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Abstract: Seismic methods are extensively used in coal mining for expanding resource discoveries
and definition as well as for mine monitoring. However, the use of borehole seismic methods
is relatively uncommon due to the high cost of borehole seismic acquisition using conventional
downhole tools. The introduction of distributed acoustic sensing (DAS), which uses optical fibres to
record seismic data, has dramatically increased the cost-effectiveness of borehole seismic methods.
Fibre-optic cables are inexpensive and, once deployed in a borehole, can be abandoned or used later
for further monitoring of the subsurface. The case study presented here concerns the use of DAS
to record a 3D VSP (vertical seismic profiling) for coal seam exploration in Queensland, Australia.
This study trialled effective strategies for deploying cables into boreholes and demonstrated how this
technology could be incorporated into the standard coal exploration process. The final processing
results produced a high-resolution 3D seismic cube where the coal seams below the basalt cover are
clearly identifiable around the boreholes. Permanent installation of the fibre-optic cables into a set
of boreholes provides immediate benefits of 3D seismic imaging and can create additional value in
utilising these sensors for further discrete or continuous subsurface measurements, including stability
monitoring of underground workings and detection of methane accumulations.

Keywords: DAS; 3D VSP; reflectivity method; borehole

1. Introduction

Seismic methods, especially surface 2D and 3D methods, are extensively used in the
coal industry for resource exploration [1–4] and, recently, using high-density surveys for
resource delineation [5]. Having one of the highest safety standards amongst the mineral
industry, coal mining also employs seismic techniques for production monitoring. Seismic
methods are sometimes used in time-lapse mode to observe the mining process and detect
methane accumulations and gas leakages. In some countries, this is becoming a common
practice or even a legal requirement [6,7]. Borehole seismic methods using conventional
downhole seismic receivers, on the other hand, are less popular in mining due to the
relative cost of borehole seismic acquisition. While several attempts have been made
to optimise borehole seismic acquisition and its cost-effectiveness using different sensor
designs, borehole seismic methods are still not considered standard tools in the industry.

Over the past ten years, significant advancements have been achieved in distributed
acoustic sensing (DAS) technology. This technology is progressively becoming more and
more common in various geophysical applications. This method utilises an optical fibre
as a sensor. A recording unit known as an interrogator sends a laser pulse down the fibre
and receives the light backscattered by inhomogeneities in the fibre. The interrogator
records the phase change of the backpropagated light, resulting from subtle elongations
or contractions in the fibre when seismic energy interacts with the cable. Naturally, such
measurements are more susceptible to waves that cause strain primarily parallel to the fibre-
optic cable, such as P-waves propagating along the cable [8]. This preferential directivity
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is one of the reasons why DAS is a particularly useful method for downhole seismic
applications, since in this receiver geometry, the recorded P-waves are mostly polarised
along the direction of the cable. Numerous examples have been published on successful
applications of fibre-optic sensing for reservoir monitoring in hydrocarbon exploration and
CO2 geosequestration (e.g., [9–11]). The DAS approach has several advantages that make
downhole seismic measurements affordable and effective. In particular, unlike geophones,
DAS provides dense spatial sampling along the entire length of a borehole, allowing data
recording along the entire borehole at once. This greatly reduces the duration, and hence
the cost, of acquisition. Distributed fibre-optic sensors can provide data superior to those
acquired with geophones [12]. Additionally, standard telecommunication fibre-optic cables
are inexpensive enough to be considered disposable and can be permanently installed in a
borehole at little extra cost. These advantages make DAS attractive for mineral exploration,
where exploration boreholes are usually shallow and can be easily instrumented with such
cables. Despite the apparent benefits of DAS for downhole seismic measurements, there
are limited examples of its applications for mineral and coal exploration [13–15].

It should be noted that the implementation of DAS for coal exploration is not without
its challenges. The depth calibration of borehole DAS data is challenging as the acquisition
is normally carried out without real-time correlation of the cable location to depth with
gamma-ray measurements. Instead, the following approaches can be used for depth
calibration: (1) using locations of geophones (in case of simultaneous acquisitions) and
optical attenuation points [16]; (2) using locations of clamps in case a cable is clamped to a
tubing [17]; (3) using DAS amplitudes and borehole logs [18,19]. Another challenge is the
strong dependence of the optical fibre sensitivity on the incidence angle, as discussed above.
This directional sensitivity issue can be mitigated using helically wound cables (HWC) [20].
Furthermore, the signal-to-noise ratio (SNR) of standard telecom DAS cables can sometimes
be lower compared to geophones and depends on the cable deployment [21]. However,
SNR can be greatly enhanced by using engineered fibres with enhanced backscattering
properties [12].

