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Abstract: Lightning parameters are needed in different engineering applications. For the prediction
of the severity of transient voltages in power systems, an accurate knowledge of the parameters
of lightning currents is essential. All relevant standards and technical brochures recommend that
lightning characteristics should be classified according to geographical regions instead of assuming
that these characteristics are globally uniform. Many engineers and scientists suggest that better
methods for lightning current measurements and analyses need to be developed. A system for direct
lightning current measurements installed on Mount Lovéen is described in this paper. Observed data
were analyzed, and statistical data on parameters that are of interest for engineering applications
were obtained, as well as correlations between various lightning parameters. Furthermore, a novel
approach for classifying and analyzing lightning data from direct measurements based on empirical
mode decomposition (EMD) is proposed. Matlab was used as a tool for signal processing and
statistical analysis. The methodology implemented in this work opens possibilities for automated
analysis of large data sets and expressing lightning parameters in probabilistic terms from the data
measured on site.

Keywords: Empirical Mode Decomposition (EMD); lightning current parameters; lightning measurement;
lightning statistics

1. Introduction

With the continuous increase in the complexity of the electrical power system, growing
exposure to the adverse effects of different environmental factors is further aggravating
problems associated with reliability and safe operation of power system. Extreme weather
phenomena and lightning in particular is one of the most common causes of faults and
power supply interruptions. Systematic reviews of numerous observations of lightning
events all around the world and information thus obtained provide valuable tools to reduce
vulnerability and improve overall performance of power system. Damage to the power
system is caused by both direct and indirect lightning strokes. In order to assess lightning
effects and to design effective protection systems accurate lightning current parameters
must be used. Lightning current parameters are of great importance in insulation coordina-
tion procedure, e.g., if this procedure is not properly determined the energy of lightning
discharge can exceed energy handling capability of power system components [1-3].

Three approaches can be used to obtain lightning data: direct measurements using
instrumented towers, direct measurements using the technique of the artificial initiation
of lightning and lightning location systems [4,5]. Formatted lightning data from modern
lightning location systems include: time and date of lightning stroke, GPS coordinates
(2D), lightning current amplitude, lightning type, height (for inter-cloud lightning) and
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2D statistical error [6,7]. Lightning location systems do not provide data about front
and tail time of lightning current waveform. It is well known that front time has a high
influence on insulation in power systems, while, for example, energy stresses of surge
arresters strongly depend on tail time of the overvoltage wave [8-11]. Therefore, when
conducting simulations of power system transients it is necessary to predict these data, as
it is recommended in the CIGRE Brochure 549 (2013) and last IEEE review of parameters of
lightning strokes (2005) [12,13].

In the field of lightning research for engineering applications, the most important
data are obtained by the analysis of directly measured lightning current waveform. When
designing such measuring systems, the first important step is the selection of a location with
high lightning activity. Modern lightning location systems should be used for selection
of regions with high lightning activity. Furthermore, it is important to correctly select
the components of the measuring system, which will be in accordance with the specific
characteristics of the lightning current that should be measured. In addition, it is necessary
to develop tools for adequate and precise processing and analysis of measured data.

If a record of lightning current waveform is available, it is then possible, using ap-
propriate numerical technique, to determine different parameters associated with that
specific waveform. In every measurement, however, the measuring device is affected by
environmental disturbances, referred to as noise, that alter characteristics of the output
signal. Presence of noise can cause serious errors in measurement signal processing. In
the case of lightning current measurement, in general, parameter determination may be
difficult task due to the fact that all measured lightning current data are contaminated by
considerable levels of noise, so additional processing steps must be undertaken in order to
minimise effects of noise. The classification of recorded lightning current waveforms based
on polarity and multiplicity is another important consideration in lightning studies. When
dealing with a large amount of data from lightning monitoring systems, it is impractical
to classify and analyze data manually. For such studies it becomes necessary to develop
methodologies for automated classification and extraction of waveform parameters from
the recorded data.

