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Abstract: This paper proposes a learning-based control approach for autonomous vehicles. An
explicit Takagi–Sugeno (TS) controller is learned using input and output data from a preexisting
controller, employing the Adaptive Neuro-Fuzzy Inference System (ANFIS) algorithm. At the same
time, the vehicle model is identified in the TS model form for closed-loop stability assessment using
Lyapunov theory and LMIs. The proposed approach is applied to learn the control law from an MPC
controller, thus avoiding the use of online optimization. This reduces the computational burden of
the control loop and facilitates real-time implementation. Finally, the proposed approach is assessed
through simulation using a small-scale autonomous racing car.
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1. Introduction

Autonomous driving is one of the top ten technologies that will change the lives of
citizens, according to the European Parliament Research Service (EPRS) [1]. The National
Highway Traffic Safety Administration (NHTSA) currently states in its technical report that
94% of road accidents are the consequence of human error [2]. By 2050, it is projected that
68% of the world’s population will live in urban regions, up from 55% in 2018 [3], increasing
traffic congestion. Autonomous driving emerges as a solution to these challenges, and it
facilitates the following [4]:

• Attaining close to zero traffic accidents.
• Improving accessibility for people with low physical mobility.
• Lessening congestion through shared routes for both passengers and goods, coupled

with intelligent motion.
• Lowering energy consumption and pollution [1].

Consequently, industrialized countries are actively engaged in a competitive race to
develop autonomous driving technology, and leading research institutions and companies
are achieving great success. Recent progress in software (artificial intelligence, planning
and control, telecommunications, etc.), hardware (sensors, embedded supercomputers,
etc.), laws, and user acceptance suggests that autonomous driving is just a matter of time,
although achieving full autonomy presents many challenges.

To address these challenges, the Society of Automotive Engineers (SAE) outlines
five progressive levels of automation [5], ranging from driver assistance (level 1) to full
autonomy (level 5). In levels 2 through 5, the autonomous vehicle driving system is in
charge of steering, braking, and accelerating. This autonomous driving system consists of
multiple components that necessitate seamless integration to operate as a cohesive unit.
These components include perception, motion planning, vehicle localization, pedestrian
detection, traffic-sign detection, road-marking detection, automated parking, vehicle cyber
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security, fault diagnosis, and automatic control. Automatic control is in charge of driving
the vehicle between two points as well as generating smooth control actions to ensure
a comfortable ride [6] by controlling the lateral and/or longitudinal dynamics. This is
a challenging task that puts the vehicle into motion using sensors (GPS, IMU, encoders,
cameras, LIDAR, etc.) to measure the environment and the vehicle variables, and then
provides the appropriate signals to the actuators (steering motor, electric engine, and
braking system).

To address the problem of automatic control in autonomous driving systems, a variety
of automatic control strategies have been developed and implemented, e.g., proportional–
integral–derivative (PID) control [7–9], robust control (H∞) [10], fuzzy logic control [7,11,12],
sliding-mode control (SMC) [13,14], Lyapunov-based control [14,15], linear parameter-
varying (LPV) control [16], Takagi–Sugeno control [17], and linear quadratic regulator
(LQR) control [18]. Model predictive control (MPC) stands out as a highly effective control
strategy, relying on the dynamic model of the system to anticipate future states. Thus,
MPC has the capability to predict upcoming events and take appropriate control actions.
It is based on an optimal control law that minimizes a cost function in real time during
each iteration. Numerous notable efforts have been undertaken in this field [19–22]. Since
the vehicle model is non-linear, non-linear MPC (NL-MPC) can be applied but real-time
implementation is still an issue because of the small sampling times used [23–26].

The linear parameter-varying (LPV) approach mentioned in [27] is a control strategy
utilized in many control applications (see [16] for a recent review). It enables the transfor-
mation of a non-linear system into a linear-like representation by embedding the system’s
non-linearities inside variable parameters. LPV-MPC [28,29] uses LPV to obtain the ve-
hicle model, and despite its merits, the control still needs online optimization for MPC
during iteration, but with less computational load than NL-MPC. Another versatile and
effective tool in automatic control is the Linear Matrix Inequalities (LMIs) approach [30],
which allows for systematic design of closed-loop systems with guarantees of stability and
performance without requiring online optimization [31–33].

