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Abstract: The realization of reducing concrete self-weight is mainly to replace ordinary aggregates
with lightweight aggregates; such replacement usually comes with some intrinsic disadvantages in
concrete, such as high brittleness and lower mechanical properties. However, these shortages can
be effectively remedied by external confinement such as fiber reinforced polymer (FRP) jacketing.
To accurately predict the stress-strain behavior of lightweight concrete with lateral confinement,
it is necessary to properly understand the coupling effects that are caused by diverse aggregates
types and confinement level. In this study, FRP-confined lightweight concrete cylinder with varying
aggregate types were tested under axial compression. Strain gauges and linear variable displacement
transducers were used for monitoring the lateral and axial deformation of specimens during the
tests. By sensing the strain and deformation data for the specimens under the tri-axial loads,
the results showed that the lateral to axial strain relation is highly related to the aggregate types and
confinement level. In addition, when compared with FRP-confined normal weight aggregate concrete,
the efficiency of FRP confinement for lightweight concrete is gradually reduced with the increase of
external pressure. Replace ordinary fine aggregate by its lightweight counterparts can be significantly
improved the deformation capacity of FRP-confined lightweight concrete, meanwhile does not lead
to the reduction of compressive strength. Plus, this paper modified a well-established stress-strain
model for an FRP-confined lightweight concrete column, involving the effect of aggregate types.
More accurate expressions pertaining to the deformation capacity and the stress-strain relation were
proposed with reasonable accuracy.

Keywords: lightweight aggregate concrete; stress-strain behavior; fiber-reinforced polymer (FRP);
strain sensing; confinement; aggregate types

1. Introduction

Lightweight concrete is generally defined as concrete made of ordinary Portland cement (OPC),
water, river sand (or lightweight sand), and lightweight coarse aggregates, and its density is typically
below to 1950 kg/m3 [1]. Consider the growing demand, including high-rise buildings, large-span
concrete structures, and floating structures, lightweight concrete that is made by diverse types
of aggregate has been widely studied and successfully developed and applied over the past two
decades [1–6]. Lightweight concrete offers several advantages, such as saving dead loads for
foundations, high strength/weight ratio, and service as ideal filled materials for sandwich structures.
Thus, lightweight concrete has many potential applications in the construction industry. Nevertheless,
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some drawbacks in lightweight concrete’s natural mechanical properties have limited applications,
especially as load-bearing structural members [6]. At the same mixing ratio and compressive strength,
the brittleness of lightweight concrete is much higher than normal concrete (NC). Plus, the deformation
capacity of lightweight concrete is also poor when compared with NC [7].

Fiber-reinforced polymer (FRP) composites have become a favorite material of professionals
in both engineering and construction due to its advantages. Major ones include lightweight, high
strength, and construction convenience [8–13]. FRP composites provide excellent corrosion resistance,
which keeps costs down and increases the service life of structural materials. [14–23]. FRP jacketing
of concrete has been widely accepted for retrofitting or repairing concrete members, whereby the
strength capacity and ductility of concrete are efficiently enhanced. Numerous related studies have
been demonstrated in the past several decades [2,14,24–36]. The circumferential confinement of FRPs
restrains the transverse expansion of concrete; thus, the strength and ductility of FRP-confined concrete
are notably enhanced when the concrete is subjected to a triaxial compressive load [37–40]. Therefore,
it can be inferred that the problem of high brittleness and the poor ductility of lightweight aggregate
concrete can be effectively solved by using FRP confinement. Thus, FRP application can make it an
effective method to reduce self-weight in structural design. The advantage of composite structure is
that they can fully use the characteristics of the multi-materials [41–43]. However, it also brings more
complicated damage mechanism or confinement mechanism of the composite materials. With the
developing of sensor or monitoring technology, some smart sensors have been successfully used inside
the concrete composite materials to observe the inner damage condition [44–50]. To understand the
damage mechanism of FRP-confined lightweight concrete. It is also necessary to monitor the dilation
behavior that is caused by different aggregate types.

