
Citation: Guo, H.; Lin, L.; Wu, J.; Lv,

Y.; Tong, C. Optimizing Driving

Parameters of the Jumbo Drill

Efficiently with XGBoost-DRWIACO

Framework: Applied to Increase the

Feed Speed. Sensors 2024, 24, 2600.

https://doi.org/10.3390/s24082600

Academic Editors: Guanghui Wen,

Junjie Fu and Jialing Zhou

Received: 4 March 2024

Revised: 14 April 2024

Accepted: 16 April 2024

Published: 18 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Optimizing Driving Parameters of the Jumbo Drill Efficiently
with XGBoost-DRWIACO Framework: Applied to Increase the
Feed Speed
Hao Guo , Lin Lin *, Jinlei Wu, Yancheng Lv and Changsheng Tong

School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China;
ghgh8372024@163.com (H.G.); wujinlei_12@163.com (J.W.); 19b908087@stu.hit.edu.cn (Y.L.);
20b908078@stu.hit.edu.cn (C.T.)
* Correspondence: waiwaiyl@163.com

Abstract: The jumbo drill is a commonly used driving equipment in tunnel engineering. One of the
key decision-making issues for reducing tunnel construction costs is to optimize the main driving
parameters to increase the feed speed of the jumbo drill. The optimization of the driving parameters
is supposed to meet the requirements of high reliability and efficiency due to the high risk and
complex working conditions in tunnel engineering. The flaws of the existing optimization algorithms
for driving parameter optimization lie in the low accuracy of the evaluation functions under complex
working conditions and the low efficiency of the algorithms. To address the above problems, a driving
parameter optimization method based on the XGBoost-DRWIACO framework with high accuracy and
efficiency is proposed. A data-driven prediction model for feed speed based on XGBoost is established
as the evaluation function, which has high accuracy under complex working conditions and ensures
the high reliability of the optimized results. Meanwhile, an improved ant colony algorithm based
on dimension reduction while iterating strategy (DRWIACO) is proposed. DRWIACO is supposed
to improve efficiency by resolving inefficient iterations of the ant colony algorithm (ACO), which is
manifested as falling into local optimum, converging slowly and converging with a slight fluctuation
in a certain dimension. Experimental results show that the error by the proposed framework is less
than 10%, and the efficiency is increased by over 30% compared with the comparison methods, which
meets the requirements of high reliability and efficiency for tunnel construction. More importantly,
the construction cost is reduced by 19% compared with the actual feed speed, which improves the
economic benefits.

Keywords: dimension reduction while iterating; ACO; driving parameter optimization; feed speed
increase; jumbo drill; XGBoost; cost reduction

1. Introduction

The drilling and blasting method is the most commonly used method for tunnel
construction. Different from the shield method, which depends primarily on mechanical
cutting, the tunneling footage using the drilling and blasting method is achieved by blasting
the rock. The process mainly includes drilling, blasting, ventilation, support, and slag
discharge. This method is more flexible in construction, lower in cost, and more adaptable
to geological conditions compared with the shield method. Moreover, it is especially
suitable for tunnel projects with long distances and changeable geological conditions [1].
As of 2019, the total length of the tunnels built in China is around 10,000, of which more
than 90% were completed using the drilling and blasting method [2]. The whole process of
the drilling and blasting method has been mechanized, while drilling is the core step. The
jumbo drill, as the main equipment for the drilling process, greatly impacts on the building
speed and construction quality. Further, time spent on processes such as the blasting and
support of each blasting cycle is fixed, so building speed mainly depends on the feed speed
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of the jumbo drill. Feed speed refers to the distance that the drill bit of the hydraulic rock
drill drills on the tunnel face in a unit of time when the machine performs the blasthole
drilling operation. The unit is m/min. Under specific working conditions, increasing the
feed speed to reduce the construction cost is one of the key decision-making issues for
tunnel construction [3].

Previous research showed that the feed speed of the jumbo drill is mainly affected
by geological conditions and driving parameters. The geological conditions can be char-
acterized by surrounding rock classification [4]. The driving parameters include impact
pressure, feed pressure, rotational pressure, water pressure, and water flow [5]. The influ-
ence of driving parameters on feed speed is reflected in two aspects. First, the matching
relation between driving parameters will affect the feed speed. If the impact pressure and
rotational pressure do not meet the performance required by feed pressure, it will lead to
abnormal drilling conditions such as sticking and idling, and then it will make the feed
speed abnormal and will accelerate drilling tool wear. The reasonable matching of the
above driving parameters is the basis for normal drilling. Second, driving parameters are
not perfectly positively correlated with feed speed. Excessive feed pressure, for example,
can cause the drill pipe to bend significantly, which, in turn, decreases feed speed. Under
specific working conditions, it is practical to optimize driving parameters to increase the
feed speed.