Another challenge for all borehole seismic methods in coal applications is complex
structures, strong velocity contrasts and high attenuation of seismic signals. We believe
that, despite these issues, the potential of borehole DAS in the coal industry for exploration
and mine operations should be further explored.

Here we present a case study of 3D DAS vertical seismic profiling (VSP) acquisition at
an Anglo American coal mining site in Queensland, Australia. The survey was conducted in
2019 and, at the time, was the first of its kind experiment on the acquisition of 3D VSP with
fibre-optic sensors in coal exploration. The experiment probed two deployment strategies
for the permanent installation of fibre-optic sensors with low cost and minimal disruption
of the general drilling process. The main objective was to image a coal seam at a depth
of approximately 400 m using fibre-optic cables cemented in three exploration boreholes.
A particular challenge for this study was imaging in the presence of near-surface basalts
that greatly degrade the quality of the recorded seismic signal. To address this challenge,
we complemented the field experiment with a synthetic study aimed at improving and
calibrating the processing of the field data. The high-quality 3D volume obtained as a result
of the data processing provides a clear image of the target seam around the boreholes and
delivers insights into the optimal employment of DAS for coal exploration.

We begin by describing our field experiment; next, we describe a synthetic study
based on the field acquisition parameters that we use to inform the further described data
processing and interpretation of the results. The experiment demonstrates the effective
utilisation of DAS technology for the acquisition of valuable downhole seismic data.

2. Field Experiment

The DAS 3D VSP experiment was conducted in 2019 at a coal mine in Queensland,
Australia. The study area is characterised by the presence of basalts at a relatively shallow
depth (70–100 m). It is generally difficult to obtain a reliable image under the basalt cover
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from conventional 3D surface seismic, as these rocks have very high seismic velocities
(relative to sedimentary rocks at similar depths) and significantly scatter seismic energy [22].
This issue can be partially addressed by deploying receivers in boreholes, as the reflected
energy travels through the highly reflective basalts only once. As such, this feasibility trial
aims to demonstrate how relatively inexpensive DAS downhole seismic measurements
help image the coal seams under the basalts.

To reduce the duration and cost of the test, the DAS acquisition was carried out
concurrently with a planned surface 3D seismic survey. Three vertical boreholes, originally
drilled to sample the target coal seam formation, had fibre-optic cables cemented within
them. Each cable had a turnaround at the bottom, which enabled them to be connected
together so that data could be recorded using a single interrogator. Figure 1 shows the shot
point locations that were acquired with the deployed DAS system. Unfortunately, during
the installation, the turnaround in Borehole 1 was damaged, and this borehole needed to
be interrogated separately from the other two holes. As such, only a small portion of shot
points was acquired with the fibre in Borehole 1 (blue dots in Figure 1), and these data were
excluded from further analysis.
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Figure 1. Acquisition map. Red dots show the locations of the boreholes. Green shot points were
recorded with fibre optics in Boreholes 2 (east) and 3 (west) (connected together); blue shot points
were recorded with fibre optics in Borehole 1 (south).

The depth of both Boreholes 2 and 3 is about 400 m. The fibre-optic cables were
installed in these two boreholes using slightly different methods. The cable in Borehole 3
was attached to a polyvinyl chloride (PVC) water-bore casing and lowered down the holes.
The casing was then used to pump cement into the borehole to complete the installation.
The fibre in Borehole 2 was installed using a 50 mm Blue Line HDPE pipe (high-density
polyethylene pipe), to which a fibre-optic cable was taped (Figure 2). To ensure that the
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pipe reached the bottom of the hole, it was lowered with a non-metallic weight attached.
The pipe was then used to pump cement into the borehole. The installation of the fibre into
each of the boreholes took less than a day per borehole.
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Figure 2. Installation of the fibre optic cable on a poly pipe to Borehole 2. The polyethylene pipe is
attached to a grouting truck that was used to cement the borehole through the pipe.