Through literature review, the corresponding author Zhou [2] first conducted experiments to test
the stress-strain behavior of carbon FRP (CFRP)-confined lightweight aggregate concrete (hereafter
referred to as LWAC), where only lightweight coarse aggregates were adopted for reducing self-weight.
Zhou et al.’s study [2] revealed that the ultimate strength and ductility capacity of LWAC could be
considerably enhanced by jacketing CFRP. It was also found that FRP confinement is more effective
for LWAC cylinders than NC regarding both strength and ductility enhancement. Aiming at further
reducing the weight of concrete, this study thus proposes a new type of FRP-confined LWAC that
fully uses lightweight aggregates as the core materials based on LWAC, where fine lightweight
aggregates further instead of ordinary sand was adopted—notably, ceramic sand. Hereafter, this type
of lightweight concrete will be referred to as full lightweight aggregate concrete (FLWAC). In this work,
an experimental investigation of the stress-strain behavior of FRP-confined FLWAC was conducted.
Test results were compared and analyzed with test data from the previous study on FRP-confined
LWAC [2], and the effect of the lightweight aggregate material (both coarse and fine aggregate) and
the amount of FRP confining pressure regarding its mechanical properties, in terms of failure modes,
ultimate condition, and strain-stress behavior of the FRP-confined FLWAC was determined. Then,
an improved stress-strain model was proposed for the FRP-confined lightweight concrete, and this
model is capable of analyzing diverse types of lightweight aggregates.

2. Experimental Database

2.1. Existing Test Data for FRP-Confined Lightweight Aggregate Concrete

In this study, the results of a new experiment were analyzed together with the existing test data
from Zhou et al. [2] to study the effects of lightweight aggregate (both coarse and fine aggregate) on
the mechanical properties of FRP-confined lightweight concrete. Details of these studies are presented
in the following subsections. Zhou et al.’s test data included a total of 12 CFRP-confined lightweight
concrete cylinders in which normal coarse aggregates were replaced solely by lightweight coarse
aggregates (Grade 800 and Grade 600 crushed shale ceramsite manufactured by Yichang Baozhu
Ceramics Development Co., Ltd., Yichang, Hubei, China) [2]. All of the concrete cylinders in this series
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of tests were 150 mm in diameter and 300 mm in height. The concrete strengths were determined by
an axial compression test, which is 21.2 and 38.8 MPa for Grade 600 and Grade 800 crushed shale
ceramsite, respectively. One or three layers of CFRP were wrapped around the concrete cylinder in a
wet lay-up method, and all specimens underwent axial compression until failure. The details of the
experimental results are shown in Table 1.

Table 1. Summary of Specimen details and test results.

Specimen NO. f co
(MPa)

fcom
(MPa)

fcc
(MPa)

FRP
Layers

εco
(%)

εcom
(%) εcu (%) εhoop

(%) ks

New test data

C40F0-1 37.1
39.8

/ 0 0.188
0.151

/ / /
C40F0-2 40.9 / 0 0.132 / / /
C40F0-3 41.4 / 0 0.136 / / /

C40F1-1 /

/

51.0 1 /

/

0.903 0.566 0.460
C40F1-2 / 52.7 1 / 0.632a 0.502 0.408 a

C40F1-3 / 57.0 1 / 0.985 0.474 0.385 a

C40F1-4 / 58.6 1 / 0.872 0.561 0.456
C40F1-5 / 54.4 1 / 0.919 0.571 0.464

C40F3-1 /

/

81.4 3 /

/

2.058 0.648 0.527
C40F3-2 / 83.2 3 / 2.384 0.899 0.730
C40F3-3 / 79.2 3 / 2.047 0.732 0.595
C40F3-4 / 93.0 3 / 2.616 0.572 0.465
C40F3-5 / 86.8 3 / 2.207 0.600 0.488

Zhou et al. [2]

C1-1(1)

21.2

34.5 1

0.151

0.780 0.717 0.463
C1-1(2) 38.2 1 0.875 0.418 0.270 a

C1-1(3) 49.9 1 1.003 0.598 0.398
C1-3(1) 54.6 3 3.389 0.701 0.453
C1-3(2) 52.8 3 3.475 0.769 0.496
C1-3(3) 54.5 3 3.641 0.787 0.508

C2-1(1) 57.2 1 0.708 0.756 0.488
C2-1(2)

38.8

56.2 1

0.180

0.631 0.814 0.526
C2-1(3) 56.7 1 3.332 a 0.655 0.439 a

C2-3(1) 85.5 3 1.506 0.805 0.520
C2-3(2) 87.1 3 1.559 0.814 0.526
C2-3(3) 83.4 3 1.516 0.885 0.571

fcom and εcom are the mean compressive strength of plain concrete and its corresponding strain, respectively.
Values denoted by “a” were deemed invalid due to their large deviation, and not considered for the analysis.

