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Abstract: The pure inertial navigation system, crucial for autonomous navigation in GPS-denied envi-
ronments, faces challenges of error accumulation over time, impacting its effectiveness for prolonged
missions. Traditional methods to enhance accuracy have focused on improving instrumentation and
algorithms but face limitations due to complexity and costs. This study introduces a novel device-
level redundant inertial navigation framework using high-precision accelerometers combined with a
neural network-based method to refine navigation accuracy. Experimental validation confirms that
this integration significantly boosts navigational precision, outperforming conventional system-level
redundancy approaches. The proposed method utilizes the advanced capabilities of high-precision
accelerometers and deep learning to achieve superior predictive accuracy and error reduction. This
research paves the way for the future integration of cutting-edge technologies like high-precision op-
tomechanical and atom interferometer accelerometers, offering new directions for advanced inertial
navigation systems and enhancing their application scope in challenging environments.

Keywords: inertial navigation; deep learning; redundant accelerometer

1. Introduction

Inertial navigation technology is a crucial technique for various vehicular platforms
to execute tasks and enhance stealth. However, due to the continuous accumulation of
inertial navigation errors over time, the demand for high-precision inertial navigation for
extended missions remains unmet. There are mainly two methods to improve the reliability
and accuracy of the inertial navigation system (INS): one is to enhance the reliability and
precision of individual instruments, which imposes higher requirements on the manufac-
turing processes and technical specifications of inertial instruments, increasing research
costs and implementation challenges; the other method involves adopting redundancy
schemes to enhance the system’s reliability and accuracy, which is a more cost-effective and
easier-to-implement approach.

Redundant inertial navigation technology encompasses the following three forms:
analytical redundancy, software redundancy, and hardware redundancy. Analytical redun-
dancy, based on the knowledge of rotational and translational dynamics, is a method that
can improve hardware redundancy performance [1]. It generates additional redundant
observational data to enhance the system’s fault diagnosis capability without improving
the navigation system’s accuracy and is mostly applied in fault detection. Software redun-
dancy uses multiple algorithms to enhance the reliability of inertial navigation solutions,
preventing errors due to software design and computational faults, but it does not directly
enhance the precision of inertial navigation solutions. Hardware redundancy, on the other
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hand, leverages multiple inertial navigation systems and sensors to enhance the overall sys-
tem performance. In this configuration, redundant sensor systems operate independently
while cooperating during the operation, integrating various measurement data through
data fusion algorithms to achieve superior performance compared to a single INS, which
has been widely applied in aviation [2] and aerospace [3] fields. Hardware redundancy
technology can be divided into system-level redundancy and device-level redundancy [4].
System-level redundancy, composed of two or more INS sets, processes output data from
each subsystem collectively to improve the INS’s navigational performance, significantly
enhancing system reliability but also increasing system complexity and costs, mainly ap-
plied in manned spacecraft and aviation sectors with high safety and extended operation
time requirements. Device-level redundancy involves redundant design at the instrument
level, mainly suitable for flexibly structured strapdown inertial navigation systems, of-
fering significant advantages in weight, volume, and cost, and is ideal for widespread
adoption. Among these, inertial accelerometers, often less costly than gyroscopes within
the INS, provide a cost-effective redundancy option. Currently, accelerometer types include
pendulous integrating gyroscopic accelerometers, flexural accelerometers, quartz-tuning
fork accelerometers, silicon micromechanical accelerometers, micro-optical accelerometers,
atomic accelerometers, and optomechanical accelerometers, and especially the latter few
are in the exploratory stages of laboratory development or initial application, promising
broad future prospects.

Addressing redundancy configuration in inertial navigation, different sensor quanti-
ties, and geometric arrangements significantly impact system performance and reliability.
In the 1970s, Evans et al. [5] proposed a dodecahedral redundancy structure with six gyro-
scopes and six accelerometers. In the early 1980s, Boeing [6] introduced a redundant inertial
device comprising five accelerometers and five gyroscopes. Gilmore et al. [7] proposed an
inertial navigation structure with a dodecahedral redundancy configuration. Pejsa et al. [8]
provided optimal schemes for four, five, and six sensor redundancy configurations. Re-
search by Abdallah Osman et al. [9] explored the impact of skewed redundant inertial
measurement units (IMUs) on redundant INS performance, demonstrating that increased
sensor redundancy significantly enhances system performance. Duk-Sun Shim et al. [10]
developed a method to determine the optimal navigation combination and fault detection
and isolation (FDI) performance.

