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Abstract: A metallacyclic maltol-tethered organometallic Ir(III) half-sandwich complex was synthe-
sized as an analog of the ruthenium anticancer complexes (RAPTA/RAED) to evaluate its in vitro
antiproliferative activity against various human cancer cell lines.
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1. Introduction

In the search for promising analogs of platinum-based anticancer drugs, studies
of compounds of various metals are still ongoing. In 2021, the FDA approved the first
ruthenium compound, named BOLD-100, as an orphan drug for the treatment of gastric
cancer. Recently, iridium has shown promising potential as a metal for cancer therapy.
Several iridium complexes have been prepared and tested for their antitumor activity [1–3],
including analogs of ruthenium lead compounds [2]. Some iridium complexes have shown
high antitumor activity at nanomolar and micromolar concentrations in in vitro [4–7]
and in vivo [4,6] tests. In addition, studies have shown that iridium compounds can
effectively induce apoptosis in tumor cells [5,8,9], lead to an increase in the formation of
ROS [4,7,9], and cause cell cycle arrest [4,7] as well as DNA binding [10,11]. A series of
iridium compounds with photocytotoxic properties and good potential as photodynamic
therapy (PDT) anticancer agents [12,13] have also been identified. Furthermore, dual-action
iridium compounds, containing organic moieties with their own biological activity, have
been developed [1,14]. Unfortunately, one of the disadvantages of iridium compounds is
that they tend to undergo ligand exchange reactions. These reactions can lead to decreased
efficiency of the compounds [7,8,10]. It is well known that maltol and its analogs are capable
of forming O,O-chelated complexes [15–17]. Many of the ruthenium complexes obtained
with pyridone ligands exhibit high antitumor activity and good water solubility. However,
O,O-chelated complexes are even more likely to exchange labile halogenide ligands. Also,
in the literature, there are several known iridium O,O,N-metallomacrocycles [18–20].

In this work, an iridium metallacycle with imidazole−pyridone ligand was obtained,
and the stability problem was resolved in the molecular assembly stage by replacing labile
chloride ligands with imidazole.

2. Results

Ligand 1, containing pyridone and imidazole fragments, is capable of coordination
with the iridium atom through both the N atom in the imidazole ring and the O atom in
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the pyridone moiety. A necessary condition for forming O,O-chelate is the preliminary
deprotonation of the ligand. The complex was prepared in two steps (Scheme 1). In the
first step, ligand 1 was deprotonated with sodium methoxide in methanol. This was then
reacted with the dichloro(η5-pentamethylcyclopentadienyl)iridium(III) dimer in the second
step. The reaction mixture was evaporated and precipitated with diethyl ether, and pure
compound 2 was isolated by crystallization from a mixture of methanol and diethyl ether
to yield an orange crystalline solid. The structure of 2 was confirmed by X-ray diffraction
analysis, NMR spectroscopy, and ESI mass spectrometry. The purity of the product was
confirmed by elemental analysis.
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Figure 1. The structure of the target metallacycle 2 (without chloride counterions and solvate mole-
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Scheme 1. Synthesis of a binuclear Ir(III) metallacyclic complex bearing an imidazole−pyridone
ligand.

X-ray diffraction analysis of the complex 2 crystal showed that the complex has a
cationic metallacyclic structure with two iridium centers and two imidazole−pyridone
ligands acting as bridges between the metal atoms (Figure 1). Each of the iridium atoms is
coordinated by the N atom from the imidazole ligands and the O atoms of the maltol moiety.
According to the X-ray diffraction data, the dications in the crystals of the complex are
located at the center of symmetry. The complex crystallizes as solvates, with four methanol
molecules, while the solvate molecules form associates with chloride anions. The main
crystallographic data and refinement parameters are presented in Table S1.
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The ESI mass spectrum of compound 2 recorded in positive ion mode contains signals
corresponding to single charged ions, [M/2-Cl]+ and [M-Cl]+ (Figure S1). The observed
signals are fully consistent with the isotopic pattern calculated for the proposed formulae.

In the 1H NMR spectra of complex 2, a doubling of all types of protons signals is
observed. This can be explained by the conformational mobility of the metallacycle. The
formation of the complex can be observed by a shift in the signals of the imidazole proton
and the pyridone moiety with respect to the starting ligand (1). Moreover, there are
additional signals from the aromatic proton of the iridium center.