2.2. The New Test

2.2.1. Materials Properties

In this study, lightweight concrete was prepared using ordinary Portland cement (OPC), water,
lightweight fine aggregates (LFAs), lightweight coarse aggregates (LCAs), and silica fume. Table 2
shows the mix proportion in which Grade 800 crushed shale ceramsite (Figure 1a), was used as the
coarse aggregate and its particle sizes range from 5 to 20 mm; the main properties of LCAs are given in
Table 3; Continuous gradation ceramic sand (Figure 1b) with a diameter less than 3 mm was adopted as
the fine aggregate. The gradation features for LCAs and LFAs are shown in Tables 4 and 5, respectively.
The dry density of FLWAC was only 1581 kg/m3, which is much lower than NC’s 2400 kg/m3 and
LWAC’s 1776 kg/m3, since lightweight fine aggregates were used. To obtain the mechanical properties
of FLWAC, three unconfined cylinders as control specimens were tested under compression. Results
show that the compressive strength of the FLWAC is 39.8 MPa, but its elastic modulus is only 22.0 GPa,
which is lower than that of LWAC’s 26.8 GPa reported by [2], even the compressive strength of LWAC
in C2 group (38.9 MPa) is close to FLWAC. After 28 days, the FLWAC was jacketed by CFRP laminate
(0.167 mm in thickness) in a hoop direction using the wet lay-up manner with an overlap of 150 mm.
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The adhesive was a two-part Lica®-100 impregnated epoxy resin. Through the coupon test, the
CFRP material properties were obtained, which are ultimate strain (1.31%), ultimate tensile strength
(3770 MPa), and elastic modulus (287 GPa), respectively. The coupon testing was carried out according
to ASTM D3039 [51], and each coupon test specimen is a one-layer CFRP sheet.
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Figure 1. Appearance of the lightweight coarse and fine aggregates: (a) Crushed shale ceramsite;
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Table 2. Mix proportion and mechanical properties of full lightweight aggregate concrete (FLWAC).

Water
kg/m3

Cement
kg/m3

Coarse
Aggregate

kg/m3

Sand
kg/m3

Silica
Fume
kg/m3

Water to
Cement

Ratio

Dry
Density
kg/m3

fco
MPa εco %

Ec
GPa

150 450 477 405 50 0.30 1581 39.8 0.151 22.0

Note: fco = cylinder strength of FLWAC, εco = axial peak strain of FLWAC, Ec = elastic modulus of FLWAC.

Table 3. The main properties of lightweight coarse aggregates (LCAs).

Coarse Aggregate Type 24 h Water
Absorption (%)

Bulk Density
(kg/m3)

Apparent Density
(kg/m3)

Tube Crushing
Strength (MPa)

Class 800 crushed shale ceramsite 6.0 750 1272 6.4

Table 4. Aggregate grading results of LCAs.

Nominal Grain Size/mm 19 16 9.5 4.75 2.36 <2.36

screen residue (g) 133.3 730.4 3215.6 3552.9 353.7 167.0
cumulative screen residue (%) 1.6 10.6 50.1 93.6 97.7 100

Table 5. Aggregate grading results of lightweight fine aggregates (LFAs).

Nominal Grain Size/mm 2.5 1.25 0.63 0.315 0.16 <0.16

screen residue (g) 8.8 558.8 159.5 48.8 5.0 21.8
cumulative screen residue (%) 1.1 70.8 90.6 96.7 97.3 100

2.2.2. Specimens Design

A total of 13 FLWAC cylinders 150 mm wide × 300 mm high were prepared. To achieve an even
stress distribution as the compressive load was applied, all specimens were topped by gypsum plaster.
The columns were categorized according to the FRP layers and the concrete grade. Table 1 shows
the details of each specimen based on their definition in the experiments. The specimen terms with
the letter C plus a number representing FLWAC strength is followed by the letter F plus the FRP ply
number. The last number denotes the number of replicated specimens. For example, C40F1-3 denotes
a No. 3 specimen with a grade C40 FLWAC column wrapped in one-ply CFRP.
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2.2.3. Experimental Setup and Instrumentation

In this experiment, ten 10-mm strain gauges were mounted on the mid-height of each
FRP-confined specimen surface, in which two for axial strain measurement and eight for hoop
strain measurement. Three of the eight hoop gauges were placed within the overlapping zone.
For FLWAC without FRP confinement, three strain gauges were used to measure the hoop strain.
Figure 2 demonstrates the distribution of the strain gauges for CFRP-wrapped FLWAC and plain
FLWAC, where A denotes the axial strain gauges and L represents the lateral strain gauges (hoop strain
gauges). Also, two LVDTs were utilized to obtain the axial displacement of the 185 mm over the middle
height for each specimen as shown in Figure 3. All the tests were conducted using a compression
machine with a maximum load capacity of 3000 kN. The cylinders were first loaded by force control
with a loading rate of 1 kN/s to the initial elastic portion up to 70% of the FLWAC strength, and the
loading mode was then converted to displacement control with a rate of 0.3 mm/min until the failure
of specimen.
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3. Test Results

