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Abstract: The reaction of (Z)-5-phenyl-1,3-di-p-tolylpent-2-en-4-yn-1-ol (1) with trimethylsilyl chloride
in dichloromethane at ambient temperature gave a dimeric ether compound 2 in 30% yield. Subse-
quently, heating 2 in toluene under refluxing temperature rendered the title compound quantitatively.
The structure of this tricyclic-fused compound was characterized using NMR, mass spectroscopy,
and X-ray crystallography. This unique linear tricyclic fused furan framework is reported for the
first time.
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1. Introduction

Derivatives of cyclopenta[a]pentalenes (I) are a family of tricyclic compounds com-
posed of three fused cyclopentane rings, and such a skeleton is found in natural prod-
ucts [1–5]. However, the corresponding heterocycles, such as pentaleno[1,2-c]pyrrole (II)
or pentaleno[1,2-c]furan (III), are less studied (Figure 1). Amongst, Lycopalhine A with
an aza-heterocycle is the only natural product found in fawcettiminetype Lycopodium
alkaloid [6,7]. For the furan derivative III, it has never been reported either in natural
products or in synthetic targets.

 
 

 

 
Molbank 2024, 2024, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/molbank 

Short Note 

5,6-Diphenyl-1,3,4,7-tetra-p-tolyl-1,3,3a,7a-tetrahydropen-
taleno[1,2-c]furan 
Shu-Kai Chen, Yi-Hung Liu and Shiuh-Tzung Liu * 

Department of Chemistry, National Taiwan University, Taipei 106, Taiwan;  
ddanielchen0103@gmail.com (S.-K.C.); yuliu@ntu.edu.tw (Y.-H.L.) 
* Correspondence: stliu@ntu.edu.tw; Tel.: +886-2-33661661 

Abstract: The reaction of (Z)-5-phenyl-1,3-di-p-tolylpent-2-en-4-yn-1-ol (1) with trimethylsilyl chlo-
ride in dichloromethane at ambient temperature gave a dimeric ether compound 2 in 30% yield. 
Subsequently, heating 2 in toluene under refluxing temperature rendered the title compound quan-
titatively. The structure of this tricyclic-fused compound was characterized using NMR, mass spec-
troscopy, and X-ray crystallography. This unique linear tricyclic fused furan framework is reported 
for the first time. 

Keywords: pentaleno[1,2-c]furan; tricyclic fused rings; heterocycle 
 

1. Introduction 
Derivatives of cyclopenta[a]pentalenes (I) are a family of tricyclic compounds com-

posed of three fused cyclopentane rings, and such a skeleton is found in natural products 
[1–5]. However, the corresponding heterocycles, such as pentaleno[1,2-c]pyrrole (II) or 
pentaleno[1,2-c]furan (III), are less studied (Figure 1). Amongst, Lycopalhine A with an 
aza-heterocycle is the only natural product found in fawcettiminetype Lycopodium alka-
loid [6,7]. For the furan derivative III, it has never been reported either in natural products 
or in synthetic targets. 
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Figure 1. Structures of linear tricyclic 5/5/5 ring systems and Lycopalhine A. 

Several synthetic approaches and reactions leading to derivatives of I and II have 
been developed in the past [1–5,8–10]. In a previously work, we investigated whether 
treatment of pent-1-en-3-yn-1-ol (IV) with anilines in the presence of Lewis acid provided 
the tricyclic compound VI directly (Scheme 1) [11]. Presumably, the substitution of aniline 
with IV followed by dimerization took place to give V, which then underwent cascade 
cyclization to yield the tricyclic pentaleno[1,2-c]pyrrole ring systems VI. Compound VI 
was able to proceed the dehydrogenation to render the fully conjugated pentaleno[1,2-
c]pyrrole molecule VII. The success of this methodology is the formation of dimeric in-
termediate V, giving the desired carbon framework. 
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Figure 1. Structures of linear tricyclic 5/5/5 ring systems and Lycopalhine A.