The resulting iridium complex (2) exhibits moderate in vitro activity against a number
of tumor cell lines; the complex demonstrated the highest activity on the human ovarian
carcinoma cell line A2780. IC50 values are presented in Table 1 for both complex 2 and
cisplatin as a standard.

Table 1. The 50% inhibitory concentrations of complex 2 and cisplatin. Values are means ± SDs
obtained by the MTT assay (exposure time: 72 h).

Compounds
IC50, µM

A2780 A2780cis A549 HCT116 MCF7

Cisplatin 2.79 ± 0.01 15.09 ± 0.07 6.3 ± 0.7 8.8 ± 0.3 16 ± 2

2 22.8 ± 0.6 67 ± 6 125 ± 10 72.9 ± 0.7 78 ± 4

3. Materials and Methods
General

All commercial reagents were used without further purification. All solvents were
purified and degassed before use. 1H NMR and 13C NMR spectroscopy were performed
at 298 K on a Bruker Avance 600. 1H and 13C NMR spectra were calibrated against the
residual solvent: DMSO-d6. Mass spectra were recorded using a TSQ Endura (Thermo
Scientific, Waltham, MA, USA) mass spectrometer with an electrospray ionization source
(ESI). Single crystals of 2 were investigated on a Bruker D8 QUEST single-crystal X-ray
diffractometer [21–24]. Crystallographic parameters and final residuals for the single-
crystal XRD experiment are given in Table S1. A summary of crystallographic data for the
single-crystal experiment is available from CCDC, ref. number 2332403. The MTT assay
was performed as previously described [25,26].

Synthesis of di-µ-(1-(3-(1H-imidazol-1-yl)propyl)-2-methyl-4-oxo-1,4-dihydropyridin-
3-olate)-bis[(η5-pentamethylcyclopentadienyl)iridium(III)] chloride (Figure 2) is shown
below.
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then, a dichloro(η5-pentamethylcyclopentadienyl)iridium(III) dimer ([Cp*IrCl2]2) (171 mg;
0.21 mmol) was added and stirred for another 12 h. The solution was filtered, and the
solvent was evaporated under vacuum. The resulting residue was dissolved in 1 mL of
methanol, and the impurities were precipitated with diethyl ether. The pure product was
obtained by crystallization from a mixture of methanol and diethyl ether. The resulting
orange crystals were dried in a vacuum.

Yield: 216 mg (85%, Tdec. = 156–161 ◦C).
1H NMR (600.13 MHz, DMSO-d6): δ(ppm) 7.82 (s, 2H, H13, H13`), 7.42 (s, 2H, H11,

H11`), 7.04 (s, 2H, H12, H12`), 6.74 (d, 2H, J = 6.9 Hz, H20, H20`), 6.28 (d, 2H, J = 6.9 Hz,
H21, H21`), 4.33–4.26 (m, 2H, H14, H14`), 4.17–4.11 (m, 2H, H14, H14`), 3.16–3.09 (m, 2H,
H16, H16`), 2.33–2.25 (m, 2H, H16, H16`), 2.21 (s, 6H, H22, H22`), 1.98–1.90 (m, 2H, H15,
H15`), 1.83–1.77 (m, 2H, H15, H15`), 1.62 (s, 30H, H1-H5, H1`-H5`).

13C NMR (150.92 MHz, DMSO-d6): δ (ppm) 175.0 (CO), 164.3 (C18, C18`), 161.2 (C17,
C17`), 138.0 (C13, C13`), 132.6 (C20, C20`), 129.0 (C12, C12`), 120.5 (C11, C11`), 109.3 (C21,
C21`), 82.7 (C6-C10, C6`-C10`), 50.1 (C16, C16`), 44.3 (C14, C14`), 30.0 (C15, C15`), 11.1
(C22, C22`), 8.6 (C1-C5, C1`-C5`).

Elemental analysis calculated for C44H58N6O4Ir2Cl2*1.6 CH2Cl2: C 41.30, H 4.65, N
6.34, found C 40.93, H 4.79, and N 6.00.

ESI-MS: m/z: 560 [M/2-Cl]+, 1155 [M-Cl]+.

Supplementary Materials: The following supporting information can be downloaded: copies of 1H
and 13C NMR and mass spectra; molecular packing, selected crystallographic data, and refinement
parameters for 2 from single-crystal X-ray diffraction.
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