In the recent literature on lightning research, processing techniques are insufficiently
considered. Several established methods are frequently reported: the Fourier transform, the
short Fourier transform (STFT) [14], and the wavelet transform (WT) [15,16]. In [17], a time
domain digital processing system for lightning current waveform parameters extraction
is described. Using this approach procedure for parameters extraction from negative
lightning flash with only one stroke was developed. In [18-20], the authors use Empirical
Mode Decomposition (EMD) for discharge electric field pulse analyses, but in the recent
literature, this method was not used for lightning current waveshape analyses. Therefore,
this paper proposes a novel approach for analyzing lightning current waveform parameters
and it is based on EMD. Continuing the work in [17], the authors expanded capabilities of
previously developed signal processing procedure in terms of introducing new algorithm,
increasing number of analysed features and including all typical types of discharges.

In this study, data from direct lightning current measurement system is analyzed using
novel signal processing and parameter estimation technique and detailed statistics for one
year observation period is presented. Correlations between various lightning parameters
are established. This paper includes following contributions:

* anovel approach to lightning current waveform processing based on EMD for more
accurate automatic lightning classification and lightning parameter extraction is intro-
duced;

e  statistical properties of lightning current parameters that are of great importance for
engineering applications in region of mountain Lovéen (Montenegro) is presented;

*  empirical expressions for cumulative peak current distributions of first and subsequent
strokes are determined.

The rest of the paper is organized as follows. Section 2 introduces the types of
lightning discharges and lightning current parameters. Description of observation site and
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lightning monitoring system is given in Section 3. Section 4 describes novel approach for
lightning data analyses. Statistics of lightning current parameters and correlations between
parameters are reported in Section 5 and the paper is concluded in Section 6.

2. Lightning Discharges and Lightning Parameters for Engineering Application

According to [4,21], cloud—to-ground lightning discharges are divided into four main
types: upward or downward (by the direction of the motion of the initial leader) and
positive or negative (by the sign of the charge deposited along the channel). Classification
in [4] includes only “unipolar flashes” that transport charge of one polarity to ground.
Lightning flashes that transport both negative and positive charges to ground called
“bipolar flashes” are not included in this classification. More than one lightning stroke can
hit the same place on the ground in short time interval. To identify number of strokes in a
single flash the term multiplicity is introduced. Usually first strokes have larger currents
than subsequent strokes that occur both in new and in previously formed channel. Further
details on lightning phenomenon can be found in [4].

Different types of lightning discharges have different impacts on power systems.
Therefore, it is very important to identify the parameters of lightning current. According to
CIGRE publication [22], typical lightning current waveshape, shown in Figure 1 is charac-
terized by a fast rising wavefront followed by slow subsequent decay. From engineering
point of view, current front is the most significant part of current waveshape. Parameters
that are commonly associated with current wavefront include:

* I, (kA): peak amplitude (highest current peak);

*  Tyg (us): interval between the 10% (I39) and 90% (lgp) of the current peak on the current
wavefront: Tyy = tgg — t10;

e Tzp (us): interval between the 30% (I3) and 90% (Igp) of the current peak on the current
wavefront: T3y = tgg — t30;

* 5109 (kA/us): the average front steepness (rate of rise) between the 10% value point
and 90% value point of the first peak: S19 = (Iog — I10)/ T10;

* 530 (kA/us): the average front steepness (rate of rise) between the 30% value point
and 90% value point of the first peak: Szo = (Iog — I30)/ T30;

* S, (kA/ps): maximum current rate of rise on wavefront (maximum front steepness).

Current

Figure 1. Typical lightning current waveshape and parameters, adapted from [22].

Based on the above parameters, the time duration of current front, ¢ s is defined as
time interval from ¢( to t, and is determined as shown in Figure 1. The time to half value,
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ty, represents time interval from ¢t to the 50% value point of the first peak (t5). The energy
in a lightning flash is assessed generally by its charge, Q, defined as:

Q= [ittat M)

and specific energy E is defined as:
E— /z’z(t)dt 2)

3. Observation Site and Lightning Monitoring System
3.1. Location

Mountain Lov¢en, with peak altitude of 1749 m is located in southwestern Montenegro,
near the Adriatic Sea. Geographical location of mountain Lovéen and tower on which
measuring equipment is installed are shown in Figure 2. Lightning current measurement
equipment was installed on the 88 m high broadcasting tower, one of the most important
communications hub in the region. The decision to install measurement equipment on this
site was made based on previous reports and on data available from lightning location
system (LLS).