With traditional inertial navigation methods approaching developmental thresholds,
the integration of neural networks with inertial navigation has recently become a focal
point of research. Chang et al. [11] proposed a method using Long Short-Term Memory
Recurrent Neural Networks (LSTM-RNNs) for denoising Microelectromechanical Systems
(MEMSs) IMU. Martin Brossard et al. [12] introduced a learning method for denoising IMU
gyroscopes using real-world data. Esfahani et al. [13] presented AbolDeepIO, a deep neural
network with three channels, extracting and learning training quantities from tri-axial
accelerometer and gyroscope information, including the sampling interval between two
IMUs, to aid feature extraction and training. Topini et al. [14] proposed an LSTM-based
Dead Reckoning (DR) method to estimate pitch and roll rates. They used end-to-end
navigation methods with unidirectional and bidirectional LSTM to process raw sensor
data and then used the output of LSTM and the time interval of the aforementioned cycle
to obtain the position of the AUV. Song et al. proposed NN-DR [15], which uses neural
networks to explore the time-varying relationship between acceleration and pitch angle
using a single accelerometer. Research by Bai et al. [16] introduced a novel approach for lo-
cation estimation using feature mode matching with deep network models, demonstrating
that aligning specific deep learning models with categorized motion features significantly
enhances the accuracy of pedestrian location estimation in environments where GPS is
unavailable. Research by Li et al. [17] unveiled a cutting-edge hybrid algorithm that merges
a Gated Recurrent Unit (GRU) neural network with an interactive multiple model adap-
tive robust cubature Kalman filter (IMM-ARCKF) aimed at refining the accuracy of the
INS/GPS-integrated navigation system amidst GPS disruptions.
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However, research on integrating device-level redundant inertial navigation systems
with neural networks is still in its infancy. Neural networks, with their strong nonlinear
fitting capabilities, can delve deeper into the additional information introduced by extra
devices to enhance navigation precision.

The remainder of this paper is organized as follows: Section 2 provides a brief introduc-
tion to the background of inertial navigation and redundancy methods and perspectives.
Section 3 describes the architecture and workflow of the displacement error prediction
network. Section 4 introduces experiments based on actual sea trials and discusses the
results in conjunction with real-world positioning outcomes. Section 5 concludes the paper
and offers a perspective on future applications. This research proposes a navigation system
structure based on redundant high-precision accelerometers without altering the existing
INS framework. The research introduces a redundant high-precision accelerometer-based
navigation system structure without altering the existing INS framework, designing a dis-
placement error prediction network based on this structure and leveraging neural networks
to delve into the positioning information provided by high-precision accelerometers. The
main contributions include the following:

1. Proposing an easily implementable redundant high-precision accelerometer-based
navigation system structure in conjunction with the current state of high-precision
accelerometers, updating the Kalman filter error observation equation based on addi-
tional high-precision accelerometers.

2. Exploiting the time-varying error characteristics of the INS and redundant high-
precision accelerometers to extract additional information, designing a targeted dis-
placement error prediction network.

3. Combining theoretical design with practical platform construction and validating the
proposed method through sea trials, demonstrating its effectiveness.

2. Background
2.1. Navigation Coordinate System

The navigation frame n is selected as the East–North–Sky (ENS) coordinate system,
with the heading angle denoted as φ, the roll angle as γ, and the pitch angle as θ. Rotations
around the three coordinate axes correspond to three independent direction cosine matrices,
denoted as Cz(φ), Cx(θ), and Cy(γ). The attitude transformation matrix from the navigation
frame n to the body frame b, denoted as Cb

n, and the transformation matrix from the body
frame b to the navigation frame n, denoted as Cn

b , is expressed by the following equations:

Cb
n = Cy(γ)Cx(θ)Cz(φ) (1)

Cn
b =

(
Cb

n)
T = Cz(φ)TCx(θ)

TCy(γ)
T (2)

We can assume that the acceleration sensed by the accelerometer related to the body is
as follows:

f b =

 f b
x

f b
y

f b
z

 (3)

During navigation computation, it is necessary to transform f b to the navigation
coordinate system to obtain f n, which can be represented as shown below:

f n = Cn
b f b (4)

To acquire the real-time f n, it is essential to update the transformation matrix Cn
b based

on the output of the gyroscope.
Cn

b = Cn
b Ωb

nb (5)

The angular velocity of frame b relative to frame n is denoted as ωb
nb, with Ωb

nb
representing the skew-symmetric matrix of the angular velocity ωb

nb. By utilizing the
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real-time-updated Cn
b , the vehicle’s attitude angles can be computed. Utilizing the ac-

celerometer’s output acceleration data f b and the attitude transformation matrix Cn
b , the

vehicle’s acceleration ax and ay in the navigation frame can be calculated. If the vehicle’s
initial velocity is vx0, vy0 and the initial position is L0, J0, the vehicle’s velocity and position
at time t can be computed as follows, assuming a constant rate of change in velocity and no
external forces other than gravity affecting the linear acceleration:

vx = v0 +
∫ t

0
axdt (6)

vy = v0 +
∫ t

0
aydt (7)

L = L0 +
1
R

∫ t

0
vxdt (8)

J = J0 +
1
R

∫ t

0

1
cosL

vydt (9)

2.2. Redundant Configuration Methods and Angles

The redundant configuration of inertial sensors can enhance the reliability and accuracy
of inertial navigation systems. The redundancy in sensors fortifies the system’s capability to
detect and isolate faulty sensors, thereby providing more accurate positional information.

