of high-affinity binding to
ASNase epitopes, causing various immunogenic reactions [50]. The prediction of T-cell
epitope density allows the inference of the degree of immunogenicity (DI) [42–44]. This
measurement alternative conceptualizes and compares a more immunogenic protein with
another, determining whether the epitope density is greater. In this regard, evaluating

https://swissmodel.expasy.org/
https://www.rcsb.org/alignment
https://www.rcsb.org/alignment
https://tcoffee.crg.eu/apps/tcoffee/do:expresso
http://tools.iedb.org/mhcii/
http://tools.iedb.org/mhcii/
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the immunogenicity of proteins of therapeutic value has commonly used the density of
epitopes as an indicator, inferring the degree of immunogenicity [45–47].

4.7. Prediction of T-Cell Epitopes Allergenicity

The prediction of the allergenicity that can be induced by the ASNase from P. cer-
radense, E. coli, and D. chrysanthemi was performed using the software AllerTOP v.2.0
(https://www.ddg-pharmfac.net/AllerTOP/ accessed on 1 July 2023) [77]. This software
evaluated each of the T-cell epitopes predicted to be immunogenic for the HLA-DRB1*07:01
allele. The possible endpoints provided were “probable allergen” and “likely non-allergen”.
The relative frequency of allergen epitopes was calculated by dividing the number of
immunogenic epitopes for the HLA-DRB1*07:01 allele over the total number of immuno-
genic epitopes previously determined for this allele, as described for each ASNase in the
previous section.

4.8. Prediction of Epitopes in B-Cells and Toxicity

The prediction of B-cell epitopes (conformational epitopes) was performed using the
BepiPred-3.0 server: (https://services.healthtech.dtu.dk/services/BepiPred-3.0/ accessed
on 1 July 2023) [78] from the DTU Health Tech resource database. To assess toxicity,
the webserver ToxinPred (http://crdd.osdd.net/raghava/toxinpred/ accessed on 1 July
2023) [79] was used to predict toxic/non-toxic peptides.

4.9. Epitope Mapping

Epitope mapping was performed in monomeric structures modeled of ASNase with
Dassault Systèmes BIOVIA (https://www.3ds.com/products-services/biovia/ accessed
July 2023). BIOVIA Discovery Studio v. 2021 was used to generate the graphical results [80].

4.10. Statistical Analysis

GraphPad Prism®Version 6.01 software was used for statistical analysis. The distribu-
tion of the data was evaluated and non-parametric tests were applied (data represented
by median and interquartile ranges). The tests used for each experiment analysis are
described in the legends of the representative graphs. Significant difference was considered
at p-value < 0.05.

5. Conclusions

In silico analysis combined with bioinformatics tools revealed enzyme properties and
predicted the immune responses that might arise from P. cerradense ASNase. This recently
described enzyme shows a similar immunogenic and allergenic pattern compared with the
ASNase already in clinical use. At the same time, it was predicted as a non-toxic protein.
These results may drive strategies to improve the production of this enzyme and lead to
potential production with desirable functional characteristics for enhanced therapeutic
applications in ALL.
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