Tunnel construction is of high risk. An unreasonable tunneling process can easily
cause serious engineering accidents, such as face collapse, rock bursts, mud, and water in a
rush [6]. For this reason, the matching relation of driving parameters and corresponding
feed speed is required to ensure high reliability. Meanwhile, due to the complex working
conditions, which are mainly reflected in the changeable geological conditions and the
limitation of the operating status of the service equipment, driving parameters and corre-
sponding feed speed should respond to the changes in time to avoid invalid optimized
results [7]. That is to say, the optimized results need to have high efficiency. Figure 1 shows
the complex working conditions and the mud and water in the rush accident.
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Figure 1. The complex working conditions of the jumbo drill: (a) a jumbo drill works in the complex
formation; (b) a jumbo drill is washed away by more than 100 m due to mud and water in the rush.

The driving parameter optimization for the jumbo drill under specific working condi-
tions can be represented as follows.

Obj = max(FS)

S. t.
{

X1 = G
Dl ≤ X2 ≤ Du

, (1)

where Obj is the objective function, and FS is the feed speed of the jumbo drill. Constraints
(X) depend on the specific working conditions, including constraints of geological condi-
tions (X1) and constraints of driving parameters (X2), such as feed pressure and impact
pressure [8]. Dl and Du are the lower bound and upper bound of the value range of the
driving parameters, respectively, in the current state of the equipment.
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Generally speaking, methods of driving parameter optimization in tunnel engineering
include experiments, numerical simulations, and optimization algorithms. The experi-
mental method refers to testing the influence of the driving parameters on the optimized
objective using experiments to obtain the optimal solution [9]. However, the experiment
environment is often difficult to build. What is more, this method is low in efficiency, so it
cannot meet the requirement of a timely response to the changeable working conditions.
The numerical simulation method refers to simplifying the tunnel engineering problem into
a mathematical model and obtaining the approximate solution by numerical analysis [10].
The impact of driving parameters on the optimized objective can be efficiently reflected by
this method, which meets the requirement of high efficiency. However, the reliability of
the results is generally low because the simulation process needs to simplify the boundary
conditions, and the constitutive model of the analysis software does not necessarily match
the engineering problem, which may affect the results [11].

With the development of artificial intelligence and its application to engineering,
optimization algorithms represented by swarm intelligence algorithms have gradually
been used in tunnel engineering [12]. Mikaeil R et al. employed a fuzzy C-mean clustering
algorithm to assess the risk level of tunnel construction based on geological conditions,
groundwater flow and other factors [13]. Moreover, the effectiveness of the intelligent
model was verified on Iranian road tunnels. Afradi A et al. used the fuzzy logic method
to predict the penetration rate of the tunnel boring machine, and the input parameters
included compressive strength, density of the rock, and so on [14]. The results show
that the prediction accuracy is better than the traditional mechanistic models. There are
two key issues for swarm intelligence algorithms: (1) establish the evaluation criteria of
the optimization problem, which is also called the evaluation function; (2) establish the
heuristic rules that realize rapid convergence. The main problems existing in the above
issues are as follows.

I. The evaluation function reflects the mechanism of the driving parameters to the
optimized objective to a certain extent. So, the accuracy is very high under specific working
conditions, which ensures the high reliability of the optimized results [15]. The solution
of the evaluation function is mainly based on the model-driven method. Concretely, a
mathematical model was constructed according to prior knowledge, such as the principles
of the engineering problem and data distribution characteristics, and experimental data
were used to fit the coefficients [5]. However, the difficulty of constructing a mathematical
model lies in the fact that the considerable and interrelated domain knowledge of engi-
neering problems makes it hard to determine the main parameters and the form of the
model [16]. The existing models for predicting feed speed are in the form of a polynomial
with two features [17,18]. First, these models cover the relationship between a single driv-
ing parameter and feed speed without considering the influence of the matching relation
of the driving parameters on feed speed. Second, these models are built based on specific
experimental conditions, so the ability to generalize to other working conditions is poor.
Therefore, the above models based on the model-driven method are not suitable for tunnel
engineering with complex working conditions [19]. The data-driven evaluation function
can handle the nonlinear relationship between the high-dimensional parameters. Moreover,
the model can be continuously updated according to the data under complex working
conditions to improve the applicability of the evaluation function cross-working conditions.
Guo D et al. mixed random forest and LSTM algorithms to establish an intelligent driving
model for the tunnel boring machine [20]. Multiple variables, such as geological conditions
and torque, are used to predict the cutter speed and penetration speed, and they provide
a decision-making reference for the operation process. Kim D employed an ensemble
learning algorithm to predict the surface settlement of the urban tunnels according to more
than 40 input parameters [21]. The accuracy of the method was improved by more than 10%
compared with the traditional method and is applicable to complex geological conditions.