The Adaptive Neuro-Fuzzy Inference System (ANFIS) [34] is a learning approach that
synergizes the capabilities of two soft computing frameworks: Artificial Neural Networks
(ANNs) and fuzzy logic (FL). The ANFIS can model complex, non-linear functions that
may not be easily described using physical mathematical equations. This model can also
be represented explicitly and interpreted in Takagi–Sugeno (TS) form. Several studies have
used ANFISs in various applications. Ref. [35] applied an ANFIS to enhance vehicle route
selection in uncertain conditions. Ref. [36] aimed to build an ANFIS driver model that could
replace a real one. Ref. [37] used an ANFIS for navigation and target acquisition for an
autonomous robot in both static and dynamic environments. Ref. [38] applied an ANFIS to
establish a systematic process to access the complex operations of working vehicles. Ref. [39]
proposed an ANFIS to design a controller with self-position azimuth correction (SPAC) for
trajectory tracking and obstacle avoidance. Ref. [40] presented an ANFIS-based approach to
mobile robot navigation and obstacle avoidance in unknown static environments, considering
obstacle distances and steering angles as the ANFIS input and output, respectively.

The TS fuzzy modeling approach, as proposed by Takagi and Sugeno [41], serves as a
universal approximator for any smooth non-linear system [42]. It provides a systematic
approach for generating fuzzy rules from input and output data, and it is able to represent
the local dynamics of each fuzzy rule through a linear system model. This enables the
representation of a large family of non-linear dynamical systems with a high degree of
precision. Using the TS approach, several notable developments are actively moving
forward [17,43,44]. One common application is the use of the TS model to represent the
vehicle model for control tasks [45,46]. Ref. [47] proposed TS MPC for motion planning.
However, in both cases, the controller/planner still needs to perform online optimization
to minimize the MPC cost function during each iteration using the vehicle TS model. To the
best of the authors’ knowledge, there is a lack of evidence supporting the direct application
of TS to learn the control law (control model) with stability guarantees.
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This paper proposes a learning-based controller for autonomous vehicles. We use the
ANFIS as a learning method to directly obtain control laws from data (control model) in TS
model form. Another TS model is obtained to represent vehicle behavior (vehicle model).
The application of TS representation for the vehicle model has already been considered
for control design in the literature. However, this paper uses this model to verify the
closed-loop stability of the learned TS controller in an innovative manner using Lyapunov
theory and LMIs. A reliable working controller (in this paper, an MPC controller) is used as
a data generator to provide the required input/output data for obtaining a TS model for the
controller using the ANFIS. The proposed approach is validated through simulation with a
small-scale autonomous race car. The obtained results show that the proposed approach
has the merit of reducing computational complexity by removing online optimization.

This paper is organized as follows. Section 2 outlines the proposed approach. Section 3
provides details on the learning-based control design and introduces the autonomous vehicle
considered as a case study. The simulation results are presented in Section 4. Finally, Section 5
summarizes the key findings of this paper and suggests potential paths for future research.

2. Proposed Approach

The core concept behind the proposed approach is to develop a controller for an
autonomous vehicle by relying on machine learning and data rather than conventional
model-based control strategies, which mostly rely on physical models. When employing
the ANFIS as a machine learning method, the resulting controller is referred to as the
ANFIS controller in the remainder of this paper. It is used as a feedback controller to
provide appropriate control actions (controller output) to carry out the planned motion
and correct tracking errors (controller input). Tracking errors are generated during the
execution of a planned motion. Hence, the term “data” refers to the input and output
values of the controller, and the objective is to design a controller based only on these
data. Various methods exist to generate data, including simulation (using different control
strategies) or conducting real-world experiments (application of various control actions
to the vehicle). In this work, as shown in Figure 1, an existing MPC controller is used
as a data generator. This means that there already exists an autonomous vehicle system
that works with an MPC controller (previously designed and validated in [47]). This MPC
controller functions effectively, and throughout its operation, the input and output data
are recorded. By using these data to train an ANFIS structure, we can obtain an ANFIS
controller. In other words, this ANFIS controller is intended as a potential substitute for the
MPC controller, and a comparison of the operations and parameters of these two controllers
is investigated. Furthermore, the stability of the new autonomous vehicle system using
the ANFIS controller is examined. It should be noted that for stability assessment, both the
control and vehicle models must be derived from two distinct TS representations.

The proposed approach comprises the following steps:
To design such a machine learning-based control strategy and ensure closed-loop

stability, the following procedure is briefly outlined:

- Step 1: Generate the input and output data.
- Step 2: Employ the ANFIS to learn the control law from the data.
- Step 3: Validate the learned controller through simulation.
- Step 4: Obtain the TS model of the control model and vehicle model.
- Step 5: Stability proof of the closed-loop system.

2.1. Generate the Input and Output Data

The initial step consists of acquiring the data. Regardless of the data generation
method used, the quality of the data directly influences the effectiveness of the controller.
In this paper, an MPC controller functions as a data-generating tool. The controller inputs
are the tracking errors measured during the operation of the autonomous vehicle using the
MPC controller, xc = [ve ye θe], which are the errors in the longitudinal speed, lateral
speed, and angular velocity of the vehicle, respectively. The controller outputs are the
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control actions of the MPC controller, u = [δ a]T , which correspond to the steering wheel
angle and acceleration applied to the autonomous vehicle, respectively.

