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Abstract: In the context of our ongoing studies on chromane derivatives as inhibitors of the salicylate
synthase from M. tuberculosis, we isolated a new, unexpected compound from the cyclization of
3-(propargyloxy)-5-benzyloxy-benzoic acid methyl ester. Its molecular structure was elucidated by
means of 1D and 2D NMR analyses, FT-IR, ESI-MS, and HRMS.
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1. Introduction

Chromane is a bicyclic scaffold, ubiquitous in a wide variety of bioactive natural
products and synthetic compounds exhibiting antitumor, anti-inflammatory, antiviral,
antiprotozoal, and antimicrobial effects [1–10]. Among them, some have also shown
moderate-to-good antitubercular activities [11–18].

As part of a project focusing on the design and synthesis of new inhibitors of the
salicylate synthase MbtI from M. tuberculosis [19–26], we investigated several heterocyclic
cores [27–30], including the chroman-4-one and chromane scaffolds [31,32]. Our studies
led to the synthesis of a pool of derivatives, which were tested for their inhibitory effect
towards this target, demonstrating promising activities [31,32].

With the aim of synthesizing 7-hydroxychroman-5-carboxylic acid I (Figure 1), we
attempted the reduction of the corresponding 4-chromanone, following the approach
used in our previous work [31]. However, this hydrogenation reaction, catalyzed by
palladium on barium sulphate, was unsuccessful. The same outcome was obtained using
different catalysts, including palladium on carbon (10%), or other reducing agents, such as
zinc/acetic acid, hydrazine, and tert-butylamine–borane complex. Therefore, we developed
a different strategy, which is discussed in the following paragraphs. This new approach
led to the obtainment of an unexpected byproduct, which was isolated, characterized, and
then used in the following steps to yield a new product (5).
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1. Introduction 
Chromane is a bicyclic scaffold, ubiquitous in a wide variety of bioactive natural 

products and synthetic compounds exhibiting antitumor, anti-inflammatory, antiviral, 
antiprotozoal, and antimicrobial effects [1–10]. Among them, some have also shown mod-
erate-to-good antitubercular activities [11–18]. 

As part of a project focusing on the design and synthesis of new inhibitors of the 
salicylate synthase MbtI from M. tuberculosis [19–26], we investigated several heterocyclic 
cores [27–30], including the chroman-4-one and chromane scaffolds [31,32]. Our studies 
led to the synthesis of a pool of derivatives, which were tested for their inhibitory effect 
towards this target, demonstrating promising activities [31,32]. 

With the aim of synthesizing 7-hydroxychroman-5-carboxylic acid I (Figure 1), we 
attempted the reduction of the corresponding 4-chromanone, following the approach 
used in our previous work [31]. However, this hydrogenation reaction, catalyzed by pal-
ladium on barium sulphate, was unsuccessful. The same outcome was obtained using dif-
ferent catalysts, including palladium on carbon (10%), or other reducing agents, such as 
zinc/acetic acid, hydrazine, and tert-butylamine–borane complex. Therefore, we devel-
oped a different strategy, which is discussed in the following paragraphs. This new ap-
proach led to the obtainment of an unexpected byproduct, which was isolated, character-
ized, and then used in the following steps to yield a new product (5). 
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Figure 1. The desired 7-hydroxychroman-5-carboxylic acid (I) and the unexpected 5-hydroxychro-
man-7-carboxylic acid (5), obtained from a byproduct of the new synthetic approach. 
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2. Results and Discussion

Considering our difficulties in obtaining the desired compound I by the same method
developed for the previous derivatives [31], we implemented a new synthetic pathway,
shown in Scheme 1.
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Scheme 1. Reagents and conditions: (i) CH≡CCH2Br, K2CO3, 18-Crown-6, N2, DMF, 48 h, reflux; (ii) 
CH3OH, PPh3, DIAD, N2, 0 °C→ RT, 24 h or PhCH2Br, K2CO3, N2, 4 h, reflux; (iii) DEA, N2, 24 h, 210 
°C; (iv) 10% H2/Pd-C, MeOH, RT, 6 h; (v) NaOH, H2O/MeOH, 3 h, 58 °C. 