This study contemplates a universally applicable redundancy scheme, acknowledg-
ing that accelerometers are often significantly less expensive than gyroscopes; Therefore,
selecting these as high-precision components for redundancy strategies presents signif-
icant opportunities for their broader application and implementation. The redundant
structures of inertial sensors within inertial navigation systems can be broadly classified
into orthogonal and skewed configurations. A skewed configuration entails orienting the
sensor’s sensitive axis at an angle to the coordinate axes, which, although it yields richer
information in the sensor output, typically demands higher precision in the installation
and incurs higher costs. This could introduce larger errors in installation and measurement.
Consequently, this research opts for the more universally applicable orthogonal configu-
ration approach. As illustrated in Figure 1, the high-precision accelerometer orthogonal
configuration scheme employs “m” accelerometers from the original inertial navigation
system and adds a group of “k” high-precision accelerometers. The axial orientation of
the newly added high-precision accelerometers aligns with the original inertial navigation
system’s coordinate axes. In such a configuration, the presence of two accelerometers
measuring the acceleration along the same axis simplifies the system’s configuration equa-
tions, eases computation, minimizes measurement errors, and facilitates the detection of
accelerometer faults.
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Through the implementation of sensor redundancy, enhancements in system reliability
and accuracy can be achieved. The research by Abdallah Osman et al. [9] substantiates
that an increase in the quantity of redundant sensors significantly bolsters system perfor-
mance. Nonetheless, given the considerations of cost and universality, this study employs
a strategy of adding an extra set of tri-axial accelerometers, which elevates precision by
an order of magnitude as the experimental scheme. Should the need arise, additional
redundant sensing units can be integrated to further improve the system’s error detection
and correction capabilities as well as its navigational precision.

2.3. Neural Network Algorithms

Neural networks are a category of intelligent algorithms used for effectively processing
and categorizing data, and they are widely applied across various engineering fields. Their
defining feature allows computers to learn and make corrections from network training and
prior knowledge without explicit programming. These networks are extensively utilized in
image recognition, voice input, text translation, and the automatic dissemination of news
items, posts, or products that might interest users. Deep learning expands conventional
neural networks into a large, scalable network architecture. Comprising multiple neural
network layers, these deep learning algorithms can autonomously extract and learn relevant
features from data. Consequently, more complex data processing applications can be
mapped onto deep learning networks.

In recent years, the deep learning domain has notably focused on the Transformer
architecture. Proposed by Google in 2017 [18], the Transformer model, characterized by its
attention mechanism, which is not limited by local interactions, can effectively unravel long-
range dependencies. This capability significantly impacted the field of natural language
processing, offering superior performance in translation and recognized as a milestone
model following recurrent neural network (RNN) and convolutional neural network (CNN),
with contemporary large-scale models like Generative Pre-Trained Transformers (GPTs)
based on it. As research progressed, the Transformer also found extensive application in
image processing. Utilizing an encoder–decoder structure, the Transformer incorporates
positional encoding to add and store positional information for each input token. Both
the encoder and decoder in the Transformer apply multi-head attention, using scaled
dot-product attention as its core component to provide a global focus and prevent gradient
vanishing issues. In this paper, considering its excellent capability in handling context-
based data and combined with the error characteristics of inertial navigation systems
and high-precision accelerometers, the Transformer is chosen as the architecture for the
displacement error prediction network.

3. Our Approach

The design flowchart for the redundant high-precision accelerometer-based inertial
navigation system is depicted in Figure 2, with the workflow described as follows:
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3.1. System Hardware Structure Design

The hardware design of the entire system is illustrated in Figure 3. The main com-
ponents include the existing inertial navigation system, an additional high-precision ac-
celerometer group, a synchronization clock module, and a comprehensive navigation
solution module. To enhance the universality and feasibility of the proposed method,
the high-precision accelerometer group is configured orthogonally with the accelerometer
group in the existing inertial navigation system. Within the inertial navigation system mod-
ule, there are gyroscopes and “m” accelerometers, which provide data to the comprehensive
navigation solution module. The “k” accelerometer group represents the high-precision
accelerometers. The synchronization clock module is responsible for unifying control over
the accelerometer information from both the high-precision accelerometer group and the
existing inertial navigation system, sending synchronization clock signals and aligning
frequencies and start points.
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The comprehensive navigation solution module encompasses a Position Calculation
based on a Kalman filter and an error prediction network. Its inputs include the “m”
accelerometer and gyroscope data from the inertial navigation system and the “k” ac-
celerometer data from the redundant high-precision accelerometer module. The output
from the existing inertial system and the high-precision accelerometer group is integrated
using a Kalman filter to compute the positioning results. Then, using a neural network-
based error prediction network, the system predicts and inverses the errors, outputting the
low-frequency errors to the inertial navigation system’s updated algorithm for fusion with
the positioning results. This process achieves the prediction and update of the position,
ultimately outputting the navigation information after inverse correction and calculation.