Figure 1. Introduction of the main idea and proposed approach.

2.2. Employ ANFIS to Learn the Control Law from the Data

The ANFIS is used to learn a control law from the input and output data. This
modeling tool configures a neural network that learns the dynamic behavior of the vehicle
using the backpropagation technique and the least squares (RLS) method for adjusting
additional parameters. The ANFIS enables the generation of an interpretable law in the
form of a TS model, providing sets of linear parameters (consequent parameters), non-
linear parameters (premise parameters), and membership functions (MFs). Given that the
vehicle controller has two outputs, it is divided into two multi-input single-output (MISO)
subsystems for the application of the ANFIS.

2.3. Validate the Learned Controller through Simulation

The closed-loop validation of autonomous vehicles is based on the conformity between
the outcomes of the ANFIS controller and those attained by the MPC controller. The precise
alignment during the simulation serves as a validation of the proposed approach. However,
compared to the MPC controller, the proposed approach has the merit of removing the
necessity of online optimization, thereby reducing computational complexity. Stability and
performance are assessed in the next step.

2.4. Obtain the Takagi–Sugeno Model of the Control Model and Vehicle Model

After obtaining, learning, and validating the controller, our objective is to derive the
explicit formula for the control law. The procedure is based on performing some inverse
steps that the ANFIS internally performs. While the algorithm efficiently computes the
consequent and premise parameters, we build two polytopic TS state-space representations
for the control model (see Figure 2a) and the vehicle model (see Figure 2b). The vehicle
model uses its related ANFIS structure, which is essential for evaluating the stability of the
vehicle closed-loop system using the ANFIS controller.
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(a)

(b)
Figure 2. Illustrations of the ANFIS Takagi–Sugeno (TS) representations for (a) the control model and
(b) the vehicle model. A detailed explanation of the parameters is provided in Section 3.

2.5. Stability Proof of the Closed-Loop System

The final step involves analyzing the stability of the autonomous vehicle closed-loop
system using the ANFIS controller. This is achieved by employing all vertices of both TS
representations of the control and vehicle models and applying the Lyapunov stability
theorem to the closed-loop system using LMIs [25]. This is presented in detail later in
Section 3.7.

3. Learning-Based Control Design Description
3.1. Considered Autonomous Vehicle

The case study considered is an autonomous race car, which is a developed platform
for autonomous driving. This is a rear-wheel drive (RWD) electric remote control (RC)
vehicle (see Figure 3) that has been modified to operate autonomously. Mechanically
speaking, it has been equipped with some decks to protect the on-board electronics and
sensors [47].

Figure 3. A real picture of the autonomous vehicle used for simulation.
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The non-linear model used for simulating the considered autonomous vehicle is based
on the bicycle model presented in Figure 4 and introduced in [48]:

v̇x = ar +
−Fy f sin δ − µg

m
+ ωvy

v̇y =
Fy f cos δ + Fyr

m
− ωvx

ω̇ =
Fy f l f cos δ − Fyrlr

I

α f = δ − tan−1
(

vy

vx
−

l f ω

vx

)
αr = − tan−1

(
vy

vx
+

lrω

vx

)
Fy f = d sin (c tan−1(bα f ))

Fyr = d sin (c tan−1(bαr))

(1)

Table 1 lists the system variables. The lateral forces produced in the front and rear tires,
denoted Fy f f and Fyr, are determined using the simplified “Magic Formula” model to
simulate lateral tire forces. The parameters b, c, and d in this model shape the force curve
and are obtained through an identification procedure. The front and rear sliding angles
are represented as α f and αr, while m and I represent the mass and inertia of the vehicle.
Furthermore, l f and lr are the distances from the vehicle center of mass to the front and rear
wheel axes, respectively. The static friction coefficient and gravity constant are denoted as
µ and g. Table 2 lists the specific values for all dynamic vehicle parameters.

Table 1. List of symbols.

Symbol Description

vx Longitudinal velocity of the vehicle in the center of gravity (CoG) frame (C) in (m
s ); see Figure 4.

vy Lateral velocity of the vehicle in the (CoG) frame (C) in (m
s ).

ω Angular velocity of the vehicle in the (CoG) frame (C) in ( rad
s ).

X Global position of the vehicle in the x-axis frame (O) in (m).
Y Global position of the vehicle in the y-axis frame (O) in (m).
θ Orientation of the vehicle with respect to the x-axis of the frame (O) in (rad).
a Longitudinal acceleration vector on the rear wheels in (m

s2 ).
δ Steering angle on the front wheels in (rad).

Figure 4. Representation of the bicycle model in 2D space.
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Table 2. Model parameters.