The choice of materials to deploy the cable and cement the holes was to ensure no
metallic components were installed in the subsurface that could interfere with future
mining operations. This included the turnaround made for the cable deployed in Borehole
2 that allowed covering the borehole twice by a fibre path and establishing the connection
with Borehole 3 (Figure 3a), as well as the attenuator for the bottom of Borehole 3 to avoid
the strong reflection of laser light from the end of the cable. The 5 mm armoured cable
connecting the two boreholes was buried about 10 cm below the surface at track crossings to
protect it from traffic. Figure 3 shows the schematics of fibre-optic connections and pictures
from the survey (the wellhead of Borehole 2, the recording vehicle and a vibroseis truck).

The acquisition was conducted using 26,000 lbf peak-force vibroseis trucks (Figure 3)
transmitting a 10 s linear 6–160 Hz sweep. Shot line spacing was 100 m, and the distance
between shot locations on a line was 10 m. The installed optical cables contain single-mode
fibres, which were used for DAS VSP acquisition. DAS data were recorded using a dual-
pulse Fotech Theta interrogator with the following recording parameters: sampling rate
of 1 ms, channel separation of 0.68 m, pulse repetition frequency of 30 kHz, pulse width
of 150 ns and a gap of 60%. These settings are equivalent to a gauge length of about 12 m.
The total length of the interrogated fibre-optic cable was about 2400 m. The interrogator
was recording continuously, with a GPS time stamp for each record. During processing, the
data were matched to actual sweep records using the recorded vibroseis time breaks.
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3. Synthetic Study

Processing and imaging seismic data in geological settings with such a high-velocity
contrast is usually quite challenging. To determine the optimal processing parameters and
to aid in the interpretation of the results, we performed acoustic synthetic modelling of the
expected seismic response. To create synthetic seismograms, we needed a subsurface model
incorporating P-wave velocity (VP) and density. These parameters are ideally obtained from
borehole logs, and indeed, the boreholes that we used for the data collection were logged
accordingly. Unfortunately, however, the holes were cased to a depth of approximately
200 m, and thus VP measurements were available only for the deeper parts of the boreholes,
and we had to infer the values from the measured density logs.

There are several empirical relationships between density and VP commonly used
for sedimentary rocks [23,24]. However, such empirical estimates are too general, and
the results are usually inconsistent with borehole logs in a specific area, which results
in adapting the parameters in the formulas for the specific case. To find the best-fitting
relationship between the density and VP, we used the available logs to cross-plot these
quantities (Figure 4). There are some measurements logged within the cased part of the
bores that are present on the plot. They fall around 5500 m/s of the velocity value and
a wide range of density values (points are labelled in Figure 4). These datapoints were
excluded from the following fitting with empirical property trends.
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Figure 4. Log/log plot of the estimated relationship between P-wave velocity and density based
on the log data from the bottom of the holes. The constant velocity datapoints correspond to the
velocity of the steel casing, as indicated by the dark colour corresponding to the shallow depths. The
datapoints were fitted by two curves (solid and dashed lines in the log/log plot) for the different
density ranges, since it is clear that one line would not produce a good fit.

Since we could not fit the data using only one empirical relationship, we split the data
into two sets, for which we found the best exponential fits for these two separate parts of
the data. These two fits were separated by a density of 2.4 g/cm3, at which the behaviour
of the relationship changes. The resulting VP-density relationship is a combination of the
two models, which are shown in Figure 4 (solid and dashed lines in the log/log plot).
Figure 5 shows the final velocity profile compared to the logged sonic velocities below
200 m in Borehole 1—the match is sufficient for the modelling of the seismic response.
A combination of the reconstructed plus measured velocities was then used to build a
horizontally layered model for the numerical simulation of the seismic response.
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Figure 5. P-wave velocity computed from the density log compared to the logged sonic velocity in
Borehole 1.

The seismic response was modelled using OASES, a computer code for modelling
full-wave seismo-acoustic propagation in horizontally layered environments [25]. The
modelling was carried out for a 2D geometry with a 400 m vertical borehole with 1 m
spaced sensors and sources from 5 m to 850 m away from the borehole with 1 m spacing.
Both vertical and horizontal components of particle velocity produced by waves generated
by a vertical point force were generated for each receiver location. The complex geology
of the area results in a complex seismic wavefield. Because the focus was on processing
the reflected P-waves of the field data, understanding the effects of P-wave multiples on
imaging was of interest, and as such, only acoustic modelling was used.