II. Swarm intelligence algorithms have been applied in the field of tunnel optimization.
Wang H et al. proposed a differential evolution-based multi-objective genetic algorithm
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to optimize the feed speed and cutter speed of the tunnel boring machine under differ-
ent geological conditions [22]. Moreover, the results show that the optimization results
are better than those of the manual experience. Kim K et al. used the particle swarm
optimization (PSO) algorithm to optimize the drainage system of the undersea tunnel
and simulated the water boundary conditions of the optimal drainage system [23]. The
optimized results reduce the construction cost under the premise of ensuring hydraulic
stability. The shortcomings of swarm intelligence algorithms are that the convergence rate
is greatly affected by initial values and the search rate is low, leading to the difficulty in
meeting the requirement of high efficiency for tunnel construction [24].

Given the above problems, the XGBoost-DRWIACO framework is proposed in this
paper. Moreover, the research findings are applied to driving parameter optimization to
increase the feed speed of the jumbo drill. The following research is carried out.

I. The XGBoost-DRWIACO framework is established in Section 2. Part 1 of the frame-
work is a high-accuracy prediction model for feed speed based on XGBoost. According to
construction data in different working conditions, the model realizes effective mapping
between driving parameters and feed speed. As an evaluation function, it is suitable
for driving parameter optimization under complex working conditions. Part 2 of the
framework is an improved ant colony algorithm based on dimension reduction while
iterating strategy (DRWIACO). The algorithm resolves three situations that lead to the inef-
ficient iteration of the ant colony algorithm (ACO), thereby improving efficiency compared
with ACO.

II. The effectiveness of the prediction model for feed speed and the DRWIACO are
verified in Section 4. Then, driving parameter optimization using the XGBoost-DRWIACO
framework is carried out on the construction dataset. The optimized results with high
accuracy and efficiency are proved to meet the needs for tunnel construction and improve
the economic benefit.

2. Methodology
2.1. Motivation

To clarify the engineering requirements, difficulties, solutions, and benefits of driving
parameter optimization, the research motivation of this paper was organized as shown in
Figure 2.
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2.2. Prediction Model for Feed Speed Based on XGBoost

The evaluation function of the framework, with the high accuracy of the prediction
model for feed speed, contributes to the high accuracy of the optimization algorithm,
resulting in optimized results with high reliability. Moreover, the simpler the structure of
the model is, the shorter the runtime is, and the higher the optimization efficiency is. In
this paper, a data-driven method was adopted to establish a prediction model, which has
the following advantages compared with the model-driven method. Firstly, the form of the
model is supposed to adapt to the data instead of being preset, and it improves the accuracy
of the model for fitting the construction data. Secondly, the model can be optimized based
on the continuously collected construction data to improve the adaptability to complex
working conditions. Thirdly, when dealing with new working conditions, the modeling
efficiency is improved by updating the model with new construction data rather than
reestablishing it with simulations or experiments [25].

Based on the performance analysis, the XGBoost algorithm was selected to establish
the prediction model for feed speed. The XGBoost is a boosting method proposed by Chen
Tianqi in 2014. The basic idea is to combine many Classification and Regression Trees
(CARTs) based on a certain strategy to form an integrated model with high accuracy [26].
Equations (2)–(4) show the principle of the integrated strategy.

Obj =
n

∑
i=1

L(yi, ŷi) +
N

∑
k=1

Ω( fk), (2)

ŷi =
N

∑
k=1

ŷk
i , (3)

Ω( fk) = γT +
1
2

λ
T

∑
j=1

ω2
j , (4)

where Obj is the objective function, L is the loss function, yi is the actual value of the i-th
sample. ŷi is the predicted value of the i-th sample, ŷk

i is the predicted value of the kth

CART ( fk). Ω( fk) is the regularization term. T is the number of leaf nodes of fk. ω2
j is the

regularized score of the j-th leaf nodes. γ and λ are penalty terms.
According to theoretical analysis, the advantages of applying XGBoost to establish a

prediction model for feed speed are as follows.
I. The second-order Taylor expansion is applied to the loss function (L) instead of only

the first derivative, which makes the loss calculation more accurate. It makes the model
accurate, thereby meeting the requirements of high reliability in tunnel engineering [27].