3.1. Failure Observations

As revealed in Figure 4, these test specimens finally failed with three typical failure modes.
Longitudinal cracks (from splitting) were observed for the specimen without CFRP confinement.
The major damage to the concrete cylinder was captured along the vertical cracks and it covered
the whole section of the FLWAC column from top to bottom. For CFRP-confined FLWAC, as shown
in Figure 4b,c, specimens failed due to tensile CFRP rupture due to the expansion of their inner
concrete core. Furthermore, the crushed concrete can be seen behind the fiber rupture zone. Notably,
with the increase of CFRP plies, the CFRP rupture region was more concentrated, and the concrete
was almost crushed into powder for the three-ply CFRP confinement. The observed variations in the
failure mode patterns demonstrated that the damage condition of the FLWAC became worse with
the increased lateral confinement, which altered the FLWAC crack patterns from vertical macrocracks
to localized microcracks. Compared with NC and LWAC, as reported in existing literature, this
localization phenomenon is more pronounced for FRP-confined FLWAC. It is attributed to the
poriferous characteristics of lightweight fine and coarse aggregates, leading to their increased softening,
making them easy to be crushed.
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(a) Unconfined; (b) 1-ply CFRP confined; and, (c) three-ply CFRP confined.

3.2. Experimental Stress-Strain Curves of FRP-Confined FLWAC

Figure 5 shows the axial compressive stress-strain behavior of all the FRP-confined FLWAC
cylinders. Much like the stress-strain curves of FRP confined NC [29,52–54], the curves for
FRP-confined FLWAC also display a monotonically ascending bi-linearity, and the stiffness rapidly
decreases after the transition zone. Previous researchers have intensively studied the stress determined
the transition zone for FRP-confined NC, and it is concluded that the stress is around the strength of
the unconfined concrete [17]. For FRP confined FLWAC, however, the stress is highly related to the
amount of wrapped CFRP. Figure 5 shows that, for the unconfined concrete strength of 39.8 MPa, the
transition stress was enhanced to 50 MPa for one-ply FRP confinement and 60 MPa for a three-ply
FRP confinement. The observed variations are attributed to the brittleness of the lightweight concrete,
which became more limited with the increased lateral confinement. In other words, the confinement
postponed sudden failure.

Figure 6 compares the unconfined strength of the LWAC and FLWAC columns with their
CFRP-confined counterparts with particular attention to varying CFRP ply. The strength of both
LWAC and FLWAC columns was observed to be dramatically enhanced by the same rate related to the
amount of CFRP confinement (number of layers) and their unconfined strength. These comparisons
also show that using fine lightweight aggregates instead of ordinary fine aggregates (river sand) has
little effect on their ultimate strength.
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4. Discussions

4.1. Hoop Strain Distribution and Effective Hoop Strain Factor

The maximum confinement pressure provided by FRP is defined by the tensile strength at the
FRP rupture moment. However, the testing rupture strain value is usually less than the coupon test
value [17,27,55]. Therefore, the effective hoop rupture strain at the FRP rupture is a vital parameter to
predict the axial stress-strain behavior accurately. Equation (1) is the expression of the effective hoop
confinement stress fle,

fle =
2E f t f εh.rup

D
(1)

where D is the cross-sectional diameter of the specimen; tf and Ef are the thickness and stiffness of the
CFRP sheet, respectively; and, εh,rup is the effective rupture strain of FRP, which is given by:

εh,rup = kεε f (2)
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where εf represents the CFRP tensile rupture strain obtained from coupon tests and kε is the effective
hoop strain factor, which can describe the effective utilization ratio of the CFRP material as it ruptures.
Previous reports have indicated that this factor is related to the hoop strain distribution [27,55].
As shown in Figure 7, the distribution of the hoop rupture strain for CFRP-confined FLWAC cylinders
at their failure point was non-homogeneous. For all specimens, the maximum lateral strain appeared
outside the overlapping zone, which replicates the test results from other types of FRP-confined
concrete [2,25,29]. Notably, the rupture strain of concrete wrapping with three-ply CFRP demonstrated
a relative higher average value and a more uniform cracking pattern compared with that of concrete
wrapping with 1-ply CFRP. According to the observed failure modes shown in Section 3.1, the damage
pattern is more concentrated and uniform in specimens with three-ply CFRP confinement, which causes
a more even distribution of hoop strains resulting in a larger average rupture strain for specimens
with a thicker FRP confinement than that of specimens with a smaller amount of FRP. The calculated
effective hoop strain factor is also shown in Table 1. However, existing data for FRP-confined FLWAC
is not sufficient to propose a new effective hoop strain factor. In the present paper, after combining this
research’s results with test results from Zhou et al. [2] for FRP-confined LWAC, the average value of kε