LLS data have revealed that Lovéen, with 1063 strokes per square kilometer per year,
has more than 100 times above median value in this region. Another contributing factor
when choosing this site was the 500 kA maximum lightning current amplitude recorded by
LLS reported in [23].
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Figure 2. Observation site location.

3.2. Measuring System

The lightning measurement system was constructed from a sensor, recording unit,
power supply unit, central processing unit and user interface. A installed hardware is
presented in Figure 3, while detailed block diagram of the system is shown in Figure 4.
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The sensor unit containing current transformer, electric field sensor and IP camera, was
installed on tower top.

The lightning current sensor used was current transformer with 500 kA input range.
Changes in electric field are registered using electric field sensor BOLTEK-EFM 100 Atmo-
spheric Electric Field Monitor. IP camera (UFG1122 HD IP Camera) with 120 fps (frames
per second), equipped with SD card and infrared cut filter for day/night operations.

Figure 3. Measuring equipment on the site: (a) 3D view of the mounting of the current transformer,
(b) current transformer, and (c) recording unit and power supply unit.
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Figure 4. Block diagram of measuring system.
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The ecording unit is based on an industrial computer that records data from sensor
unit. The acquisition unit is a four-channel card with an acquisition sampling rate of
8 MSa/s per channel and 15 bits vertical resolution.

Accurate timing is provided by an integrated GPS receiver. Local ethernet connection
is used for communication with the remote server. Recording and processing units were
installed inside the broadcasting tower and are supplied from AC mains. A low loss cable
(RG218) was used to connect output from the current transformer to the input of acquisition
unit. A voltage attenuator with the ratio 10/1 was installed at the acquisition card input.
Data are transferred in real-time via internet to the central server and stored into the integral
information system. Detailed information on system architecture is provided in [24].

4. Signal Processing and Parameter Estimation

Signals obtained directly from the measuring system contain considerable amount
of noise. Important lightning current parameters can be distinguished without filtering
directly from the measured current shape, but it is not possible to determine the exact
values. Therefore, in order to extract the values of important parameters, it is necessary to
apply the appropriate signal processing technique. To improve the parameter extraction
process, empirical mode decomposition was introduced for lightning current waveform
denoising.

4.1. EMD Algorithm and Parameters Determination

Empirical mode decomposition represents a method of breaking down a signal without
leaving the time domain. This method is a powerful tool for analyzing natural signals,
which are mostly non-linear and non-stationary. It serves as a signal processing technique
based on an empirical and algorithm defined method. EMD can adaptively decompose a
complex signal into a set of complete, almost orthogonal components. These components
are known as Intrinsic Mode Functions (IMFs).

EMD filters out IMFs without requiring any preliminary understanding of the nature
and quantity of the IMF components in the data. The main advantage of EMD compared
with the widely used wavelet-based technique is that EMD can be used to decompose a
signal without specifying the basics functions in advance, and the degree of decomposition
is adaptively determined in accordance with the nature of the signal to be decomposed [20].

Due to its performance, EMD has been widely used in many disciplines. EMD was first
proposed by Huang et al. in [25] and this approach is used in computational neuroscience,
biomedical signal processing, climate signal analysis, audio signal processing, image pro-
cessing, and seismic signal and discharge electric field pulse analyses [26]. Therefore, details
of the EMD algorithm and denoising principles can be found in the literature [25,27-29].

This paper introduces the EMD algorithm into analyses of lighting current waveforms
for parameter determination. This study presents the concept of EMD and its application
to lightning current signal processing. Figure 5 shows the proposed EMD-based adaptive
thresholding lightning current enhancement concept.

The basic steps of proposed method are as follows:

e Step1 Applying EMD algorithm to the raw data (noisy lightning current waveshape),
which decomposes input signal in to IMFs.

e  Step 2 IMFs segmentation into frames.