Parameter Value Parameter Value

l f 0.1377 m C f 45
lr 0.1203 m Cr 45
m 2.424 kg I 0.02 kg m2

b 6.0 c 1.6
d 7.76 µ 0.006

3.2. Generate the Input and Output Data

The autonomous vehicle equipped with an MPC controller, as described in [47], is
used as the data generator. The MPC problem is formulated as a quadratic optimization
problem that is solved at each time k to determine control actions, given the values of xs(k)
and u(k − 1):

min
∆U(k)

J(k) =
HP−1

∑
i=0

((
r(k + i)− xs(k + i)

)T

Q
(

r(k + i)− xs(k + i)
)

· · ·+ ∆u(k + i)T R∆u(k + i)

)
+xs(k + Hp)

T Pxs(k + Hp)

s.t. : xs(k + i + 1) =
Nν

∑
j=1

µsNj(ζs(k))
(

Aj x̂s(k + i) + Bju(k + i) + Cj

)
u(k + i) = u(k + i − 1) + ∆u(k + i)

∆U(k) ∈ ∆ ∏
∆ ∏ =

{
∆u(k) | A∆u∆u(k) = b△u, ∆u(k) ≥ 0

}
U(k) ∈ ∏
∏ = {u(k) | Auu(k) = bu, u(k) ≥ 0}
xs(k + Hp) ∈ χ

ye ∈
[
ye, ye

]
xs(k) = x̂s(k)

(2)

where ζs:= [vx vy ω δ a] is the vector of vehicle scheduling variables, x̂ is the estimated
state vector, r = [vxr 0 ωr]T is the reference vector provided by the trajectory planner,
and Hp is the prediction horizon. The tuning matrices Q ∈ R3×3 and R ∈ R2×2 are
positive definite in order to obtain a convex cost function. Thus, the values of the variables
xc = [vxe vye ωe] and u = [δ a]T are recorded as inputs and outputs during the
operation of the autonomous vehicle with the MPC controller. These data are employed as
training data for the ANFIS in the following step.

3.3. Learn the Control Law from Data Using the ANFIS Algorithm

This section outlines the methodology used to obtain the TS representation of the
autonomous vehicle control model (see Figure 5). To achieve this, the ANFIS is utilized
to learn the structure from the input and output data. In more detail, it learns the MPC
controller behavior of the vehicle from the input and output data using the backpropagation
technique and a set of membership functions (MFs). A typical membership function is
the generalized Gaussian Bell (GB) function. The ANFIS algorithm can only be used for
multi-input single-output (MISO) systems. Thus, the control model, which has two outputs,
is split into two MISO subsystems to apply the ANFIS. Since our control model is a second-
order system, two subsystems are obtained and two learning procedures are carried out.
To do this, first, the polynomial representation of each subsystem is formulated as:
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𝑃𝑐𝑖
𝐴𝑁𝐹𝐼𝑆
𝑓𝑜𝑟

𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑚𝑜𝑑𝑒𝑙

𝑣𝑥𝑒

𝑣𝑦𝑒

𝛿+

𝜂𝑐(𝜁𝑐) = 𝐺𝐵(𝜁𝑐 , 𝑎, 𝑏, 𝑐 )

𝜔 𝑒

Figure 5. Control model TS representation: TS polytopic learning ANFIS scheme for subsystem δ,
using the Gaussian Bell membership function with parameters a, b, and c.

Pci = pc1ivxe + pc2ivye + pc3iωe + pc4i

∀i = 1, . . . , Ncυ
(3)

where Pci is a linear polynomial representation of the controller of a subsystem at a par-
ticular output configuration. Pcji, ∀j = 1, . . . , Ncζ represent the consequent parameters
obtained from the ANFIS; Ncζ is the number of scheduling variables; and Ncυ represents
the number of polytopic vertices. vxe, vye, and ωe are the trajectory errors that are used as
controller inputs. Reorganizing the terms in this equation yields

Pci = [pc1i pc2i pc3i]xc + [pc4i] (4)

where xc = [vxe vye ωe]T is the controller state, and the polynomial structure is trans-
formed into the discrete-time controller representation given by

ui(k) = −
(

Ki(k)xe(k) + Cci(k)
)

∀i = 1, . . . , Ncυ

(5)

where step ui(k) is the output of subsystem i. Ki and Cci define the so-called vertex systems,
with u = [δ a]T . The generalized Gaussian Bell (GB) membership function, which is
defined by three parameters (a, b, and c), is employed as a membership function.