= 0.53 was used for the analysis before the quantitative study of the effective hoop strain factor of the
FRP-confined lightweight concrete was available.
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4.2. Lateral to Axial Strain Relationship

Unconfined concrete starts rapidly volumetric expansion as its axial compression exceeds to 90%
of the peak strength, and the fine aggregate effects on the post-peak behavior are not apparent due to
the rapid drop in stress. However, this lateral dilatation can be effectively restrained by external FRP
confinement, and this increasing expansion of concrete passively generates a continuously increasing
lateral confining pressure that is provided by the FRP jacket. The dilation properties of FRP-confined
concrete are reflected by its lateral to axial strain relationship. Figure 8 shows the comparison of
lateral to axial strain curves for FRP-confined FLWAC in this study and LWAC from Zhou et al. [2],
where the concrete strength of all specimens is almost same (39.8 for FLWAC and 38.8 MPa for LWAC).
These figures show the lateral-axial strain curves possess a similar pattern, which shows bilinear
behavior separating them from the transition zones where concrete expansion accelerates. After the
inflation points are formed, the slope of the second part of curves shows significantly different, and an
even steeper slope can be found for LWAC specimens or both one- and three-layer FRP confinements.
It means that FRP-confined FLWAC shows a larger axial strain than that of FRP-confined LWAC when
their lateral strains are same. This could be attributed to the usage of fine lightweight aggregates
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in FLWAC, resulting in more deformation in the axial direction. In addition, the inflection points
for FRP-confined FLWAC is consistently delayed compared to the predicted curve for LWAC, as
shown in Figure 8. This is also an evidence that the external FRP was activated later for FRP-confined
FLWAC due to “softer” in axial deformation because of containing the fine lightweight aggregate
that delays its dilation behavior. Therefore, aggregate type plays a major role on the lateral to axial
strain relation for FRP-confined concrete. This test results and conclusion is first proposed and is
important for understanding the dilation behavior of FRP confined concrete. Previous study indicated
that the dilation behavior of FRP confined concrete is only governed by the concrete grade and lateral
confinement pressure [54]. However, according to this study, the dilation behavior of FRP-confined
lightweight concrete is also highly related to the fine aggregate properties. Moreover, the different fine
aggregates types could further affect the ultimate condition of FRP-confined lightweight concrete, the
discussion is given in the following sections.

Sensors 2018, 18, x FOR PEER REVIEW 9 of 18 

 

that of FRP-confined LWAC when their lateral strains are same. This could be attributed to the usage 
of fine lightweight aggregates in FLWAC, resulting in more deformation in the axial direction. In 
addition, the inflection points for FRP-confined FLWAC is consistently delayed compared to the 
predicted curve for LWAC, as shown in Figure 8. This is also an evidence that the external FRP was 
activated later for FRP-confined FLWAC due to “softer” in axial deformation because of containing 
the fine lightweight aggregate that delays its dilation behavior. Therefore, aggregate type plays a 
major role on the lateral to axial strain relation for FRP-confined concrete. This test results and 
conclusion is first proposed and is important for understanding the dilation behavior of FRP confined 
concrete. Previous study indicated that the dilation behavior of FRP confined concrete is only 
governed by the concrete grade and lateral confinement pressure [54]. However, according to this 
study, the dilation behavior of FRP-confined lightweight concrete is also highly related to the fine 
aggregate properties. Moreover, the different fine aggregates types could further affect the ultimate 
condition of FRP-confined lightweight concrete, the discussion is given in the following sections. 

 
(a) 1-layer confinement 

 
(b) 3-layers confinement 

Figure 8. Comparison of lateral to axial strain curves for FRP-confined Lightweight concrete with 
similar unconfined concrete strength and different aggregate type. 

4.3. Ultimate Strength Model 

The majority of strength models in literature for confined concrete take the following 
mathematical form: 

-0.009

-0.008

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

0 0.002 0.004 0.006 0.008 0.01 0.012

La
te

ra
l s

tra
in

Axial strain

C40F1-1
C40F1-3
C2-1(1)
C2-1(2)

Inflection point

-0.009

-0.008

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

0 0.005 0.01 0.015 0.02 0.025

La
te

ra
l s

tra
in

Axial strain

C40F3-1
C40F3-3
C2-3(1)
C2-3(2)
C2-3(3)

Inflection point

Figure 8. Comparison of lateral to axial strain curves for FRP-confined Lightweight concrete with
similar unconfined concrete strength and different aggregate type.