The synthetic dataset was composed of the computed traces corresponding to the
offsets taken from the exact geometry of the field experiment using the location of Borehole
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2. The simulated waveforms essentially form a regular grid relative to offset (5 to 850 m,
step 1 m) and elevation difference (0 to 400 m, step 1 m) between source–receiver pairs.
Thus, for each of the field source–receiver pairs, a corresponding synthetic seismic trace
was assembled using bilinear interpolation of the nearest synthetic traces based on the
offset and elevations. Therefore, the simulation results mimic the exact geometry of the
field experiment.

Then the synthetic particle velocity data were converted into the strain rate, which is
the native measurement of this DAS system [26]. Firstly, synthetic vertical and horizontal
components of the wavefield were used to calculate the particle velocity along the borehole,
accounting for the borehole geometry. Secondly, the data were differentiated along the
length of the borehole. The obtained wavefield represents the strain rate, and thus the
synthetic data become fully comparable with the field dataset.

Figure 6 shows examples of the field and synthetic DAS VSP data for three shot
locations. The depths of the key seismic reflectors are positioned correctly in accordance
with the logs. It can also be observed that the VP model overestimates velocities in the
shallow part of the section, resulting in earlier arrivals of the direct wave. A better match
between the synthetic and field data can be achieved if the model is updated accordingly.
However, given the relatively low quality of the field seismic data and the lack of velocity
logs available in the shallow part of the borehole, an adequate update of the high-resolution
velocity model is challenging.
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Figure 6. Examples of field raw and synthetic seismograms: (a) raw common source gathers at 30, 180
and 300 m offset from Borehole 2; (b) respective synthetic common source gathers at 30, 180 and 300 m.
Red dashed lines indicate primary reflections; yellow dashed lines indicate multiple reflections.

Even though the simulated seismic response does not fully match the field data, it gives
a clear indication of the challenges that may be encountered in processing the seismic data.
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The synthetic modelling shows that the presence of numerous strong reflectors (red dashed
lines in Figure 6b) results in the generation of numerous multiples (yellow dashed lines
in Figure 6b), which affect the imaging unless attenuated. Figure 7a shows the common
receiver gather for the channel at 200 m depth after separation of the upgoing wavefield,
which displays several multiples (dashed yellow lines). The multiples strongly affect the
migrated image by producing lens-type artefacts, as shown in Figure 7b. Therefore, the
synthetic modelling reveals an important issue that should be accounted for to correctly
process and interpret the data in coal seam geological settings.
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4. Processing of Field 3D DAS VSP Data

In total, 1647 source points were included in the analysis. Figures 6b and 8 show
examples of the raw data records. Figure 8 displays raw seismograms from the continuous
fibre connecting both Boreholes 2 and 3 with marked segments of the cable. The two
displayed seismograms are for the shot locations nearest to the two boreholes. Figure 6b
shows panels of raw DAS seismic records at various offsets for Borehole 2 data. Strong
reflections are observed in the raw records and are mainly related to the high velocity
contrast of basalts and coal seams within the geological section. One can also observe the
deterioration of the data quality with offsets, which is related to the directional sensitivity
of fibre optics and partially to the quality of the cable coupling with the cement.

To process the data, first the geometry was assigned to the acquired datasets by
matching the GPS time stamps of the recorded files with time breaks logged by a surface
seismic system received from the vibroseis trucks’ decoders at each shot location. Next, all
the data were loaded into the RadexPro v2021.3 processing software. Data were organised
in two individual datasets for Borehole 2 and Borehole 3 and migrated separately. The same
processing workflow was used for both datasets (Table 1). The channel–depth relationship
of the optic channels was calibrated by pinpointing specific positions on the cable at known
locations in the boreholes (such as the wellhead and bottom of the hole). Noisy traces and
bad records were removed. Data were resampled to a 1 m depth interval (traces within 1 m
windows were stacked). Specifically, for Borehole 2 data, to increase SNR, both directions
(down and up) of the fibre-optic cable were also stacked (channels corresponding to the
same depth were mathematically summed). Velocity was estimated using one of the closest
shot points, which is a zero-offset geometry, for Borehole 2 and Borehole 3 independently.
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Figure 8. Examples of raw DAS data. Raw seismograms recorded with the continuous fibre-optic
connecting Boreholes 2 and 3 to their respective nearest offset: (a) shot point nearest to Borehole 2
(~30 m); (b) shot point nearest to Borehole 3 (~30 m).