®  Step 3 Frame classification into noise dominant and signal dominant frames.

e  Step 4 Adaptive thresholding.

e  Step 5 Combining of denoised IMFs.

¢  Step 6 Parameter determination from enhanced signal.

Proposed novel lightning current signal processing and parameter determination
method was implemented in MATLAB.
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Figure 5. EMD-based adaptive lightning current enhancement and parameter determination system.

4.2. Evaluation of Used Methodology

In order to evaluate accuracy of proposed lightning current parameters estimation
procedure several experiments were conducted. The proposed processing method was
applied to a set of three types of synthetic signals. Three types of standard CIGRE concave
lightning current waveforms, with parameters given in Table 1, are generated with sam-
pling rate of 8 Msamples/s. It was assumed that the measured lightning current can be
represented at most in accordance to CIGRE concave lightning current model. In addition,
it is assumed that the noise observed in measured signals is additive white Gaussian noise.
These assumptions are reasonable due to fact that most of recorded lightning strokes are
very similar to the assumed CIGRE model [12,13].

Table 1. Typical lightning current waveshape parameters.

Lyax(kA) tr(us)r tr(us) S (kA/us) Q(0) E (kA%s-10%)

I 100 1.2 50 150 7.0 350
I 31 3.0 75 20 3.0 50
I3 10 1.0 100 20 1.5 7

Large number of randomly generated synthetic signals were generated in Monte Carlo
simulations that were used for evaluation of performance of proposed method. For each
type of standard lightning current waveshapes from Table 1, 1000 synthetic signals with a
signal-to-noise ratio (SNR) in the range of 0 to 25 dB were generated. These signals were
then processed, using the proposed method described in Section 4.1; enhanced signals were
obtained and subjected to classification and parameter estimation algorithms.

The difference between estimated parameters obtained from enhanced signals relative
to original signal parameters (in Table 2) are listed in Table 2 and were used as criterion for
performance evaluation.
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Table 2. The Monte Carlo simulations for estimation of parameter values.

SNR (dB) Inax(KA) tr(us) t;(us) Sm(kA/us) Q(0) E(kAZs - 10%)
CIGRE concave shape I;
0 98.74 £ 7.16 1.9610 + 0.2407  49.664 + 4.157 91.56 + 10.30 6.97 £ 0.12 368.90 + 6.72
5 98.56 + 7.08 1.7498 + 0.1494  49.664 + 4.194 107.48 + 8.11 7.03 +0.10 355.74 + 5.06
10 98.42 +7.07 1.5492 + 0.1494 51.001 + 4.185 116.45 + 8.94 6.89 = 0.02 352.49 + 0.92
15 98.33 + 7.06 1.6791 £ 0.1660  49.664 + 4.192 151.70 + 5.08 6.90 + 0.01 351.93 + 0.84
20 98.37 £ 7.07 1.4790 £ 0.1328  49.664 +4.185 148.94 +1.44 6.90 + 0.01 35244 +£0.15
25 97.00 + 6.99 1.3198 £ 0.1327  49.664 + 4.352 147.59 + 1.53 6.90 + 0.01 351.77 + 0.19
CIGRE concave shape I
0 32.89 +1.32 3.5201 £ 0.3517  66.564 + 8.731 13.06 + 2.16 3.07 +0.19 50.14 + 1.10
5 32.12 +0.98 29164 + 0.3184 70.912 + 6.386 15.44 + 3.05 3.07 £0.12 49.61 + 0.66
10 32.07 £ 0.07 2.9716 + 0.2633 71.283 + 5.253 16.84 + 4.32 3.04 +0.09 49.24 £ 0.22
15 31.49 +0.03 2.8612 + 0.2794 72.826 + 5411 18.86 + 0.68 3.05 + 0.09 49.24 +0.16
20 31.67 + 0.04 2.7784 + 0.2619 75.167 + 5.282 19.12 + 2.36 3.04 + 0.07 49.30 + 0.09
25 31.40 £ 0.04 2.7048 + 0.2664 75.637 + 5.378 20.31+1.53 3.04 £ 0.04 49.35 £ 0.02
CIGRE concave shape I3
0 12.55 + 2.56 2.8669 + 0.3912  89.631 + 16.965 10.14 + 7.41 1.38 +0.11 7.08 + 0.37
5 10.93 + 0.95 2.4818 + 0.2226 90.224 + 9.367 12.24 £ 8.71 1.41 +0.05 711+0.15
10 10.82 + 0.83 1.3201 + 0.1874 91.638 + 7.963 17.77 + 5.44 1.43 + 0.05 7.05 + 0.05
15 10.54 + 0.76 1.1898 £ 0.1217  92.348 +7.245 18.70 + 6.39 1.48 +0.02 7.04 £ 0.03
20 9.86 + 0.77 1.1617 + 0.1323 97.891 + 7.751 18.49 +5.72 1.48 +0.02 7.03 +0.03
25 9.89 + 0.59 1.0973 + 0.0984 99.654 + 7.778 18.12 + 4.38 1.48 +0.02 7.01 +0.03