4.3. Ultimate Strength Model

The majority of strength models in literature for confined concrete take the following mathematical form:

fcc

fco
= 1 + k1(

fl
fco

)k2 (3)
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where fco and fcc provide the peak strength of the unconfined and confined concrete, respectively. fl is
the lateral confining pressure (or effective confining pressure fle) that can be obtained from Equation (1).
k1 is the coefficient representing confinement effectiveness. This expression originally was developed
by Richard et al. [56] for spiral steel wire confined concrete with a value of 4.1 for k1. A linear relation
was found between fcc/fco and fl/fco; thus, k2 is equal to 1. However, earlier studies [19,20,34,57,58]
revealed that the existing strength models are suitable for steel reinforced concrete could not be
applicable to FRP-confined concrete, and the coefficient k1 is not a constant dependent on a different
database and parameters, such as aspect ratio, corner radius, concrete strength, etc. Recent studies [2]
indicate that the k1 is also related to the type of aggregate because the bond behavior within the
interfacial transition zone between the aggregate and cement matrix differs significantly with any
variation of aggregate type. Furthermore, the interfacial bond behavior dislikes a linear increase
relation between the confinement ratio fl/fco and the ultimate strength ratio fcc/fco for NC; thus, the
rate of strength gain fcc/fco for FRP-confined LWAC gradually decreases with the rising confinement
ratio when fl/fco > 0.4, resulting in a nonlinear trend line, as shown in Figure 8. After a thorough
quantitative assessment of the performance of a compressive strength model between FRP-confined
NC and FRP-confined LWAC, Zhou et al. [2] proposed a model for LWAC, expressed as:

fcc

fco
= 1 + 2.11(

fle
fco

)0.65 (4)

As shown in Figures 6 and 9, the enhanced ultimate compressive strengths for FRP-confined
FLWAC are almost identical to LWAC; thus, Zhou et al.’s strength model (Equation (4)) is used in
this paper for FRP-confined FLWAC. The performance of the proposed ultimate strength model is
demonstrated in Figure 10. The error index was evaluated in terms of ω, where Expe. and Theo.
represent the experimental and theoretical value, respectively, as given by:

ω =
∑|Expe.− Theo.|

∑|Expe.| (5)

As shown in Figure 10, the model proposed by Zhou et al. [2] can predict the ultimate strength
for both FRP-confined FLWAC and LWAC with good accuracy.
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4.4. Ultimate Strain Model

Currently, it is generally assumed that the ultimate strain (εcu) of FRP-confined NC is related to
the amount of FRP confinement and to unconfined concrete strength aspect parameters. Teng et al. [17]
improved the understanding of the ultimate strain and first introduced two key parameters, which
possessed explicit physical meanings: the rupture strain ratio ρε, and the FRP rigidity ratio ρk,
to propose the ultimate strain model. These two parameters are given as:

ρk =
2E f t f

( fco/εco)D
(6)

ρε =
εh,rup

εco
(7)

where the εco is the corresponding strain at peak stress for unconfined concrete. According to these
parameters suggested by Teng et al. [17], Zhou et al. [2] developed Equation (8) to estimate the axial
deformation of FRP-confined LWAC. Where a parameter λ quantified the effect of bond strength
regarding the interface between the aggregate and cement matrix on the ultimate strain, and the value
of λ was defined by the aggregate type. For the lightweight coarse aggregate material, λ = 1.45.

εcu

εco
= 1.5 + 5.24ρλ

k ρ2.63
ε (8)

Figure 10 shows the comparison of the ultimate strain of specimens with different aggregate
types. Test data in Figure 11 includes the new test results in Table 1, the model line that was derived
by Zhou et al. [2] for FRP-confined LWAC, and the model line generated by Lam and Teng [17] for
FRP-confined NC. Four different curves with respect to the three different types of FRP confined
concrete were plotted together. Figure 11 also shows that the ultimate strain is highly dependent on
the FRP rigidity ratio ρk and unconfined concrete strength fco. For the LWAC cylinder, the ultimate
strain of a specimen featuring lower concrete strength is generally higher than that of specimens
with higher strength concrete, and the impact is more pronounced with the rise in the confinement
stiffness ratio. Furthermore, the results also indicate that the ultimate strain is highly dependent on
the type of aggregate. For a similar unconfined concrete strength, the ultimate strain ratio (εcu/εco)
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for FRP-confined FLWAC is more significant when compared with FRP-confined LWAC and NC.
Furthermore, this effect also became more pronounced when the ρk increased, which confirms that
the increase in ductility due to the FRP confinement is notably larger for FLWAC as compared with
NC and LWAC. Thus, the ultimate strain model for LWAC is not applicable to FRP-confined FLWAC.
Through a regression analysis of the test data (Figure 10) while using Equation (8), the coefficient λ

was determined as 1.15, and the model was modified to Equation (9). Figure 12 demonstrates the
performance of the proposed model (Equation (9)), where ω = 0.07.