Table 1. 3D DAS VSP processing flow.

Data Preparation Converting DAS records to standard SEGY files.

Data Input and Geometry
Assigning each FFID with its respective source
coordinates, source line and shot number;
assigning depth to DAS channels.

Data Editing Removing noisy traces.

Static Correction Applying model-based static corrections.

Amplitude Correction Correction for spherical divergence.

Predictive Deconvolution Applying non-stationary predictive deconvolution.

Velocity Analysis Estimating the velocity function from ZVSP.

Wavefield Separation

In common shot-gathers, an FK filter is used in
dedicated polygons to remove downgoing P- and
S-waves, followed by a 2D alpha-trimmed filter.
Mute energy above direct P arrivals and below
direct S arrivals.

Migration
Isotropic velocity model, Kirchhoff migration
central dip = 0, dip range = 7 degrees. Offset
limited by 500 m.

As data quality deteriorated relatively rapidly away from the boreholes, it was not
possible to pick first breaks along the entire record for offsets beyond ~150 m. As such, to
compensate for source statics and to broaden the spectrum of the wavelet, deterministic
deconvolution had to be replaced with the following alternative approach: Static corrections
were estimated using a model-based approach; travel–time curves for the direct P-wave
were calculated using ray tracing and the obtained velocities for a chosen depth (with a high
SNR of the first breaks across a large offset range). The first breaks were then picked for the
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same depth and offset range, and the difference was attributed to the source static shifts
and applied to the data. Figure 9 shows examples of the application of static corrections for
data from both boreholes, and it demonstrates a clear improvement in the continuity of
the interfaces.
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Figure 9. Example of the application of a model-based static correction for both boreholes at 200 m
depth. Source line 5384. (a) Data from Borehole 2 before and (b) after static was applied; (c) Data
from Borehole 3 before and (d) after static was applied.

The next step included the application of an FK filter and a 2D filter for the separation
of an upgoing wavefield (reflections) for further analysis. To remove downgoing P- and
S-energy, dedicated polygons were designed for the FK filter and applied in common
shot gathers. The polygon focused on positive wave-numbers to suppress downgoing
energy. Processing was followed by a 2D alpha-trimmed filter to suppress remaining
noise (filter size of 11 traces and one sample at a time with 30% alpha-trim rejection). To
exclude shear waves from the migration, we muted data below direct S-arrivals (muting
parameters were estimated from direct S-wave travel times computed using ray tracing).
The frequency spectrum was then evened and broadened by using non-stationary predictive
deconvolution. Figure 10 displays an example of the application of deconvolution for
the upgoing wavefield from the Borehole 2 dataset, with an evident increase in vertical
resolution due to the broader spectrum.
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Figure 10. Example of the wavefield separation for Borehole 2 data (left panels show data after
wavefield separation) and application of non-stationary predictive deconvolution. Right panel
spectra before (blue) and after (orange) deconvolution.

The imaging was performed using an in-house 3D VSP Kirchhoff time migration code
and a 1D isotropic velocity function obtained separately for each borehole. The algorithm
was adapted to take into account the directional dependency of DAS amplitudes [20] by
dividing the weights of the samples taken into migration by the cosine of the angle of the
ray’s incidence to a borehole trajectory. The adapted migration also assumes straight ray
paths. To simplify the quality control of the processing, the boreholes were imaged indepen-
dently from each other on the common grid with a 6 m × 6 m × 1 m bin size. An amplitude
correction for spherical divergence was applied before migration. To avoid introducing
noise from low-quality gathers due to the directional variations in the sensitivity of DAS,
an offset range for migration was limited to 500 m around the boreholes. The fold maps for
the target horizon (~380 m) from the selected ranges of source locations for Borehole 2 and
Borehole 3 are shown in Figure 11.
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Figure 12 shows the migrated DAS 3D VSP volumes for both bores. The applied
DAS methodology produced clear images of the target coal seam formation (around 380 m
depth). As can be seen in Figure 12, which also shows the density log in Borehole 2, the 3D
cube is consistent with the logs. The coal seams on the log are related to the low density
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readings, which are shown in yellow. The target deep coal horizon is illuminated and easily
traced around the boreholes in both volumes. The upper coal seams are apparent as well
and consistent across the volumes. Figure 13 shows a 2D transect across both boreholes. The
main coal seams are consistently imaged within both volumes. Unfortunately, they intersect
at the area of a low fold, which makes collaborative interpretation somewhat difficult.
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5. Discussion

Despite the encouraging results of the trial, there remain several challenges that require
further study. It would be ideal to migrate data for both bores simultaneously, but there are
several reasons why it is currently preferable to image and analyse the datasets individually.