3.2. The Multimode Switching for Motion States

The attitude error of SINS
.
ϕ can be expressed as follows:

.
ϕ = ϕ × ωn

in + δωn
in − δωn

ib (10)

where ϕ is the rotation vector from the ideal navigation coordinate system to the calculated
navigation coordinate system, also called the misalignment angle error, ωn

in represents the
computed angular velocity values in the navigation frame, δωn

in represents the computed
errors in the navigation frame, and δωn

ib represents the gyroscope measurement errors.
The gyroscope component error measurement model δωn

ib can be expressed as follows:

δωb
ib = ωb

ibxδKGx + ωb
ibyδKGy + ωb

ibzδKGz + εb (11)
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where δKG is the scale factor and installation error matrix and εb is the projection of gyro
zero bias in the system.

The expressions of the rotation angular velocity ωn
ie of the earth and the rotation

angular velocity ωn
en of the navigation system are

ωn
ie =

 0
ωiecosL
ωiesinL

, ωn
en =

 −vN/(RM + h)
vE/(RN + h)

vEtanL/(RN + h)

 (12)

The deviation of the above formula is obtained as shown below, respectively.

δωn
ie =

 0
−ωiesinL · δL
ωiecosL · δL

 (13)

δωn
en =

 −δvN/RMh + vNδh/R2
Mh

δvE/RNh − vEδh/R2
Nh

tanL · δvE/RNh + vEsec2L · δL/RNh − vEtanL · δh/R2
Nh

 (14)

where δp =
[
δL δλ δh

]T is the position error, δL, δλ, and δh represent the latitude,
longitude and height errors, and RM,RN represents the radius of curvature when the
included angle between the normal section of the ellipsoid surface of the earth and the
meridian plane is 0 and π/2, respectively.

We then substitute Equations (11), (13) and (14) into Equation (10) and rewrite the
attitude equation as follows:

.
ϕ = ϕ × ωn

in + δωn
in − δωn

ib
= −(ωn

in×)ϕ + M2δvn + (M1 + M3)δp − ωb
ibxCn

b δKGx − ωb
ibyCn

b δKGy − ωb
ibzCn

b δKGz − Cn
b εb (15)

The speed error δvn is differentiated as follows:

δ
.
vn

=
.
ṽ

n
− .

vn

= (C̃n
b f̃ b

s f − Cn
b f b

s f )−
[
(2ω̃n

ie + ω̃n
en)× ṽn − (2ωn

ie + ωn
en)× vn]+ (g̃n − gn)

(16)

where
∼
f

b

s f = f b
s f + δ f b

s f ,
∼
ω

n
ie = ωn

ie + δωn
ie,

∼
ω

n
en = ωn

en + δωn
en,

∼
g

n
= gn + δgn, δ f b

s f are the
measurement errors of the accelerometer, respectively, and the angular velocity rotation
error of the earth’s rotation, the rotation calculation error of the navigation system, and the
gravity error are obtained by substituting them into Formula (12). To account for the ac-
celerometer measurement errors, δωn

ie, δωn
en, δgn, including the earth’s rotation rate rotation

error, the navigation system rotation calculation error, and gravity error,
∼
f

b

s f ,
∼
ω

n
ie,

∼
ω

n
en,

∼
g

n
is

substituted into Equation (12)

δ
.
vn

= f n
s f × ϕ + vn × (2δωn

ie + δωn
en)− (2ωn

ie + ωn
en)× δvn + δ f n

s f + δgn (17)

The position error of the strapdown inertial navigation system (SINS) can be expressed
as follows:

δ
.
L =

1
RM + h

δvN − vN

(RM + h)2 δh (18)

δ
.
λ =

secL
RN + h

δvE +
vEsecLtanL

RN + h
δL − vEsecL

(RN + h)2 δh (19)

δ
.
h = δvU (20)

The velocity component of inertial navigation vn =
[
vE vN vU

]T , and the velocity

error component δvn =
[
δvE δvN δvU

]T .
The measurement error model of the accelerometer module is as follows:
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δ f b
s f =

∼
f

b

s f − f b
s f

= f b
s f xδKAx + f b

s f yδKAy + f b
s f zδKAz +∇b

(21)

where δKA represents the matrix of the installation error and scale error, f b
s f and