εcu

εco
= 1.5 + 5.24ρ1.15

k ρ2.63
ε (9)
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5. Stress-Strain Model for FRP-Wrapped FLWAC

5.1. Stress-Strain Relation

As shown in Figure 5, the framework of the stress-strain curve for FRP-confined FLWAC is
much like the stress-strain relation of FRP-confined LWAC or NC (Figure 13), which also shows a
bilinear curve with a softening transition zone: The first linear prat follows a linear trend with a
slope that matches the elastic modulus of the unconfined FLWAC; then, the second linear part follows
a lower stiffness than the previous one after entering into a nonlinear transition zone. Zhou and
Wu’s [59] four-parameter expression (E1, fo, E2, and n) was adopted to fit the stress-strain curves of the
FRP-confined FLWAC, and this expression is monotonic, continuous, and capable of integration
and derivation. This expression [59] has been successfully applied to describe the stress-strain
behavior of FRP-confined NC subject to different conditions regarding concrete columns with different
cross-sectional shapes, load-induced damaged concrete, environmentally impacted concrete, and
eccentric loads [14,20,42,50]. The FRP-confined LWAC also can be described by the stress-strain model,
which is given as:

fc =
[
(n− 1) foe−(E1εc/n fo) + fo + E2εc

](
1− e−(E1εc/n fo)

)
(10)

where E1 and E2 are the first and second slopes concerning the stress-strain curve. fo intercepts the
second straight line segment with the y-axis (see Figure 13), and n is the shape factor that governs the
nonlinearity degrees of the transition zone.

Sensors 2018, 18, x FOR PEER REVIEW 13 of 18 

 

5. Stress-Strain Model for FRP-Wrapped FLWAC 

5.1. Stress-Strain Relation 

As shown in Figure 5, the framework of the stress-strain curve for FRP-confined FLWAC is much 
like the stress-strain relation of FRP-confined LWAC or NC (Figure 13), which also shows a bilinear 
curve with a softening transition zone: The first linear prat follows a linear trend with a slope that 
matches the elastic modulus of the unconfined FLWAC; then, the second linear part follows a lower 
stiffness than the previous one after entering into a nonlinear transition zone. Zhou and Wu’s [59] 
four-parameter expression (E1, fo, E2, and n) was adopted to fit the stress-strain curves of the FRP-
confined FLWAC, and this expression is monotonic, continuous, and capable of integration and 
derivation. This expression [59] has been successfully applied to describe the stress-strain behavior 
of FRP-confined NC subject to different conditions regarding concrete columns with different cross-
sectional shapes, load-induced damaged concrete, environmentally impacted concrete, and eccentric 
loads [14,20,42,50]. The FRP-confined LWAC also can be described by the stress-strain model, which 
is given as: 

( ) ( ) ( )( )1 1/ /
21 1c o c oE nf E nf

c o o cf n f e f E eε εε− − = − + + −   (10) 

where E1 and E2 are the first and second slopes concerning the stress-strain curve. fo intercepts the 
second straight line segment with the y-axis (see Figure 13), and n is the shape factor that governs the 
nonlinearity degrees of the transition zone. 

 
Figure 13. Typical stress-strain curve for FRP confined FLWC. 

5.2. Determination of Parameters E1, f0, E2, and n 

Both unconfined and confined FLWAC specimens demonstrate a similar slope at the first branch 
of the stress-strain curve. This is because, before a notable transverse expansion occurs that is defined 
as the stress-strain curve before transition zone, FRP remains a passively confining mechanism and 
has not been effectively activated. Hence, the elastic modulus (Ec) of plain FLWAC was directly used 
to create the first slope of the first curve segment: 

1 cE E=  (11) 

As discussed in Section 3.2, the replacement of fine aggregate by lightweight aggregates has little 
effect on strength related parameters. Hence, in this study, the fo model that was developed by Zhou 
et al. [2] for FRP-confined LWAC can be directly adopted. 

0.8 10.7o co lef f f= + +  (12) 

Figure 13. Typical stress-strain curve for FRP confined FLWC.