Several synthetic approaches and reactions leading to derivatives of I and II have
been developed in the past [1–5,8–10]. In a previously work, we investigated whether
treatment of pent-1-en-3-yn-1-ol (IV) with anilines in the presence of Lewis acid provided
the tricyclic compound VI directly (Scheme 1) [11]. Presumably, the substitution of aniline
with IV followed by dimerization took place to give V, which then underwent cascade
cyclization to yield the tricyclic pentaleno[1,2-c]pyrrole ring systems VI. Compound VI was
able to proceed the dehydrogenation to render the fully conjugated pentaleno[1,2-c]pyrrole
molecule VII. The success of this methodology is the formation of dimeric intermediate V,
giving the desired carbon framework.
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Scheme 1. Synthetic scheme leading to pentaleno[1,2-c]pyrrole VII. 

Based on the above observations, we envisioned that if one can have an ether analog 
VIII, then it might undergo a similar cascade cyclization, which would eventually lead to 
the desired furan derivative X (Scheme 2). Here, we would like to demonstrate this idea 
and to obtain the tricyclic pentaleno[1,2-c]furan molecule. 

 
Scheme 2. Proposed approach leading to the target molecule. 

2. Results 
2.1. Synthesis of Dihydropentaleno[1,2-c]furan 3 

Scheme 3 illustrates the synthetic approach leading to the target molecule 3. The syn-
thetic sequence commenced from the readily available pent-2-en-4-yn-1-ol 1, which was 
prepared according to our previously reported procedure by the addition of phenylacety-
lide to (E)-1,3-di-p-tolylprop-2-en-1-one followed by acid-catalyzed rearrangement 
[11,12]. Treatment of 1 with trimethylsilyl chloride at room temperature provided the di-
meric ether 2 in 30% yield [13]. The reactant was totally consumed, giving various prod-
ucts, as indicated using a TLC analysis. Attempts to improve the yield of 2 was in vain 
even with the use of various Lewis acids such as TiCl4, BF3, and Me3SiBr. Upon chromato-
graphic purification, compound 2 was obtained as viscous liquid in 30% yield. Thermal 
heating of 2 in toluene quantitatively rendered the target molecule 3 as a brown solid. 
Unlike the aza-analog VI, compound 3 did not undergo dehydrogenation reaction to form 
a fully conjugated system. 
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Scheme 1. Synthetic scheme leading to pentaleno[1,2-c]pyrrole VII.

Based on the above observations, we envisioned that if one can have an ether analog
VIII, then it might undergo a similar cascade cyclization, which would eventually lead to
the desired furan derivative X (Scheme 2). Here, we would like to demonstrate this idea
and to obtain the tricyclic pentaleno[1,2-c]furan molecule.
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Scheme 2. Proposed approach leading to the target molecule.

2. Results
2.1. Synthesis of Dihydropentaleno[1,2-c]furan 3

Scheme 3 illustrates the synthetic approach leading to the target molecule 3. The syn-
thetic sequence commenced from the readily available pent-2-en-4-yn-1-ol 1, which was pre-
pared according to our previously reported procedure by the addition of phenylacetylide to
(E)-1,3-di-p-tolylprop-2-en-1-one followed by acid-catalyzed rearrangement [11,12]. Treat-
ment of 1 with trimethylsilyl chloride at room temperature provided the dimeric ether 2 in
30% yield [13]. The reactant was totally consumed, giving various products, as indicated
using a TLC analysis. Attempts to improve the yield of 2 was in vain even with the use of
various Lewis acids such as TiCl4, BF3, and Me3SiBr. Upon chromatographic purification,
compound 2 was obtained as viscous liquid in 30% yield. Thermal heating of 2 in toluene
quantitatively rendered the target molecule 3 as a brown solid. Unlike the aza-analog VI,
compound 3 did not undergo dehydrogenation reaction to form a fully conjugated system.
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2.2. Characterization

Mass spectrum of compound 3 shows a [M + H]+ ion at m/z = 659.328, which is
in consistent with the molecular formula of C50H42O. Besides the signals for aromatic
region, the 1H NMR of 3 in CDCl3 illustrates four signals corresponding to the protons
on the furan ring. Among them, three sets of signals do show coupling interactions to
each other, and there are signals at δ 5.33 (d, J = 7.7 Hz, H-1), 4.69 (dd, J = 7.7 Hz, 6.0 Hz,
H-7a), and 4.27 (d, J = 6.0 Hz, H-3a), indicating that these protons are seated in cis fashion
(Figure 2). On the other hand, a shift at δ 5.51 appears to be a singlet, which is assigned
to be H-3 trans to the above-mentioned protons (Figure 2 and Figure S1 in Supplementary
Materials). Based on 1H NMR assignment, the relative configuration along the furan ring is
concluded. Nevertheless, this observation is further confirmed using X-ray crystallography
(see Section 2.3). In addition, four singlets due to the methyl groups of tolyl moieties were
observed at δ 2.37, 2.29, 2.14, and 2.12, respectively. All these information readily support
the structure proposed.
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Figure 2. 1H NMR assignment for protons on the furan ring (numbers given for carbons are according
to the nomenclature).