From Table 2, it is clear that accuracy of some estimated parameters (peak current, tail
time, total charge and specific energy) is almost independent of noise, while parameters
such as front time and steepens are very sensitive to noise level. Estimated peak current
values are almost constant in entire range of simulated SNR.

For peak currents greater than 10 kA, the average relative error was +2.44% (from
0.81% to 6.65% with relative standard deviation below 7%). For lower peak currents (lower
than 10 kA) average estimation error is slightly higher (+8.53%, with greatest error at 0 dB
with value of 25.63%), and for SNR greater than 5 dB average estimation error was +5.11%.
These results suggests that proposed procedure can estimate with high accuracy peak
current values in wide range of SNR (from 5 dB to 25 dB). As expected, for low current
amplitudes and for SNR below 5 dB accuracy is decreasing.

As it can be seen from Equations (1) and (2), total charge and specific energy are
functions of lightning current and due to this fact these parameters are also estimated
with high accuracy within entire region of simulated SNR with average relative error of
+2.84% and +0.77%, respectively. Noise level does not significantly affect these parameters
since integration, in principle, represents a low pass filter. Time duration and steepness
parameters estimation, however, are in general more variable and more sensitive to SNR.
Tail time duration is estimated with the average relative error of +3.55%.

Waveform parameters front time and steepness in the investigated range of values
and noise levels are estimated with higher average relative errors of 34.99% and 16.71%,
respectively. The estimation of these parameters is significantly affected by the noise level.
For fast rising currents (f; around 1 ps) in extreme case (at SNR = 0 dB), estimation errors
may be up to 200%, and in this case, estimation is not reliable. However, in the more
common range of SNR values (>10 dB), the average relative error for the front time is
+15.04%, while for the steepness, it is +7.32%. Considering the standard tolerances given
in [30,31] (for front time +30% and for tail time +20%), the obtained results are within the
acceptable range.
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5. Results of Observation

During the observation period of one year, 163 lightning events were recorded. Using
the developed approach for automated data analysis, different types of lightning discharges
were identified. The total number of lightning flashes was 64. The analyzed events were
classified as given in Table 3. Detailed statistics were performed only for negative strokes
due to the representative sample size.

Table 3. Observed lightning events.

Type Number of Samples
First negative stroke 59
Subsequent negative strokes 86
First positive strokes 4
Bipolar strokes 1

5.1. Statistical Distribution of Lightning Parameters

It is generally agreed that the statistical distribution of lightning parameters follows
the log-normal distribution, where the statistical variation of the logarithm of a random
variable, x, follows the Gaussian distribution. The log-normal probability density function,
p(x), is defined as in [13]:

2
1 _% (Inxﬂ—lnxm ) 1 )

X) = ———¢ Inx =— ¢ " 3
P( ) ﬁnxmnx ﬁnxmnx )

where 03, is standard deviation of [nx, and x,, is median value of x.

Therefore, x,, and 0y,,, need to be known to estimate the statistical distribution of a
lightning parameter. The cumulative probability, P (x), that the parameter will exceed x, is
given by integrating Equation (3) between 1y and oo, resulting in:

1 " —u2du 1
=—=/ e = zerfc(u 4
=, Serfe(uo) @
For approximating the log-normal distribution P, of lightning current peak, a simpli-
fied equation given by Anderson in [22,32] is also used:

P.(x)

Pe(I > I,) = (5)

where y and p are calculated from empirical data.