5.2. Determination of Parameters E1, f0, E2, and n

Both unconfined and confined FLWAC specimens demonstrate a similar slope at the first branch
of the stress-strain curve. This is because, before a notable transverse expansion occurs that is defined
as the stress-strain curve before transition zone, FRP remains a passively confining mechanism and
has not been effectively activated. Hence, the elastic modulus (Ec) of plain FLWAC was directly used
to create the first slope of the first curve segment:

E1 = Ec (11)

As discussed in Section 3.2, the replacement of fine aggregate by lightweight aggregates has
little effect on strength related parameters. Hence, in this study, the fo model that was developed by
Zhou et al. [2] for FRP-confined LWAC can be directly adopted.

fo = fco + 0.8 fle + 10.7 (12)
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Figure 14 shows the performance of model fo compared with the test results for both the
FRP-confined FLWAC and LWAC, which gives an error index where ω = 0.027. The good performance
validated the previous conclusion, stating that using fine aggregate does not affect the strength related
parameter fo. Moreover, the proposed FRP-confined LWAC model is also capable of predicting this
parameter for the FRP-confined FLWAC.

E2 can be directly obtained by the geometric relation of the stress-strain curve. As shown in
Figure 13, the E2 is the gradient of the line between points (εcu, fcc) and (0, fo)):

E2 =
fcc − fo

εcu
(13)

where fcc, fo, and εcu can be calculated using Equations (4), (9) and (12), respectively.
Previous studies have concluded that parameter n is not sensitive with variables, such as concrete

strength and confinement [2,14,60]. Parameter n is only related to the nonlinearity degree of the
transition zone, and the value of n is normally between 0 and 1. The value of 0.5 was suggested by
Zhou et al. [2] for FRP confined LWAC. Based on this new data for FRP-confined FLWC and Zhou et
al.’s test results for LWAC [2], the regression result of the n value ranges from 0.46 to 0.54. The n value
is little dependent on the aggregate type and number of FRP layers. For the sake of simplification, the
mean value of 0.5 is used to define parameter n.
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6. Evaluation of the Stress-Strain Model

The stress-strain curve of the FRP-confined FLWAC can be generated using Equations (4)–(13).
Curves derived using the model proposed for FRP-confined FLWAC and the model of FRP-confined
LWAC from [2] are plotted together with test data, as revealed in Figure 15. Thus, Figure 15 indicates the
differences in the stress-strain relationship between FRP-confined FLWAC and LWAC. The comparison
shows that the stress-strain model developed by Zhou et al. [2] for FRP-confined LWAC does not apply
to the FRP-confined FLWAC due to the underestimated ultimate strain. This effect not only applies
to the determination of ultimate strain, but also relates to the stiffness of the second curve segment
model because the ultimate strain was used to calculate E2. However, the model proposed in this work
successfully describes the stress-strain behavior of the FRP-confined FLWAC with good agreement
because the effect of fine aggregate on the ultimate strain was carefully considered. The proposed
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model also can be embedded in the numerical analysis for driving the compressive behavior of
elements, and then analyze the global response of FRP-strengthened FLWAC structures.
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7. Conclusions

The behavior of CFRP-confined FLWAC subjected to an axial compressive load was experimentally
studied in this work. Test results of FLWAC were analyzed together with the test results of
CFRP-confined LWAC and a related NC model. The strength capacity and ductility of FLWAC
were significantly enhanced by CFRP jacketing. Using lightweight fine aggregates instead of normal
weight fine aggregate can effectively reduce the self-weight of concrete but it does not lead to any
reduction of strength. Nevertheless, the enhancement in ductility for the CFRP-confined FLWAC is
distinctly larger than that obtained for the CFRP-confined LWAC and NC due to the lower density of
lightweight fine aggregates. This discrepancy becomes more pronounced with the increase in FRP
rigidity ratio. The dilation behavior of FRP-confined lightweight is found to be highly related to
the aggregate type, and this effect further leads to different confinement mechanism caused by FRP
confinement. These test results can further conclude that the coarse aggregate governs the strength
properties of FRP-confined concrete, and the fine aggregate mainly controls its ductility properties.
However, the internal damages condition of confined concrete and the interlock behavior between
different aggregates are still unclear, which will be further studied in future using more advanced
sensor technology, such as piezoceramic based smart aggregates.

Furthermore, the model that was developed by Zhou et al. [2] for CFRP-confined LWAC
underestimates the ultimate strain of CFRP-confined FLWAC, especially for FLWAC specimens
confined with three layers of CFRP. Hence, a new ultimate strain model was proposed in this
study, which determines the effect of different aggregate types. The stress-strain models that were
developed for FRP-confined LWAC columns are not capable of FRP-confined FLWAC columns unless
the proposed ultimate strain model is used. By reasonably adopting the suitable ultimate strain model,
the improved stress-strain model can predict the stress-strain behavior of FRP-confined FLWAC with
good performance.
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