First, the data at mid- and far-offsets are quite noisy. This prevented us from estimating
the arrival times of direct P-waves across the survey, which could be used to account for
azimuthal anisotropy [10] and help to build a more accurate and consistent velocity model
for combined imaging. In this study, velocity models were derived separately for each
borehole. The introduction of an engineered fibre with enhanced backscattering properties
for such deployments would substantially increase the SNR [12] of recorded data. This will
likely soon be a common practice as the DAS technology is rapidly evolving.

An additional weighting of amplitudes in the applied Kirchhoff migration was intro-
duced, which compensates for the directional sensitivity of the fibre sensors. This brings
some additional noise to the migrated images, especially from large offsets, and this issue
needs to be more carefully addressed in the future. Scrutiny of amplitude compensation
accounting for DAS VSP geometry is required to avoid artefacts while doing concurrent
migration of multi-borehole data.

Other noise components that require additional attention and separate studies are
source-generated and converted S-waves, as well as surface-related and interbed multiples.
At this stage, a simple mute of most of the S-wave energy below the direct S-wave arrivals
was used, but a more prudent approach based on noise modelling should be investigated
to reduce such contamination. Geological settings in the area include quite a few forma-
tions with high contrast in velocities compared to surrounding rocks, such as coal seams
themselves and the basalt cover. This inevitably leads to the generation of multiples, as
demonstrated in this synthetic study. Finding the most appropriate solution to suppress
these multiples is another future research direction.

Despite these challenges, in this pilot study, the benefits of downhole DAS seismic
measurements are apparent. Furthermore, permanently deployed downhole DAS cables
create additional value by turning a borehole into a seismic sensing array that can be
utilised for mine safety monitoring. Designing in advance which fibre types (multimode,
single-mode, tight-buffered, etc.) to include in a cable for installation allows bringing extra
advantages like implementing simultaneous measurements of multiple properties such as
strain and seismic events, which can be further used for subsurface characterisation of the
physical properties and mine monitoring. The presented study demonstrates great poten-
tial for incorporating seismic fibre-optic technology into the exploration and production
workflows of the coal industry. The quality of the final seismic 3D images demonstrates a
high value of information obtained using the DAS technique.

6. Conclusions

A DAS 3D VSP field study for coal seam exploration produced a high-quality 3D seis-
mic image that illuminates the target coal seam in the vicinity of Borehole 2 and Borehole
3. The experimental installations of fibre optics in several bores demonstrated that this
technology could be easily included in the standard exploration drilling workflow with sub-
stantial cost efficiency. The advantages of DAS technology, in conjunction with downhole
seismic methodology, permit us overcome difficulties in imaging the subsurface formations
below the basalt cover by having multiple seismic sensors underneath it. Instrumenting
the exploration bores with DAS sensors allowed for a clear 3D image and a reduction in
the duration of the whole field campaign quite considerably.

Several aspects of data analysis that need some improvement were identified, and
some of them were addressed. Data acquired with fibre-optic sensors should be treated
carefully. Here, a modified standard Kirchhoff time algorithm was used to account for
the DAS’s distinct directivity. Additional studies are required in data analysis to better
suppress S-waves and multiples from the upgoing wavefield gathers. This synthetic study
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significantly improved our understanding of the wavefield components using real data
and helped validate approaches to processing.

The permanently deployed fibre optics create a seismic monitoring array in each of
the bores. That considerably increases the value of the deployed DAS cables, as they can be
used for further monitoring of the mine operations as well as for measurements of other
properties like temperature, strain and passive seismic events. Considering the economic
and operational advantages of DAS over conventional receivers and the achieved quality
of 3D DAS VSP imaging, fibre-optic technology becomes appealing as a versatile and
cost-effective tool for the coal industry.
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