Various correlations among lightning parameters have been found [13]. Assuming
log-normal distributed random variables x and y, relationship between x and y can be
expressed as:

y = ax? 6)

5.2. Negative Flashes

As can be noted from Table 3, 59 first negative strokes and 86 subsequent negative
strokes were analyzed. For the purpose of such analysis novel proposed processing method
was used. The statistical distribution of multicomponent lightning flashes recorded in
this study and compared with Anderson and Ericson (in [22]) is given in Figure 6. The
frequency of the occurrence of multicomponent flashes in this region is very similar to that
of Anderson and Ericson which is widely accepted.

Classification, analysis and parameter determination are more challenging tasks for
lightning flashes that consists of more stokes than for lightning flashes with single stroke.
Therefore, as an example, a multicomponent lightning flash that consists of four negative
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Current (kA)

strokes is presented in Figure 7. Figure 7 shows the originally measured signal and
enhanced signal. Determined parameters that are important for engineering applications

are presented in Table 4.

Statistical parameters resulting from the measurements from this study during ob-
servation period of one year are given in Tables 5 and 6. First and subsequent negative
currents were considered. After the log transformation, the Lilliefors test for normality;,
considering the 95% level of significance, was applied for the complete data set. It proved to
be significant for most parameters of first negative strokes, similarly to the results presented

by Anderson and Ericson in [22,33].

60

Frequency of occurrence

[ ] This study
-Anderson and Eriksson

4 6

8
Number of strokes per flash

10

12

Figure 6. Statistical distribution of multicomponent negative lightning flashes.

Table 4. Parameters for multicomponent negative flash from Figure 7.

No. Strokes I,(kA) tr(us) t:(us) Sm(kA/us) Q(0) E(kA%s - 10%)
1 —8.343 63.565 189.824 0.625 —2.190 9.379
2 —4.193 63.433 222.976 0.315 —1.505 3.530
3 —6.180 70.210 185.600 0.425 —1.864 5.590
4 —2.988 66.067 327.936 0.215 —1.453 2.282
. 1341.mat - 2016-09-01 / 16:10:26,364915480
| | | | |
| M e
5+ -
Original signal
Enhanced signal
10 | | | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (uS)

Figure 7. Negative multicomponent lighting flash (flash consists of four strokes) original and

enhanced signal.
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Table 5. Statistical parameters of measured first negative strokes values.
Geometric Lillifors
Parameter Min Max Median i Olnx p-Value Test
Mean

(x =0.05)
Ip (kA) 5.424 33.335 14.041 13.806 2.642 0.4952 0.2521 TRUE
tr (us) 1.834 26.162 5.5564 5.718 1.715 0.5618 0.5000 TRUE
ti (us) 6.656 232.896 30.622 26.816 3.422 0.8027 0.0710 TRUE
S (kA /us) 0.344 15.018 4.481 4.796 1.499 0.7593 0.0088 FALSE
Q(© 0.045 3.198 0.961 1.215 0.039 0.8692 0.0010 FALSE

E
(kA25-10%) 0.398 47.086 6.467 6.808 1.867 1.1753 0.3895 TRUE
Table 6. Statistical parameters of measured subsequent negative strokes.
Geometric Lillifors
Parameter Min Max Median i Tlux p-Value Test
Mean

(x = 0.05)
Iy (kA) 1.254 17.720 5.508 5.987 1.706 0.6507 0.4272 TRUE
tr (us) 2.446 521.856 47.620 61.877 3.863 1.2103 0.0102 FALSE
tr (us) 7.488 865.152 141.589 160.672 4.953 0.8894 0.0166 FALSE
Sm (KA/us) 0.400 9.032 0.2202 1.770 1.513 1.5377 0.0483 FALSE
Q(©) 0.007 4.684 0.658 0.773 0.418 1.1135 0.0079 FALSE