2.3. Crystallography

The solid state structures of 3 was determined using a single-crystal X-ray diffraction
analysis to reveal the structural details including the stereochemistry. ORTEP plot of 3 is
shown in Figure 3A, and the relevant structural parameters are summarized in Table S5.
The molecule comprises three fused five-member rings, namely furan ring (O1, C1, C2, C9,
C10; A ring), cyclopentene ring (C2, C3, C4, C8, C9; B ring), and cyclopentadiene ring (C4,
C5, C6, C7, C8; C ring). All bond lengths and bond angles in 3 are in normal ranges, as
expected (Table S3 in Supplementary Materials).

The furan ring adopts an envelope conformation, which is supported by the obser-
vation of both torsional angles of O1-C10-C9-C2 and O1-C1-C2-C9 in [14.63(14)◦] and
[26.83(14)◦], respectively (Table S5 in Supplementary Materials). The two fused cyclo-
pentene/pentadiene rings (B and C rings) are almost coplanar (Figure 3B), as evidenced
by the smaller torsional angles around both B and C rings (Table S5 in Supplementary
Materials). Hydrogen atoms at C1, C2, and C9 are all pointed to the same side, i.e., cis to
each other, whereas the hydrogen at C10 is seated to the opposite side. This is consistent
with NMR spectroscopic analysis.
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3. Materials and Methods
3.1. General

All the chemicals were commercially purchased and used without further purification.
Flash chromatography was performed using silica gel 230–400 mesh. 1,3,5-triarylpent-2-en-
4-yn-1-ol 1 was prepared according to the reported procedure [11,12]. 1H and 13C NMR
were recorded in a 400 MHZ spectrometer in CDCl3 referenced to TMS. Melting points
were determined on a Fargo MP-1D instrument. Unless otherwise noted, all the reactions
were performed without any special precautions.

3.2. Synthesis
3.2.1. (2Z,2′Z)[1′,3′-Ditolyl-5′-phenyl-pent-2′-en-4′-ynoxy]-1,3-ditolyl-5-phenyl-pent-
2-en-4-yne 2

A mixture of enynol 1 (33.8 mg, 0.1 mmol) and Me3SiCl (0.5 mg, 4.6 × 10−3 mmol) in
dichloromethane (1 mL) was stirred at room temperature for 20 h. Upon the consumption of
enynol checked using TLC, water (5 mL) was added and extracted with ether (20 mL × 2).
All extracts were combined, dried with anhydrous magnesium sulfate, and concentrated
under reduced pressure. The residue was chromatographed on silica gel with elution of
hexane/ethyl acetate (100:1). The desired product was collected and concentrated as brown
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oil (19 mg, 0.03 mmol, 30%). 1H NMR (400 MHz, CDCl3, 300 K): δ 7.48 (d, J = 8.2 Hz, 4H),
7.44 (d, J = 8.2 Hz, 4H), 7.18–7.12 (m, 14H), 7.06 (dd, J = 7.9, 0.5 Hz, 4H), 6.54 (dd, J = 9.1,
0.5 Hz, 2H), 5.90 (d, J = 9.1 Hz, 2H), 2.32 (s, 6H), 2.28 (s, 6H); 13C{1H} NMR (100 MHz,
CDCl3, 300 K): δ 138.4, 137.8, 137.1, 136.4, 134.3, 131.5, 129.2, 128.9, 128.0, 126.6, 126.2, 124.7,
123.1, 96.1, 86.3, 77.5, 21.1, 21.0. HRMS (ESI-TOF) m/z: [M + H]+ Calcd. for C50H43O:
659.3314, found: 659.3310.