The mono-alkyl methyl benzoate 1 was obtained from the OH alkylation of 3,5-dihy-
droxymethylbenzoate using propargyl bromide, 18-crown-6, and anhydrous potassium 
carbonate in anhydrous dimethylformamide at 80 °C for 48 h. Compound 1 was purified 
from the 3,5 dialkyl derivative by column chromatography. Subsequently, the hydroxyl 
group was protected upon treatment with benzyl bromide, before being cyclized in N,N-
diethyl aniline at 210 °C for 24 h, giving a mixture of compounds 3a and 3b. The hydro-
genation of the mixture of the O-benzyl derivatives using 10% palladium on carbon af-
forded the simultaneous reduction of the double bond and the O-deprotection, giving a 
mixture of compounds 4a and 4b, which were easily separated by column chromatog-
raphy. The obtained methyl esters were separately hydrolyzed to the corresponding car-
boxylic acids under basic conditions, using sodium hydroxide in a water–methanol mix-
ture. The structure of compounds 4a and 4b was studied by mono- and bidimensional 
NMR techniques, ESI-MS, and FT-IR. NOESY experiments were carried out to unequivo-
cally determine the hydroxyl chromane structures (see Supplementary Materials). The 
spectrum of compound 4a revealed a distinct correlation between the OH singlet and the 
two doublets of the aromatic hydrogens, whereas the spectrum of compound 4b dis-
played a weak correlation between the OH and only one of aromatic hydrogens (Figure 
2). Finally, high-resolution mass spectrometry (HRMS) was employed to support the 
NMR and FT-IR analyses, unequivocally confirming the obtainment of the byproduct 5, 
hydrolyzed in basic conditions from 4b. 

 
Figure 2. NOESY spectra of compounds 4a (A) and 4b (B). 
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24 h, 210 ◦C; (iv) 10% H2/Pd-C, MeOH, RT, 6 h; (v) NaOH, H2O/MeOH, 3 h, 58 ◦C.

The mono-alkyl methyl benzoate 1 was obtained from the OH alkylation of 3,5-
dihydroxymethylbenzoate using propargyl bromide, 18-crown-6, and anhydrous potas-
sium carbonate in anhydrous dimethylformamide at 80 ◦C for 48 h. Compound 1 was
purified from the 3,5 dialkyl derivative by column chromatography. Subsequently, the
hydroxyl group was protected upon treatment with benzyl bromide, before being cy-
clized in N,N-diethyl aniline at 210 ◦C for 24 h, giving a mixture of compounds 3a and 3b.
The hydrogenation of the mixture of the O-benzyl derivatives using 10% palladium on
carbon afforded the simultaneous reduction of the double bond and the O-deprotection,
giving a mixture of compounds 4a and 4b, which were easily separated by column chro-
matography. The obtained methyl esters were separately hydrolyzed to the corresponding
carboxylic acids under basic conditions, using sodium hydroxide in a water–methanol
mixture. The structure of compounds 4a and 4b was studied by mono- and bidimensional
NMR techniques, ESI-MS, and FT-IR. NOESY experiments were carried out to unequiv-
ocally determine the hydroxyl chromane structures (see Supplementary Materials). The
spectrum of compound 4a revealed a distinct correlation between the OH singlet and the
two doublets of the aromatic hydrogens, whereas the spectrum of compound 4b displayed
a weak correlation between the OH and only one of aromatic hydrogens (Figure 2). Finally,
high-resolution mass spectrometry (HRMS) was employed to support the NMR and FT-IR
analyses, unequivocally confirming the obtainment of the byproduct 5, hydrolyzed in basic
conditions from 4b.
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3. Materials and Methods

All reagents and solvents were purchased from Sigma-Aldrich/Merck (Merck KGaA,
Darmstadt, Germany). Reactions involving air-sensitive reagents were carried out using
anhydrous solvents, in oven-dried glassware, and under nitrogen atmosphere. The reac-
tions were monitored by TLC analysis on Silica Gel Matrix plates (0.25 nm; Merck), which
were visualized under a UV lamp operating at a wavelength of 254 or 365 nm. When
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necessary, the spots were evidenced using an ethanolic KMnO4 solution. Melting points
were recorded on a Büchi apparatus (Büchi, Flawil, Switzerland) and are uncorrected.

Mono- and bidimensional NMR spectra were recorded at room temperature on a
Varian-Mercury Oxford 300 cryomagnet (Oxford Instruments, Abingdon, UK), operating
at 300 MHz for 1H and 75 MHz for 13C, or on a Bruker Avance 500 (Billerica, MA, USA)
instrument, operating at 500 MHz for 1H and 125 MHz for 13C. Depending on the solubility
of the compound, CDCl3 or DMSO-d6 were used as deuterated solvents for all spectra run.
Chemicals shifts are expressed in ppm (δ) from tetramethylsilane resonance in the indicated
solvents; coupling constants (J-values) are given in Hertz (Hz). 1H signals are reported
in the following order: ppm, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m,
multiplet), number of protons, and assignments. The APT sequence was used to distinguish
methyl and methine signals from those due to methylene and quaternary carbons.