ηcm =
1

1 + ζco−cmo
amo

2bmo

∀m = 1, . . . , NcMF, ∀o = 1, . . . , Ncζ

(6)

where ζc represents the ANFIS input vector of the variables and is referred to as the
scheduling variables. Moreover, NcMF and Ncζ , respectively, represent the number of
controller MFs per scheduling variable and the number of scheduling variables. In this
case, if NcMF is two, the normalized weights ηcNi are computed as follows:

µci(ζc) =
Ncζ

∏
j=1

ξcij(ηc0, ηc1)

∀i = 1, . . . , Ncυ

(7)
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where ξcij(0) represents any of the weighting functions that depend on each rule i. Then,
by applying

µcNi(ζc) =
µci(ζc)

∑Ncυ
j=1 µcj(ζc)

∀i = 1, . . . , Ncυ

(8)

the normalized weights are obtained. Each scheduling variable ζco is known and varies
within a defined interval ζco ∈ [ζco, ζco] ∈ R. Finally, the polytopic TS model for each
subsystem is represented as:

uj(k) = −
Ncυ

∑
i=1

µcNji(ζc(k))
(

Kv
ji(k)xe(k) + Cv

cji(k)
)

∀i = 1, ..., NcG

(9)

where NcG is the number of subsystems. Accordingly, the overall TS system is represented
as follows:

uj(k) = −
Ncυ

∑
i=1

µcNji(ζc(k))
([

Kv
1i(k)

Kv
2i(k)

]
xe(k) +

[
Cv

c1i(k)
Cv

c2i(k)

])
(10)

For the sake of clarity, Equation (10) can be expressed as:

u(k) = −
Ncυ

∑
i=1

µcNi(ζc(k))(Kv
i (k)xe + Cv

ci(k)) (11)

and the ANFIS controller gains K ∈ R2×3 in Equation (5) are given by

Ki(k) =
Ncυ

∑
i=1

[
µcN1i(ζc(k))Kv

1i(k)
µcN2i(ζc(k))Kv

2i(k)

]
(12)

3.4. Validate the Learned Controller through Simulation

In this step, the closed-loop validation methodology of the ANFIS controller is pre-
sented. It is executed through simulation under conditions identical to those under which
the MPC controller operates. This means that the ANFIS controller is replaced with the
MPC controller as follows:

δ = eval f is(outFIS_δ, [vxe vye ωe])

a = eval f is(outFIS_a, [vxe vye ωe])
(13)

where evalfis is the Evaluate Fuzzy Inference System function in the MATLAB fuzzy toolbox;
outFIS_δ and outFIS_a are the fuzzy inference systems (FISs) to be evaluated, specified
as TS fuzzy inference systems, as described in Section 3.3, and xe = [vxe vye ωe]T and
u = [δ a]T are, respectively, the inputs and outputs of the ANFIS controller. The outcomes
obtained with the ANFIS controller are expected to closely follow those achieved with the
MPC controller.

3.5. TS Representation for Control Model

Once the algorithm discussed in Section 3.3 has computed the consequent and premise
parameters for each of the MISO subsystems, we construct the polytopic TS representation
for the control model (for each one of the MISO subsystems). This results in an explicit
formula for the control law (see Equation (12)). This TS model has to be validated through
the conformity of the parameters obtained with those achieved by the ANFIS. Using the
same approach, the TS representation of vehicle states (vehicle model) is achieved in the
next step.
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3.6. TS Representation for Vehicle Model

Obtaining the state space of the vehicle (vehicle model) is required for the stability
assessment of the system. This can be accomplished through two approaches: the TS
approach [47,49] and the linear parameter-varying (LPV) approach [50]. In this work, the
vehicle model is represented by the TS model, as shown in Figure 6.

𝑃𝑠𝑖
𝐴𝑁𝐹𝐼𝑆
𝑓𝑜𝑟

𝑉𝑒ℎ𝑖𝑐𝑙𝑒
𝑚𝑜𝑑𝑒𝑙

𝜂𝑠(𝜁𝑠) = 𝐺𝐵(𝜁𝑠, 𝑎, 𝑏, 𝑐 )

𝑣𝑥

𝑣𝑦

𝜔

𝛿

𝑎

𝑣𝑥
+

Figure 6. Vehicle model TS representation: TS polytopic learning ANFIS scheme for subsystem vx,
using the Gaussian Bell membership function with parameters a, b, and c [47].

Psi = ps1ivx + ps2ivy + ps3iω + ps4iδ + ps5ia + ps6i

∀i = 1, . . . , Nsυ
(14)

where the linear polynomial Psi represents the output configuration of the state of the
vehicle for a particular subsystem. Psji, j = 1, . . . , Nsζ represent the consequent parameters
obtained from the ANFIS; Nsζ is the number of scheduling variables; Nsυ represents the
number of polytopic vertices; and vx, vy, and ω are the system states, which, respectively,
represent the longitudinal speed, lateral speed, and angular velocity of the vehicle at each
time step. Equation (14) can be rewritten as follows:

Psi = [ps1i ps2i ps3i]xs + [ps4i ps5i]u + [ps6i] (15)

where xs = [vx vy ω]T represents the vehicle state with discrete-time representation

xi(k + 1) = Aix(k) + Biu(k) + Csi

∀i = 1, . . . , Nsυ
(16)

where Ai, Bi, and Csi are vertex systems, and u = [δ a]T . The generalized Gaussian Bell
(GB) membership function is defined by three parameters (a, b, and c), as follows