∼
f

b

s f

represent the theoretical value of the specific force and ∇b measures the output value of the
accelerometer, respectively; zero bias for the accelerometer measurement is based on the
inertial navigation system error models of Equations (15) and (16), and the system model
can be obtained by expanding the gyro and table error models:

•

δL
δλ
δh

δVE
δVN
δVU
ϕE
ϕN
ϕU
∇x
∇y
∇z
εx
εy
εz



=



 0 −ωn
enU −ωn

enN
ωn

enU 0 ωn
enE

ωn
enN −ωn

enE 0


1 0 0

0 1 0
0 0 1

 (0) (0) (0)

(0)


0 −

(
2ωn

ieU + ωn
enU

)
−
(

2ωn
ieN + ωn

enN

)(
2ωn

ieU + ωn
ecU

)
0

(
2ωn

ieE + ωn
enE

)(
2ωn

ieN + ωn
enN

)
−
(

2ωn
ieE + ωn

enE

)
0


 0 f n

U f n
N

− f n
U 0 − f n

E
− f n

N f n
E 0

 Cn
b (0)

(0) (0)

 0 −ωn
inU −ωc

icE
ωn

inU 0 ωn
inE

ωn
inN −ωn

inE 0

 (0) −Cn
b

(0) (0) (0) (0) (0)
(0) (0) (0) (0) (0)





δL
δλ
δh

δVE
δVN
δVU
ϕE
ϕN
ϕU
∇x
∇y
∇z
εx
εy
εz



(22)

In the process of integrated navigation, the speed measurement model is as follows:

∆V =
∼
V

n
− Vn (23)

where
∼
V

n
represents the velocity calculated by inertial navigation and Vn represents the

velocity calculated by redundant accelerometer module, where
∼
V

n
= Vn + δVn (24)

Equation (24) can be substituted into Equation (23) to obtain the measurement model
of speed.

∆V = δVn (25)

Equation (25) can be transformed considering the horizontal attitude observation at
the same time, and then the overall observation equation Obs can be expressed as follows:

Xw =
(

δLTδλTδhTδVN
TδVE

TδVD
TϕN

TϕE
TϕD

T∇x
T∇y

T∇z
Tεx

Tεy
Tεz

T
)

(26)

Obs =

03×3

1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 0

 03×3 03×3

Xw
T (27)

The Kalman filtering of integrated navigation based on the above system model and
measurement model can realize the optimal integrated navigation of inertial navigation
and accelerometer modules.

3.3. Design of Deep Learning Method for Low-Frequency Restoration of High-Frequency Errors

We acknowledge the well-established efficacy of Kalman filtering in providing optimal
solutions for integrated navigation when system noise and characteristics are precisely
modeled. Nevertheless, our manuscript introduces neural network augmentation for the
Kalman filter, driven by our understanding of real-world operational scenarios where
optimal Kalman filtering assumptions may not strictly apply. These scenarios include
nonlinear system dynamics and non-Gaussian noise distributions. The integration of the
neural network aims to complement, not replace, the Kalman filter. It leverages the neural
network’s data-learning capability to adapt to unknown dynamics and disturbances, which
is especially valuable in unanticipated or complex environments. Our approach utilizes the
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neural network’s strengths in pattern recognition and learning from extensive datasets to
discern subtle patterns or trends from historical and real-time data.

After integrating with the Kalman filter algorithm, our proposed algorithm leverages
numerical data from high-precision accelerometers but has yet to fully exploit the precision
data these redundant sensors offer. Therefore, this paper explores employing the deep
learning neural networks’ nonlinear characteristics and learning capabilities to investigate
the intrinsic attributes of high-precision accelerometers. Inertial positioning errors and
attitude transformation errors are typically time-related. Traditional algorithms have
not entirely eliminated these nonlinear time-varying errors and may even introduce and
amplify existing ones. Thus, designing an error prediction network atop the current
navigation algorithm to further mitigate errors and deeply mine the additional information
provided by high-precision accelerometers is essential. The designed Displacement error
prediction network structure is illustrated in Figure 4. This paper includes time information
in the error prediction network’s computational input, enabling the neural network to
generate time-adaptive nonlinear functions for improved error prediction. Compared
to traditional models, our error prediction network incorporates time information as
additional learning input, which is built around a Transformer-based network to fully
leverage its sequential processing and context-aware learning capabilities. To prevent
potential divergence in long-duration inertial navigation predictions due to overfitting time
information, this study contemplates integrating time information into the network learning
process, designing a real-time network to predict horizontal displacement errors based on
outputs from the existing inertial navigation system and high-precision accelerometers.
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The inputs to the displacement error prediction network include the three-dimensional
gyroscope outputs from the original IMU, the three-dimensional accelerometer outputs (m
accelerometers) from the original inertial navigation system, the three-dimensional high-
precision accelerometer outputs (k accelerometers), and time information. These data are
pre-integrated before being fed into the network, which then predicts displacement errors,
outputting predictions over the selected pre-integration time window. The network uses
the difference between the GPS-measured displacement and the displacement obtained
from the Kalman filter-based inertial positioning algorithm as learning labels. Thus, the
predicted errors belong to the low-frequency category relative to the original displacement
errors. The network focuses on the variations in horizontal displacement errors, which is a
critical factor in navigation accuracy.
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To effectively utilize the temporal features of IMU samples, a time window of size k is
used for data preparation through pre-integration, which is a technique initially proposed
by Lupton [19] and widely used in inertial-vision positioning. In traditional inertial naviga-
tion calculations, all poses associated with a particular moment need recalculating when
corrected by other sensor data, significantly increasing computational load. Pre-integration
addresses this issue by estimating high-frequency IMU data in advance, allowing for prior
estimations without initial state knowledge and requiring only bias correction for the
pre-integrated frame when correction information is available, thus substantially reducing
computation. The network predicts low-frequency displacement errors, and through pre-
integration, it significantly reduces computation, enhances learning efficiency, and captures
the nonlinear relationship between time information and errors.