FT-IR spectra were recorded on a SPECTRUM ONE (PerkinElmer, Waltham, MA, USA)
instrument, using the DATA MANAGER v.2 software (Perkin Elmer), between 4000 and
600 cm−1 (liquid samples) or 450 cm−1 (solid samples) performing 8 scans at a resolution
of 4 cm−1. Liquid samples were deposited on NaCl plates, while solids were mixed in a
1:100 w/w ratio with KBr and pressed through a hydraulic press (14 tons) to small tablets.

Mass spectrometry analyses were carried out on a LCQ Advantage (ThermoFisher
Scientific, Waltham, MA, USA), equipped with an ESI electrospray ionization source and
an Ion Trap mass analyzer; ionization: ESI positive or ESI negative; capillary temperature:
250 ◦C; source voltage: 5.50 kV; source current: 4.00 µA; multipole 1 and 2 offset, −5.50 V
and −7.50 V, respectively; intermultipole lens voltage: −16.00 V; trap DC offset voltage:
−10.00 V. The high-resolution mass spectrometry (HRMS) analysis was carried out on a
Q-ToF Synapt G2-Si HDMS system (Waters, Milford, MA, USA).

Synthesis of 3-propargyloxy-5-hydroxy benzoic acid methyl ester (1)

Under a nitrogen flow, 3,5-dihydroxybenzoate (3 g, 17.86 mmol), propargyl bromide
(1.70 g, 14.29 mmol), and 18-crown-6 (0.38 g, 1.43 mmol) were dissolved in dry DMF (94 mL).
Anhydrous K2CO3 (5.43 g, 39.29 mmol) was added, and the reaction was refluxed at 80 ◦C
for 48 h. The mixture was then cooled to room temperature, filtered, and the filtrate was
evaporated under vacuum. The crude product was purified by column chromatography
using a 4:1 mixture of petroleum ether/EtOAc as the eluent. Yield: 30%. TLC (petroleum
ether/EtOAc 8:2): Rf = 0.28. Ivory-colored solid. m.p.: 123–127 ◦C. FT-IR (KBr): ν 3425,
3294, 3282, 2986, 2929, 2876, 2850, 1714, 1605, 1626, 1600, 1496, 1453, 1434, 1376, 1154 cm−1.
1H NMR (300 MHz, DMSO): δ 9.91 (s exch D2O, 1H, OH), 6.99 (dd, J = 2.1, 1.3 Hz, 1H, H2),
6.97 (d, J = 2.2, J = 1.3 Hz, 1H, H6), 6.62 (t, J = 2.2 Hz, 1H, H4), 4.77 (d, J = 2.4 Hz, 2 H, CH2),
3.80 (s, 3H, CH3), 3.57 (t, J = 2.4 Hz, 1H, CH) ppm. 13C NMR (75 MHz, DMSO): δ 166.4,
159.0, 158.8, 131.9, 109.8, 107.5, 106.6, 79.5, 78.9, 56.1, 52.6 ppm. MS (ESI): m/z calcd for
C11H10O4 206.06, found 205.07 [M − H]−.

Synthesis of 3-propargyloxy-5-benzyloxy-benzoic acid methyl ester (2)

To a solution of compound 1 (300 mg, 1.46 mmol) in anhydrous acetone (6 mL),
K2CO3 (500 mg, 3.64 mmol) was added under a nitrogen flow. Benzyl bromide (0.27 mg,
1.6 mmol) was dripped, and the reaction mixture heated at 55 ◦C for 4 h. After cooling
to room temperature, the mixture was filtered and evaporated in vacuum, and the crude
residue was purified by column chromatography using hexane/EtOAc 8:2. Yield: 42%.
TLC (hexane/EtOAc 8:2): Rf = 0.31. Brown solid. m.p.: 123–127 ◦C. FT-IR (KBr): ν 3294,
3278, 3066, 3009, 2949, 2922, 2871, 2843, 1716, 1605, 1475, 1453, 1442, 1384, 1324, 1236,
1161, 1057 cm−1. 1H NMR (300 MHz, DMSO): δ 7.45–7.24 (m, 7H, Harom, H2, H6), 6.80 (t,
J = 2.4 Hz, 1H, H4), 5.08 (s, 2 H, CH2Ph), 4.70 (d, J = 2.4 Hz, 2H, H2), 3.57 (t, J = 2.4 Hz, 1H,
CH) ppm. 13C NMR (75 MHz, DMSO): δ 166.6, 159.8, 158.6, 136.4, 132.1, 128.6, 128.1, 127.5,
109.0, 108.4, 107.4, 75.8, 70.4, 56.1, 52.3 ppm. MS (ESI): m/z calcd for C18H16O4 296.32, found
295.56 [M − H]−.
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Synthesis of methyl 7-(benzyloxy)-2H-chromene-5-carboxylate (3a) and methyl 5-(benzyloxy)-2H-
chromene-7-carboxylate (3b)