ηsm =
1

1 + ζso−cmo
amo

2bmo

∀m = 1, . . . , NsMF, ∀o = 1, . . . , Nsζ

(17)

where ζs represents the ANFIS input vector of the variables or scheduling variables and
NsMF and Nsζ , respectively, represent the number of membership functions per scheduling
variable and the number of scheduling variables. In this case, the normalized weights ηsNi
are computed as follows:
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µsi(ζs) =
Nsζ

∏
j=1

ξsij(ηs0, ηs1)

∀i = 1, . . . , Nsυ

(18)

where ξsij stands for any of the weighting functions that depend on each rule i

µsNi(ζs) =
µsi(ζs)

∑Nsυ
j=1 µsj(ζs)

∀i = 1, . . . , Nsυ

(19)

Each scheduling variable ζso is known and varies within a defined interval ζso ∈ [ζso, ζso] ∈
R. Finally, the polytopic TS model for each subsystem is

xsj(k + 1) = −
Nsυ

∑
i=1

µsNji(ζs(k))
(

Av
ji(k)x(k) + Bv

ji(k)u(k) + Cv
sji(k)

)
∀i = 1, . . . , NsG

(20)

where NsG is the number of subsystems. The overall TS system is represented as:

xsj(k + 1) =
Nsυ

∑
i=1

µsNji(ζs(k))

 Av
1i(k)

Av
2i(k)

Av
3i(k)

x(k) +

 Bv
1i(k)

Bv
2i(k)

Bv
3i(k)

u(k) +

 Cv
1i(k)

Cv
2i(k)

Cv
3i(k)

 (21)

For clarity of presentation, Equation (21) can be expressed as

xs(k + 1) =
Nsυ

∑
i=1

µsNi(ζs(k))
(

Av
i (k)x(k) + Bv

i (k)u(k) + Cv
si(k)

)
(22)

and the matrices A ∈ R3×3 and B ∈ R3×2 are as follows:

Ai(k) =
Nsυ

∑
i=1

 µsN1i(ζs(k))Av
1i(k)

µsN2i(ζs(k))Av
2i(k)

µsN3i(ζs(k))Av
3i(k)

 (23)

Bi(k) =
Nsυ

∑
i=1

 µsN1i(ζs(k))Bv
1i(k)

µsN2i(ζs(k))Bv
2i(k)

µsN3i(ζs(k))Bv
3i(k)

 (24)

3.7. Stability Assessment Using LMIs

Finally, the stability condition of the closed-loop system using the ANFIS controller is
presented and proved.

Proposition 1. Consider the following TS closed-loop system x(k + 1) = (A(k)− B(k)K(k))x(k)
in discrete time, where the controller K is the ANFIS controller in TS form (12), and the vehicle
model is also expressed in TS form (see Equations (23) and (24)). Then, according to the Lyapunov
stability theorem, the previous TS closed-loop system will be stable if there exists a matrix P > 0,
P = PT ∈ Rn×n, satisfying

[
−P (Ai(k)− Bi(k)Kj(k))T

Ai(k)− Bi(k)Kj(k) −P−1

]
< 0 ∀i = 1, . . . , Nsυ, ∀j = 1, . . . , Ncυ (25)
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Proof. The stability of the autonomous vehicle using the ANFIS controller is assessed
through the Lyapunov stability theorem and LMIs by introducing V(x) as a Lyapunov
function [25]:

V(x) = xT Px

∆V = V
(

x(k + 1)
)
− V

(
x(k)

)
= x(k)T

((
Ai(k)− Bi(k)Kj(k)

)T
P
(

Ai(k)− Bi(k)Kj(k)
))

x(k)− x(k)T Px(k)

= x(k)T
((

Ai(k)− Bi(k)Kj(k)
)T

PP−1P
(

Ai(k)− Bi(k)Kj(k)
)
− P

)
x(k) < 0

(26)

Applying the Schur complement to the previous expression yields

∆V =
Nsυ

∑
i=1

µsi(ζs)
Ncυ

∑
j=1

µci(ζc)

[
−P (Ai(k)− Bi(k)Kj(k))T

Ai(k)− Bi(k)Kj(k) −P−1

]
< 0 (27)

where Ncυ and Nsυ are, respectively, the number of polytopic vertices employed in the
ANFIS structure applied to the controller and vehicle TS models. The membership functions
µsi(ζs) and µci(ζc) are positive between zero and one. In order to guarantee negativity for
∆V, the second term needs to be negative. This leads to the LMI condition (25).