E

(kA25-10%) 0.173 24.652 2.961 3.204 1.161 2.9795 0.0393 FALSE

Cumulative statistical distributions of various parameters for the first and subsequent
strokes are presented in the figures below (from Figure 8), as well as probability plots for
lognormal distribution. From the figures, it can be seen that the measured data for the first
and subsequent negative stokes are in good agreement with the theoretical cumulative
distribution function. As indicated by the p-value from Table 5 at a significance level of 95%,
it can be concluded that most of the analyzed parameters of the first negative strokes are
distributed according to log-normal distribution. The total charge and maximum steepness
for first negative strokes, as well as most parameters of the subsequent strokes, are similarly
distributed, but failed the Lillifors test and, therefore, the log-normal distribution of these
parameters cannot be confirmed. Very important formulas for cumulative probability as a
function of the peak current for the first and subsequent stokes are performed from these
results. The approximate expressions for cumulative probability of first and subsequent
negative strokes current are given by Equations (7) and (8), respectively.

1
PC(I > Ip) = W (7)
1+ (12%s)
1
1+ (sh)

It is well known that these expressions have direct application in assessment of the light-
ning performance of electrical systems especially in insulation coordination studies. There-
fore, it is of great importance to develop such formulas for different regions worldwide.
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(d) Maximum steepness, (e) Stroke charges, (f) Specific energies.
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5.3. Correlations between Parameters for First Stoke in Negative Flashes

Correlations between various parameters of recorded lightning current waveshapes
are considered by using fitting curves given by Equation (6) or it can be also represented
with equation:

In(y) = In(a) +dln(x) 9)

Correlation coefficients among parameters are given in Table 7. Results indicated that
correlations are observed between almost all parameters. Few correlations that are not
significant are marked in tables. Based on p-values from Table 8 statistically significance
of correlations are confirmed. Strongest correlations were observed between peak current
and all other parameters except tail time. Table 9 presents correlation expressions (de-
scribed with function given in (9)) along with correlation coefficients » for such parameters,
following logarithmic linear regression.

Table 7. Correlation coefficients between lightning parameters.

In(1I,) In(Ty) In(T}) In(S;,) In(Q) In(E)
ln(Ip) 1 0.3916 0.0546 0.4294 0.6522 0.8513
ln(Tf) 0.3916 1 0.4626 —0.5404 0.3076 0.5042
In(T) 0.0546 * 0.4626 1 —0.4353 0.4588 0.4681
In(Sy) 0.4294 —0.5404 —0.4353 1 0.1889 0.2124
In(Q) 0.6522 0.3076 * 0.4588 0.1889 * 1 0.8675
In(E) 0.8513 0.5042 0.4681 0.2124 0.8675 1
* Corrrelation not statisticaliy significant.
Table 8. p-values.
In(I,) In(Ty) In(T;) In(S:) In(Q) In(E)
ln(Ip) 1.0000 0.0022 0.6810 0.0007 0.0000 0.0000
ln(Tf) 0.0022 1.0000 0.0002 0.0000 0.0178 0.0000
In(Ty) 0.6810 * 0.0002 1.0000 0.0006 0.0003 0.0002
In(Sy,) 0.0007 0.0000 0.0006 1.0000 0.1519 0.1063
In(Q) 0.0000 0.0178 * 0.0003 0.1519 * 1.000 0.0000
In(E) 0.0000 0.0000 0.0002 0.1063 0.0000 1.0000
* Corrrelation not statisticaliy significant.
Table 9. Correlation coefficients for peak current and other lightning parameters.
a d r
Tf(lp) 1.7182 0.4443 0.3916
Sm (Ip) 0.7868 0.6585 0.4294
Q(Ip) 0.0467 1.1449 0.6522
E(Ip) 0.0311 2.0206 0.8513

Similarly, as it is published in the literature, in this study, a correlation between peaks
current and front time was observed. Additionally, a similar correlation exists between the
peak current and maximum steepness (see Figure 9), with a similar correlation coefficients
in available literature. As expected, a very strong correlation was observed between the
peak current and total charge and specific energy. An interesting observation is that both
the front and tail time are negatively correlated with steepness (see Figure 10).
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Figure 9. Scatterplots of the relations: (a) between first negative peak current and current front time,

and (b) between first negative peak current and maximum steepness.
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Figure 10. Scatterplots of the relations: (a) between maximum steepness and current front time, and
(b) between maximum steepness and current tail time.
5.4. Positive Flashes

Four positive lightning flashes were observed, each with single stroke. The parameters
for positive flashes are given in Table 10. As an example, the original and enhanced positive
stroke are shown in Figure 11.