Before entering the network, data pass through an embedding layer, where pre-
integrated data undergo feature representation, then positional encodings provided by a
trainable neural network are added and fed into both the encoder and decoder. Subse-
quently, the encoder, comprising N identical layer stacks, maps the input sequence into a
continuous representation, capturing spatial information in the data via multi-head self-
attention, with each block’s output serving as the next block’s input. The decoder also
consists of N identical layer stacks, where masked self-attention is first executed to delve
into the complex nonlinear relationship between displacement errors and time, ensuring
that each timestamp t’s output depends only on data from before t, thus focusing on
temporal dependencies. Multi-head attention combines spatiotemporal information into
a single vector representation, followed by a fully connected feedforward network, with
normalization processes included. Finally, a dense layer regresses the displacement error
values from the network’s output. The learning rate is 0.0001, with 40 training epochs,
using the ‘Adam’ optimizer. L2 regularization is employed within the network to prevent
overfitting during training. The loss function for the displacement network is defined as
follows:

LE(Errori,
∧

Errori) =
1
2

(
Errori −

∧
Errori

)T

∑(Errori)
−1

(
Errori −

∧
Errori

)T
+

1
2

ln
∣∣∣∑(Errori)

−1
∣∣∣ (28)

4. Experimental Design and Implementation
4.1. Experiment Introduction

To validate the effectiveness of the methods proposed in this paper, the research team
conducted sea trials near the Zhoushan area of Zhejiang, China, on 10 October 2023. The
Redundant high-precision accelerometer-based inertial navigation system discussed in
this document was deployed on an Autonomous Underwater Vehicle (AUV) platform, as
illustrated in Figure 5.
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The AUV platform comprises the AUV body, with the original inertial measurement
unit equipped with quartz flexure accelerometer technology, additional high-precision
accelerometers, an on-site data collection and control processor, a depth gauge, a satellite
receiver, a Doppler velocimeter, a power system, a propulsion system, and an underwater
communication system. The AUV platform was provided by DEEPINFAR Company,
Tianjin, China. The inertial navigation equipment and high-precision accelerometers
were provided by Central South University, Changsha, China. The software used in our
experiments was Python, version 3.7. The propulsion system, which includes propellers,
control units, and rudders, collaborates with the power system to propel the AUV. The
underwater communication system ensures stable information exchange with the mother
ship during experiments.

For our experiments, we utilized the original IMU and additional high-precision ac-
celerometers for validating the final positioning solution, which meets the criteria for a
pure inertial navigation experiment. The original IMU utilizes a fiber-optic gyro-based
system with its built-in accelerometers also being quartz flexure accelerometers. While
higher precision and smaller-sized optomechanical accelerometers and atomic interferome-
ters exist and can offer several orders of magnitude greater precision than quartz flexure
accelerometers, they are mostly still in the laboratory stage and have not become mature
industrial products. Hence, we chose to continue using quartz flexure accelerometers for
this research.

Specific parameters of the original IMU and the additional high-precision accelerome-
ters are presented in Tables 1 and 2, respectively. To evaluate the navigation performance
of the proposed method, establishing a ground truth, such as a GPS position, is crucial.
Before the actual navigation tests begin, the primary role of GPS is to provide training
labels for the deep learning network. We used the dynamic GPS data as the truth value
for the network to learn from in these preliminary stages. However, once the actual navi-
gation tests commenced, GPS data were no longer involved in the navigation positioning
process, adhering to the principle that “GPS data are used only before the real usage of
the navigation system and do not receive any additional learning afterwards.” During this
phase, GPS data served as a reference to validate the effectiveness of the proposed method
in real-world experiments. This setup ensured that while the AUV could not acquire GPS
positions underwater, the pre-test GPS data collection while cruising on the water surface
offered a valuable baseline for comparing the effectiveness of the proposed navigation
system against the actual GPS-obtained trajectories.