Under a nitrogen flow, a solution of compound 2 (180 mg, 0.618 mmol) in N,N-
diethylaniline (2.5 mL, 16.83 mmol) was heated at 210 ◦C for 24 h. After cooling, the mixture
was diluted with diethyl ether (5 mL) and washed (4 × 10 mL) with aq. HCl (5%) and
brine. The organic phase was dried over Na2SO4 and filtered. The crude residue obtained
by evaporation in vacuo was purified by column chromatography using hexane/EtOAc
9:1, affording a mixture of compounds 3a and 3b. Light-yellow oil. Yield: 56%. TLC
(hexane/EtOAc 8:2): Rf= 0.35. FT-IR (KBr): ν 3090, 3066, 3033, 2952, 2918, 2849, 1721, 1609,
1585, 1497, 1454, 1435, 1375, 1302, 1238, 1150, 1029 cm−1. 1H NMR (300 MHz, CDCl3): δ
7.45–7.32 (m, 11H, Harom, H4-3b), 7.22 (m, 2H, H6-3b), 7.13 (d, J = 1.3 Hz, 1H, H6-3a), 6.84 (d,
J = 6.7 Hz, 1H, H4-3a), 6.62 (d, J = 1.3 Hz, 1H, H8-3a), 5.86–5.76 (m, 2H, H3-3a, H3-3b), 5.11 (s,
2H, CH2Ph-3b), 5.05 (s, 2H, CH2Ph-3a), 4.82 (m, 2H, H2-3b), 4.82 (m, 2H, H2-3a), 3.88 (s, 6H,
CH3) ppm. MS (ESI): m/z calcd for C18H16O4 296.10, found 327.80 [M + CH3OH − H]−.

Synthesis of methyl 7-hydroxychromane-5-carboxylate (4a) and methyl 5-hydroxychromane-7-
carboxylate (4b)

A solution of the mixture of 3a and 3b (100 mg, 0.339 mmol) in dry methanol (2.8 mL)
was reduced with hydrogen under atmospheric pressure and room temperature over 10%
Pd/C (18 mg, 0.0017) for 6 h. The catalyst was filtered off on a celite pad, and the solvent
was evaporated under vacuum. The crude residue was purified by column chromatography
using cyclohexane/isopropanol 9:1, affording 4a as a pale-yellow oil, yield 30%, and 4b as
a pale-yellow oil, yield 40%. TLC (cyclohexane/isopropanol 9:1): Rf for 4a = 0.30 and Rf for
4b = 0.24. FT-IR for 4a (KBr): ν 3395, 2952, 2877, 2843, 1716, 1699, 1615, 1589, 1470, 1453,
1436, 1385, 1313, 1271, 1229, 1142, 1073 cm−1. 1H NMR (300 MHz, CDCl3) for 4a: δ 7.00 (d,
J = 2.7 Hz, 1H, H6), 6.49 (d, J = 2.7 Hz, 1H, H8), 5.09 (broad s exch D2O, 1H, OH), 4.20–4.15
(m, 2H, H2), 3.87 (s, 3H, CH3), 2.71 (t, J = 6.6 Hz, 2H, H4), 2.05–1.84 (m, 2H, H3) ppm. 13C
NMR (75 MHz, CDCl3) 4a: δ 167.5, 156.4, 154.0, 131.1, 116.8, 110.3, 107.8, 66.2, 51.9, 23.4,
22.3 ppm. FT-IR for 4b (KBr): ν 3433, 3353, 2947, 2870, 2845, 1693, 1615, 1586, 1467, 1435,
1423, 1383, 1308, 1269, 1228, 1142, 1073 cm−1. 1H NMR (300 MHz, CDCl3) for 4b: δ 7.09 (d,
J = 1.8 Hz, 1H, H8), 7.08 (d, J = 1.8 Hz, 1H, H6), 5.45 (broad s exch D2O, 1H, OH), 4.28–3.99
(m, 2H, H2), 3.87 (s, 3H, CH3), 3.00 (t, J = 6.6 Hz, 2H, H4), 2.05–1.97 (m, 2H, H3) ppm. 13C
NMR (75 MHz, CDCl3) for 4b: δ 166.8, 156,4, 154.1, 128.5, 115.3, 110.8, 107.3, 66.2, 52.1, 21.4,
19.4 ppm.