Table 10. Parameters for recorded positive flashes.

No. Stroke I,(kA) tr(us) t:(ps) Sm(kA/us) Q(0) E(kA%s - 10°)
1 1.970 139.353 233.664 0.028 0.657 0.664
2 2.035 58.823 221.952 0.066 0.616 0.629
3 4.587 67.137 152.192 0.128 0.935 2.148
4 3.114 50.655 171.136 0.116 0.810 1.346
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Figure 11. Positive lighting flash original and enhanced signal.

5.5. Bipolar Flashes

During the observation period of one year, one bipolar lightning flash was recorded on
the 26th of February 2016, and it is presented in Figure 12. The parameters for the bipolar
flash are given in Table 11. All parameters were determined for the positive and negative
parts of the lightning current waveshape.

Table 11. Parameters for recorded bipolar flash.

Polarity I,(kA) t¢(us) t:(us) S (kA/us) Q(0) E(kAZs - 10%)

Negative —35.376 4.313 —15.792 —0.375 0.657 11.411
Positive 36.512 3.520 19.016 1.162 0.616 11.411

. 948.mat - 2016-02-26 / 08:24:31.000
T T T

40 A

Current (kA)

-60 - b
Original signal
Enhanced signal
80 1 1 1 1 1
100 150 200 250 300 350 400

Time (us)

Figure 12. Bipolar lighting flash original and enhanced signal.
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6. Conclusions

This paper presents the statistics of lightning current parameters obtained by pro-
cessing the data collected by direct measurement at the broadcasting tower on Mount
Lovéen. The analyzed data were collected during the one-year observation period. A new
EMD-based approach for more accurate lightning classification and lightning parameter
extractionwas applied to the data analysis. The introduction of the EMD algorithm signifi-
cantly improved the accuracy of determining lightning current parameters compared to the
methods previously used by the authors. Unlike conventional filters, using this algorithm
in the proposed scheme, the phase shift of the signal is almost eliminated.

Based on the cumulative distributions of the peak current of the first and subsequent
strokes, the formulas for determining the probability of the occurrence of the peak current
and the expression relating the peak current and other important parameters were gen-
erated. These expressions can be used directly in power system analyses. The statistical
data for this region showed that most of the parameters for the first negative stroke are
distributed according to the lognormal distribution and are very similar to their representa-
tion in contemporary literature. This study also confirmed that most of recorded events are
negative lightning strokes, while positive and bipolar lightning strokes are rare. However,
positive and bipolar lightning flashes are very dangerous, especially bipolar flashes (which
transmit a large amount of energy to the ground), and should be taken into account when
designing lightning protection.

Many uncertainties regarding lightning events presently exist, and therefore better
methods for lightning current measurements and waveshape analyses should be devel-
oped. It should be continued with efforts to collect data for formulation of lightning
parameters according to geographical regions and for developing important formulas for
power system lightning protection as well as developing correlation expressions among
lighting parameters.

For the signal processing methodologies used, it was shown that the accuracy of
determining the front time and steepness should be improved. For this improvement,
better acquisition units should be installed in the measurement system, for example, with a
much higher sampling rate (50 MSa/s or 100 MSa/s) in order to be able to better record
front time that has a very short duration (from 1 to several microseconds). In the future,
the dynamic characteristics of the measurement system should be taken into account when
analyzing the signal-to-noise ratio in order to further improve the signal processing.
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Abbreviations

The following abbreviations are used in this manuscript:

LLS Lightning Location System

EMD  Empirical Mode Decomposition
IMF Intrinsic Mode Function

SNR  Signal-to-Noise Ratio

STFT  Short Fourier Transform

WT Wavelet Transform

CDF  Cumulative Distribution Function
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