Table 1. High-precision accelerometer key performance parameters.

Parameter Item Parameter Value

Accelerometer Bias Stability/µg 1
Velocity Random Walk/[µg/

√
Hz] 0.1

Accelerometer Scale Factor Nonlinearity/ppm 2

Table 2. Key performance parameters of the original fiber optic inertial navigation system.

Parameter Item Parameter Value

Gyroscope Bias Stability/[(◦)/h] 0.01
Angular Random Walk/[(◦)/

√
h] 0.001

Gyroscope Scale Factor Nonlinearity/ppm 20
Accelerometer Bias Stability/µg <10
Accelerometer Velocity Random

Walk/[µg/
√

Hz] 1

Accelerometer Scale Factor Nonlinearity/ppm 20

We anticipate that the displacement error prediction network will learn the charac-
teristics of errors changing over time after the startup of the original IMU and additional
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high-precision accelerometer. Since the error factors of the devices change with each power
cycle, continuous data collection for training and testing is performed after powering up the
devices. Initially, data for training the displacement error prediction network are collected,
documenting the AUV’s motion from acceleration startup to steady cruising and finally
deceleration, with a total duration of 30 min, including various maneuvers, such as sharp
turns and speed changes.

Subsequently, two sets of actual navigation tests, referred to as “Experiment 1” and
“Experiment 2”, were conducted without power interruption and tailored to real-world
scenarios. In Experiment 1, the AUV navigated at approximately 5 knots, covering a total
distance of 48,360 m over 5 h. In Experiment 2, the AUV traveled at about 2 knots, covering
13,854 m over 4 h. Throughout these tests, data on acceleration, angular velocity, attitude
angle, GPS positioning, and true heading were collected. The sampling rates for the IMU’s
acceleration and angular velocity were 1000 Hz, with GPS data sampled at 1 Hz. Data files
were saved every hour, with each data stream timestamped based on the system reading
time for subsequent processing.

4.2. Evaluation Metrics

To further quantify and assess the performance of the method proposed in this paper
compared to other methods, the Root Mean Squared Error (RMSE) was employed as the pri-
mary metric for evaluating the accuracy of pure inertial positioning in this experiment [20].
RMSE is defined as follows:

RMSE =

√
1
m∑m

k

∥∥∥Et

(
xk,

∧
xk

)∥∥∥ (29)

where m represents the number of data points, k denotes the stamp, Et

(
xk,

∧
xk

)
represents

the ground truth position of the ground truth trajectory (i.e., xk), and
∧
xk represents the

estimated position in the corresponding predicted path. Therefore, the following criteria
were adopted as performance evaluation standards:

Relative Trajectory Error (RTE) is defined as the average RMSE over a fixed time
interval. Due to the extended range of our test, we opted to prolong the evaluation interval
to 30 s in contrast to standard ground navigation. For sequences shorter than 30 s, we
computed the positional error at the last frame and adjusted the scale proportionally.

Additionally, given that many looping movements occur during the navigation, where
error values may exhibit significant changes, it is essential to present the global Absolute
Trajectory Error to assess error performance comprehensively.

4.3. Overall Performance

In our experiment, we compared the performance of several methods to demonstrate
the effectiveness of our proposed approach under long-distance conditions in pure iner-
tial navigation. Specifically, we contrasted the “proposed method” with the “redundant
accelerometers-based method” and the standard SINS navigation algorithm. The “re-
dundant accelerometers-based method” refers to a configuration where high-precision
accelerometers are added to the inertial navigation system but without the integration of
our deep learning algorithm. This setup is intended to assess the impact of incorporating
high-precision accelerometers alone on navigation accuracy. On the other hand, the “pro-
posed method” employs not only the high-precision accelerometers but also integrates our
specifically designed deep learning algorithm to enhance navigation precision and reduce
errors. This dual approach leverages the advanced sensor hardware’s capabilities while
also utilizing sophisticated machine-learning techniques to interpret and correct sensor
data more effectively. Figure 6 shows the predicted trajectories for each method during the
first group of navigation tests.
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The comparative results from our experiments, as illustrated in Figure 6, reveal that
the integration of high-precision accelerometers significantly enhances navigation accuracy
beyond the capabilities of standard SINS. The method we designated as the “redundant
accelerometers-based method” utilizes these advanced accelerometers to improve accuracy
but does not incorporate our deep learning algorithm. On the other hand, our “proposed
method”, which combines high-precision accelerometers with a deep learning algorithm,
demonstrates a substantial further enhancement in reducing navigational errors and ele-
vating overall system reliability and performance. This fusion of cutting-edge hardware
with sophisticated algorithms markedly optimizes navigation accuracy. During the initial
series of tests, conducted under comprehensive course conditions and depicted in Figure 6,
our proposed method showcased superior performance, achieving the lowest final error
at 574 m and a maximum error of 918 m. In stark contrast, the redundant accelerometers-
based method resulted in both final and maximum course errors of 1585 m, whereas the
baseline SINS, devoid of the additional high-precision accelerometers, recorded the highest
discrepancies with final and maximum errors of 2644 m. This analysis highlights the
critical advantage of integrating high-precision hardware with intelligent data processing
algorithms to substantially enhance navigational precision.