Synthesis of 7-hydroxychromane-5-carboxylic acid (I)

A solution of powdered NaOH (6 mg, 0.142 mmol) in a mixture of water (1 mL) and
methanol (0.4 mL) was added to compound 4a (10 mg, 0.048 mmol) and stirred at 55 ◦C
for 3 h. After the evaporation of methanol under reduced pressure, the pH of the solution
was adjusted to pH 3–4, by the addiction of 1 M HCl, and the precipitate was recovered
by filtration. Yield: 65%. Light-brown solid. TLC (hexane/EtOAc 1:1): Rf = 0.13. FT-IR
(KBr): ν 3362, 3070, 2918, 2849, 1688, 1615, 1585, 1489, 1457, 1427, 1384, 1354, 1306, 1275,
1241, 1138 cm−1. 1H NMR (300 MHz, DMSO): δ 12.70 (broad s exch D2O, 1H, COOH), 9.42
(broad s exch D2O, 1H, OH), 6.79 (d, J = 2.6 Hz, 1H, H6), 6.30 (d, J = 2.6 Hz, 1H, H8), 4.04
(t, J = 4.08 Hz, 2H, H2), 2.83 (t, J = 6.5 Hz, 2H, H4), 1.86–1.78 (m, 2H, H3) ppm. 13C NMR
(125.75 MHz, DMSO): δ 168.8, 156.3, 156.0, 114.5, 110. 3, 108.8, 107.1, 66.0, 23.3, 22.4 ppm.
MS (ESI): m/z calcd for C10H10O4 194.06, found 193.19 [M − H]−.

Synthesis of 5-hydroxychromane-7-carboxylic acid (5)

A solution of powdered NaOH (12 mg, 0.284 mmol) in a mixture of water (1 mL) and
methanol (0.4 mL) was added to compound 4b (20 mg, 0.096 mmol) and stirred at 55 ◦C
for 3 h. After the evaporation of methanol under reduced pressure, the pH of the solution
was adjusted to pH 3–4 by the addition of 1 M HCl, and the precipitate was recovered by
filtration. Yield: 77%. Light-brown solid. TLC (hexane/EtOAc 1:1): Rf = 0.14. FT-IR (KBr):
ν 3396, 3206, 3077, 2949, 2927, 2871, 2855, 1682, 1614, 1584, 1512, 1424, 1387, 1348, 1307, 1269,
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1144, 1072, 988 cm−1. 1H NMR (300 MHz, DMSO): δ 12.62 (broad s exch D2O, 1H, COOH),
9.72 (broad s exch D2O, 1H, OH), 6.89 (s, 1H, H6), 6.72 (s, 1H, H8), 4.04 (t, J = 4.09 Hz, 2H,
H2), 2.54 (t, J = 6.4 Hz, 2H, H4), 1.90–1.82 (m, 2H, H3) ppm. 13C NMR (75 MHz, DMSO-d6):
δ 167.7, 156.2, 155.8, 129.7, 115.5, 108.8, 107.3, 66.0, 21.5, 19.7 ppm. HRMS (ESI/Q-ToF): m/z
calcd for [C10H10O4 − H]− 193.0501, found 193.0502.

4. Conclusions

Methyl 5-(benzyloxy)-2H-chromene-7-carboxylate was obtained as a side product
from the cyclization of 3-(propargyloxy)-5-benzyloxy-benzoic acid methyl ester. After
simultaneous deprotection of the hydroxyl group and double-bond reduction, the purified
compounds were characterized by spectroscopic methods (FT-IR, 1H and 13C NMR, NOESY,
and HSQC). HRMS analysis of the corresponding carboxylic acid was also performed to
definitively confirm its identity.

Supplementary Materials: The following are available online, 1H NMR, 13C NMR, FT-IR, ESI-MS
spectra of all compounds, H-H NOESY NMR spectra of compounds 4a and 4b, and HRMS of
compound 5.
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