4. Results
4.1. Data Generation

The proposed approach is versatile and can be applied to any type of controller. In
this study, we employ an autonomous vehicle system, with the MPC controller (detailed in
Section 3.2) as a data generator. The autonomous vehicle (introduced in Section 3.1) was
tested on the Verschueren track. Figure 7 provides a visual representation of its operation
in the x- and y-axes. Throughout its operation, both the controller input (trajectory error
variables: xc = [vxe vye ωe]T) and controller output (control action: u = [δ a]T) were
systematically recorded. The diagonal terms for tuning the matrices and input constraints
are as follows:

Q = 0.65[0.4 10−6 0.6] R = 0.35[0.7 0.3] Hp = 6

Au =


1 0
−1 0
0 1
0 −1

 A∆u =


1 0
−1 0
0 1
0 −1

 bu =


0.249
0.249

4
1

 b∆u =


0.05
0.05
0.5
0.5

 (28)

Figure 7. Closed-loopMPC controller simulations, with the positions of the autonomous vehicle
system (blue line), trajectory (red line), and track boundaries (black line).
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4.2. Learning the Control Law

By using the Neuro-Fuzzy Designer app in MATLAB R2021a, a data split of 20%
for testing and 80% for training, the hybrid optimization method, and 100 epochs in the
training phase, we obtained the ANFIS structure shown in Figure 8 separately for δ and
a. The resulting neuro-fuzzy rules are illustrated in Figures 9 and 10, corresponding to
the fuzzy rules for δ and a, respectively. The specifications of the applied ANFIS are also
detailed in Table 3.

Figure 8. Representation of the ANFIS structure for the controller.

Table 3. Specifications of the ANFIS architecture.

Name Type

Generate FIS type Sugeno
The initial FIS model Grid partition
Decision method for fuzzy logic operation AND (minimum) Product
Decision method for fuzzy logic operation OR (maximum) Probabilistic
Output defuzzification method Weighted average
Number of membership functions for vxe 2
Number of membership functions for vye 2
Number of membership functions for ωe 2
Input membership function type Gaussian Bell
Output membership function type Constant
Number of rules 8
Train FIS optimization method Hybrid
Number of epochs 100

Figure 9. Representation of the fuzzy rules surface for the steering wheel angle (δ). This is one output
of the ANFIS controller.The degree of membership is shown in a color contour from blue (lowest) to
green (highest).
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Figure 10. Representation of the fuzzy rules surface for the ANFIS controller acceleration (a). This is
one output of the ANFIS controller. The degree of membership is shown in a color contour from blue
(lowest) to green (highest).

4.3. Validation of the Learned ANFIS Controller

Following the methodology outlined in Section 3.4, the ANFIS controller was inte-
grated into the autonomous vehicle system, and the closed-loop system was simulated. The
autonomous vehicle operated under the same conditions as those previously established
for the MPC controller.

This simulation involved implementing a control algorithm for a vehicle racing sce-
nario aimed at finding a trajectory within the circuit. It considered a pre-defined trajectory
plan along with the constraints of the circuit (Verschueren 2016 map), the ANFIS controller
models obtained in Section 4.2, and other vehicle parameters mentioned in Section 3.1. The
trajectory points defined the racing track boundaries and reference states, including the
velocity, curvature, position, and orientation of the vehicle. The simulation loop iterated
over time steps, where at each step, it calculated the errors between the current states and
reference states. The simulation used the ANFIS controller (evalfis) to determine control
actions based on these errors.

Figure 11 provides a visual representation of the trajectory followed in the x- and y-axes.
To gain detailed insight into the newly designed controller, we conducted a comparative
analysis of the other variables of the autonomous vehicle when using the MPC and ANFIS
controllers. Figure 12 depicts a side-by-side comparison of the states and control actions
between the reference values provided by the planner and those obtained using these two
controllers. Furthermore, Figure 13 shows the state errors (relative to the planner) of both
controllers. These errors are quantified as the Mean Square Error (MSE) and are shown in
Table 4.

Table 4. Trajectory state errors (MSE) relative to the planner for both the ANFIS controller (evalfis)
and the MPC controller.

MSE vxe vye ωe

ANFIS 0.2144 0.0280 0.0417

MPC 0.0587 0.0323 0.0518

The trajectory-following performance of the autonomous vehicle was almost the
same when using both the ANFIS controller and the MPC controller. Moreover, trajectory
errors in two states (vy and ω) were smaller when the system used the ANFIS controller.
Differences in the evolution of one state (vx) did not affect trajectory tracking. Furthermore,
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the primary advantage is the notable reduction in computational time. Figure 14 shows the
time elapsed for a one-cycle iteration of the autonomous vehicle on the Verschueren 2016
map under the same conditions but with different controllers:

(a) MPC controller using LPV to identify the vehicle model (LPV-MPC) [29].
(b) MPC controller using the non-linear technique (NL-MPC) [24].
(c) MPC controller using TS to identify the vehicle model (TS-MPC) [45].
(d) ANFIS controller using TS to identify the control and vehicle models.