3.2.2. (5,6-Diphenyl-1,3,4,7-tetra-p-tolyl-1,3,3a,7a-tetrahydropentaleno[1,2-c]furan 3

A solution of 2 (66.9 mg, 0.2 mmol) in toluene was heated to reflux for 20 h. The
reaction was monitored using TLC to the consumption of substrate. After the removal of
the solvents, the residue was filtrated through silica gel with the elution of hexane. Upon
concentration, the desired compound was obtained as a red solid (66.9 mg, 0.2 mmol, 100%).
mp 202–203 ◦C; 1H NMR (CDCl3, 300 K) δ 7.35 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H),
7.10–7.06 (m, 5H), 7.02–6.96 (m, 7H), 6.92 (t, J = 7.8 Hz, 2H), 6.77 (t, J = 7.6 Hz, 4H), 6.50
(d, J = 8.4 Hz, 2H), 6.47 (d, J = 8.4 Hz, 2H), 5.51 (s, 1H), 5.33 (d, J = 7.8 Hz, 1H), 4.69 (dd,
J = 7.7, 6.2 Hz, 1H), 4.27 (d, J = 6.2 Hz, 1H), 2.37 (s, 3H), 2,29 (s, 3H), 2.14 (s, 3H), 2.12 (s, 3H);
13C{1H} NMR (100 MHz, CDCl3, 300 K):δ 154.6, 151.7, 147.8, 147.2, 138.8, 137.9, 136.7, 136.5,
136.3, 135.7, 135.3, 132.7, 131.7, 130.5, 130.3, 130.2, 129.1, 128.9, 128.5, 128.0, 127.5, 127.4,
127.2, 126.3, 125.9, 125.7, 125.5, 82.1, 81.4, 65.6, 50.1, 21.1, 21.1, 21.0, 20.9; HRMS (ESI-TOF)
m/z: [M + H]+ Calcd. for C50H43O: 659.3314, found: 659.3288.

3.3. Crystal Structure Determination

Crystals suitable for X-ray determination were obtained for 3 using recrystalliza-
tion from dichloromethane and hexane at room temperature. Cell parameters were
determined using a Bruker AXS D8 VENTURE, PhotonIII_C28 diffractometer. Crystal
data of 3: C50H42O, Mw = 658.83, Monoclinic, space group P21/n; a = 16.4711(10) Å,
b = 9.1373(6) Å, c = 25.0870(15) Å, α = 90◦, β = 106.575(3)◦, γ = 90◦; V = 3618.7(4) Å3;
Z = 4; ρcalcd. = 1.209 Mgm−3; F(000) = 1400; Crystal size: 0.35 × 0.080 × 0.020 mm3;
reflections collected: 77656; independent reflections: 7628 [R(int) = 0.0644]; θ range
2.877 to 78.600◦; goodness-of-fit on F2 1.051; Final R indices [I > 2 sigma(I)] R1 = 0.0487,
wR2 = 0.1259; R indices (all data) R1 = 0.0616, wR2 = 0.1365. The structure was solved
using the SHELXS-97 program [13] and refined using the SHELXL-97 program [14] using
full-matrix least-squares on F2 values. The X-ray crystallographic data for 3 have been
deposited in the Cambridge Crystallographic Data Center with CCDC reference number
2341418. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/
retrieving.html (accessed on 19 March 2024), or from the Cambridge Crystallographic
Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail:
deposit@ccdc.cam.ac.uk.

4. Conclusions

We demonstrated a method for the synthesis of 5,6-diphenyl-1,3,4,7-tetra-p-tolyl-
1,3,3a,7a-tetrahydropentaleno[1,2-c]furan, which is a compound composed of three fused
five-member rings. The structure of the obtained compound was fully characterized using
spectroscopic methods and X-ray single crystallography. Compound 3 is a derivative of
pentalenes, which can be used as ligands for transition metal complexes or building blocks
for organic synthesis.

Supplementary Materials: Table S1. Crystal data and experimental details for 3; Table S2. Atomic
coordinates and equivalent isotropic displacement parameters for 3; Table S3. Bond lengths [Å] and
angles [◦] for 3; Table S4. Anisotropic displacement parameters (Å2 × 103) for 3; Table S5. Selected
bond distances (Å), bond angles (deg) and torsional angle (deg); Figure S1. 1H NMR spectrum of
compound 3 in CDCl3; Figure S2. 13C NMR spectrum of compound 3 in CDCl3; and Figure S3. Mass
spectrum of 3.
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