Combining Figures 6 and 7a, a global Absolute Trajectory Error analysis reveals that the
proposed method consistently shows the lowest error values, significantly outperforming
the other two methods, with the lowest final prediction error as well. There was a period
between 140 and 200 min into the navigation where all three methods showed a sharp
decline in error values, corresponding to the AUV’s circular motion phase in Figure 6,
which does not fully reflect the actual error dynamics. Once the AUV completes the circular
movement, a clear divergence in error values emerges, with SINS errors rapidly increasing.
Figure 7b shows that the RTE of the proposed method is lower than the other methods,
effectively reducing the RMSE values significantly compared to the original SINS method.

As indicated in Figure 8, for the second set of experiments, the proposed method again
showed the lowest final error and superior positioning performance throughout the course,
with a final error of 251 m and a maximum error of 443 m. The redundant accelerometers-
based method had a final error of 582 m and a maximum error of 607 m, while the SINS
without the additional high-precision accelerometers had a final error of 1117 m and a
maximum error of 1820 m. Compared to Experiment 1, the AUV’s speed was lower in
Experiment 2, and it primarily performed irregular maneuvers, resulting in relatively lower
final errors and a focus on the method’s robustness in complex maneuvering scenarios.
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Analyzing the global Absolute Trajectory Error in Figures 8 and 9a, during the first
half of the journey, all three methods show roughly the same error levels due to the AUV’s
looping movements, making it challenging to reflect true error values. However, in the
latter half, a clear increase in SINS errors is visible, while errors from the redundant
accelerometers-based method momentarily drop to the lowest, likely due to coincidental
trajectory overlap, which doesn’t truly represent its predictive accuracy. Overall, the
proposed method still achieves the best predictive results. Figure 9b corroborates this,
showing the proposed method’s RTE is less than that of the other methods, effectively
reducing RMSE values. Moreover, the proposed method demonstrates higher predictive
accuracy and robustness, maintaining reliable predictions globally.

The two experiments indicate that the method presented in this paper can effectively
harness additional acceleration information provided by redundant high-precision ac-
celerometers, enhancing the predictive accuracy of the inertial navigation system without
altering its original structure. By introducing a displacement error prediction network
based on redundant high-precision accelerometers, the system can better extract vehicular
displacement error values from acceleration data, thereby inversely correcting the predic-
tion results. Additionally, leveraging a Transformer-based displacement error prediction
network to explore the time-varying nonlinear error characteristics inherent in inertial
devices and motion processes significantly improves prediction accuracy.
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5. Conclusions

In this paper, we introduced an inertial navigation system structure that is augmented
by redundant high-precision accelerometers and a sophisticated displacement error predic-
tion network. By establishing a device-level redundant architecture that incorporates these
high-precision accelerometers and harnessing a Transformer-based displacement error
prediction network, our methodology aims to intricately predict and correct the nonlinear
time-variant errors emanating from inertial navigation devices and vehicular motions,
thereby aiming to enhance navigation accuracy. The validation of our approach through
real-world maritime trials offers promising indications. While the results tentatively affirm
the method’s capability to utilize redundant accelerometer data for refining navigation
precision more effectively than conventional redundant systems, these findings underscore
the necessity of cautious interpretation and further validation under a broader spectrum of
experimental conditions.

In response to constructive feedback, we acknowledge the potential value of exam-
ining the proposed neural network independently, without integrating high-precision
accelerometers, to isolate and evaluate the network’s intrinsic error correction capabilities.
Such an investigation would provide a clearer understanding of the network’s standalone
performance and its contribution to the system’s overall accuracy.

Future research extends beyond the scope of sea-level experiments to assess the
displacement error prediction network’s performance in three-dimensional navigation,
exploring the zenith-axis potential of high-precision accelerometers to furnish additional
data, such as local acceleration and the complex nonlinear relationships between zenith
acceleration changes and attitude adjustments. Moreover, forthcoming studies will examine
the performance of the error inversion network when used independently, without the
aid of high-precision accelerometers. This approach will allow us to specifically assess
the network’s effectiveness and contribute to a more focused comparative analysis of
the system’s performance. Ultimately, our ongoing research endeavors will continue to
explore the boundaries of precision enhancement capabilities provided by redundant
accelerometers in inertial navigation systems, venturing into new research avenues within
the domain of inertial navigation.
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