Figure 11. Closed-loop ANFIS controller simulations, with the positions of the autonomous vehicle
system (blue line), trajectory (red line), and track boundaries (black line). This operation is known as
ANFIS controller design validation.
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Figure 12. Parameters of the autonomous vehicle system navigating the Verschueren map, using an
ANFIS controller (evalfis) and an MPC controller. The planner parameters are also highlighted.
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Figure 13. Visualization of the state errors (relative to the planner) for both the ANFIS controller
(evalfis) and MPC controller.
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Figure 14. Computational times required for the simulation (one-cycle iteration of the autonomous
vehicle on the Verschueren 2016 map) with different controllers: (a) LPV-MPC [29], (b) NL-MPC [24],
(c) TS-MPC [45], (d) ANFIS.
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Figure 15 depicts a comparison of the controllers, where subfigure (a) shows that the
NL-MPC operated at a higher sampling rate of 20 ms, while the other controllers operated
below that rate. However, subfigure (b) shows that the ANFIS controller was approximately
10 times faster than the LPV-MPC and TS-MPC controllers.
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Figure 15. (a) Comparison of computational times for all controllers; (b) Comparison of elapsed times
for controllers operating at a sampling rate of around 20 ms.

4.4. Validated Takagi–Sugeno (TS) Representation for Both Control and Vehicle Models

The ANFIS output was calculated using the evalfis function in Matlab R2021a (from
MathWorks, Massachusetts, United States)and the TS explicit representation of the ANFIS
control law was also obtained for stability analysis. As a controller, the ANFIS involved
three inputs, each associated with two membership functions. This resulted in eight
matrices for K ∈ R2×3, representing the control model. In addition, the ANFIS was used to
obtain the vehicle model, which, in this case, involved three inputs, each associated with
two membership functions, resulting in eight matrices of A ∈ R3×3 and two matrices of
B ∈ R3×2. The TS representations for both ANFIS models (controller and vehicle) were
obtained using Equations (12), (23), and (24). These TS representations must be verified
through the conformity of the TS representation output (explicit evalfis) and ANFIS output
(evalfis). However, there is no guarantee that the TS representation precisely follows the
ANFIS output. This validation for the TS representation for the control model is depicted
in Figure 16, and for the vehicle model, in Figure 17. The overlap between evalfis and the TS
explicit representation allowed us to confirm that the TS model corrected both the controller
and vehicle.

4.5. Stability Assessment

The stability assessment relied on Lyapunov theory, as outlined in Section 3.7. This
process utilized YALMIP with SeDuMi 1.3.4, involving 275 LMIs. The assessment concluded
the stability of the autonomous vehicle system using the ANFIS controller by establishing a
positive-definite matrix P, as follows:

P =

 1 −1.19 × 10−12 1.15 × 10−13

−1.19 × 10−12 1 −5.64 × 10−12

1.15 × 10−13 −5.64 × 10−12 1
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Figure 16. TS representation and validation for the control model: The control actions calculated by
the TS model (explicit evalfis) closely match those calculated by the ANFIS (evalfis).
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Figure 17. TS representation and validation for the vehicle model: The states calculated by the TS
model (explicit evalfis) closely match those calculated by the ANFIS (evalfis).

5. Conclusions

In this article, a learning-based approach has been presented to design a controller for
an autonomous vehicle under realistic conditions in real time. The ANFIS, as a learning
method, is applied to learn a control law using training data obtained from a pre-existing
controller. The control law learned from the data is formulated as a Takagi–Sugeno (TS)
representation. At the same time, the vehicle model is also learned from the data using
the ANFIS. This allows for the proof of closed-loop stability using Lyapunov theory and
LMIs for the autonomous vehicle system when the ANFIS controller is used. The proposed
approach is validated through simulation using racing-based references provided by an
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external planner. The ANFIS controller enables the vehicle to perform in racing mode.
In comparison to an autonomous vehicle controlled using the MPC controller under the
same conditions, the ANFIS controller exhibits reduced errors in two vehicle states (Vy
and ω) while performing satisfactory trajectory tracking with the added advantage of
lower computational time. This strategy has been proposed as an approach to address
both autonomous driving control problems and to serve as a parallel controller, enhancing
system reliability in the event of a malfunction in the primary controller. The required data
in this approach can be obtained from different methods, such as real-world experiments
or through simulation. For future work, this approach can be implemented in a real-world
experiment using the scale autonomous car and a full-sized vehicle. The application is
straightforward since only data from the real vehicle are required. In addition, the proposed
method can be applied to the platooning control of multiple vehicles. Some interesting
fields of application include the co-design of a bandwidth-aware communication scheduler
and cruise controller for multiple high-speed trains, as well as the secure and collision-free
multi-platoon control of automated vehicles under data falsification attacks. It is possible
to apply the approach using other machine learning methods, such as reinforcement
learning [51].
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