II. The regularization term (Ω( fk)) is added to the objective function (Obj), which can
prevent the model from overfitting by reducing the variance. It improves the generalization
ability of the model and makes the model suitable for complex working conditions [28].

III. Values of the features of CART are sorted in advance, and then saved to a reusable
block structure, which reduces the time spent on sorting. It makes the model efficient,
thereby meeting the requirements of high efficiency in tunnel engineering [29].

2.3. An Improved Ant Colony Optimization Algorithm with High Efficiency

After modeling an efficient and accurate evaluation function, the swarm intelligence
algorithm for rapid optimization is studied in this section.

2.3.1. Ant Colony Optimization Algorithm and the Defects in Efficiency

The swarm intelligence algorithms mainly include genetic algorithm (GA), particle
swarm optimization (PSO), ant colony optimization (ACO), glowworm swarm optimization
(GSO), etc. These algorithms can deal with the optimized objective with no direct reference
direction of descent and a mass of optimized parameters. Among them, ACO is widely
used in engineering, with the advantages of being insensitive to initial values, having
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strong global search abilities, and being easy to improve [30,31]. However, the defect of
the swarm intelligence algorithms is their low optimization efficiency, which leads to the
problem that the optimized results of the driving parameters cannot respond to changeable
working conditions in time.

The principle of ACO is as follows. Randomly place m ants, and the destination is
point Q, where the food is placed. When an ant passes through path (i, j) formed by points
i and j, a certain number of pheromones is released to convey information to the population.
With a short path comes a high concentration of pheromones, which contributes to a large
probability of the path being chosen by other ants. Thus, a positive feedback mechanism
for ants to find the shortest path to point Q is formed [32]. When all ants complete a cycle,
the content of pheromones on all paths needs to be updated. The transition probability of
the k-th ant from point i to j in the t-th iteration is represented in Equation (5).

Pk(i, j) =

τα
ij(t).η

β
ij(t)/( ∑

s∈Ak

τα
is(t).η

β
is(t)) s ∈ Ak

0 s /∈ Ak

, (5)

where τij(t) is the content of the pheromone on path (i, j) in the t-th iteration. ηij(t) is the
distance heuristic function, with ηij(t) = 1/dij, and dij is the distance of path (i, j). α, β are
the control parameters, which adjust the importance of τij(t) and ηij(t), respectively. Ak is
a collection of points that the ants can reach in the iteration after the t-th iteration.

The contradiction of ACO occurs between the global search ability and the convergence
rate to the optimal solution. Generally, the greater the randomness of the search space,
the stronger the possibility of finding the global optimal solution. However, too much
randomness causes the low utilization of prior knowledge, such as the concentration of
pheromones and path distance and results in slowing the convergence rate [33]. From the
point of view of the search strategy, an important reason why ACO is inefficient lies in the
insufficient use of heuristic information while iterating. The result is that multiple moves
of the ants provide little gain to the optimized objective. Specifically, only the information
of the current point and the next point is used to guide path search without the full use
of the previous path information. This is not conducive to avoiding obstacles to find the
optimal solution, and ants may easily fall into the local optimum. Three situations that
lower the efficiency of ACO are discussed as follows.

Situation I: Fall into the local optimum. There are several local highest points, such
as points A, B, and C, in Area I. When an ant reaches point A in the t-th iteration, it will
move to point A′ with a certain transition probability in the next iteration. According
to Equation (5), the greater τAA′(t) and ηAA′(t) are, the greater the transition probability
is. Hence, A′ is likely to be a high point near A with high probability. In the remaining
iteration, there is a high probability that the ant will move around point A in Area I, which
means falling into the local optimum, as shown in Figure 3a.

Situation II: Converge slowly in a certain dimension. There are several paths for
an ant to reach point D. Taking paths M and N as examples, path M relies on the step
of dimension X, and path N relies on dimension Y. Obviously, the convergence rate of
dimension Y is much lower than that of dimension X when the ant moves with the same
step length. If the ant mainly moves in dimension Y, more steps are needed to reach point
C, resulting in an inefficient iteration, as is shown in Figure 3b.

Situation III: Converge with a slight fluctuation in a certain dimension. Area II is
similar to a hilly area in dimension Y. That is, there are many local highest points, but the
heights of these points are not very different. When an ant moves in dimension Y, it will
always move to a relatively higher point with high probability, but the gain in seeking the
optimal solution is little, such as F → F′ → F′′ , as shown in Figure 3c. It is considered that
an iteration with such slight fluctuation is invalid under a certain error.
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falls into the local optimum; (b) the ant converges slowly in dimension Y; (c) the ant converges with a
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2.3.2. Dimension Reduction While Iterating Strategy to Resolve Inefficient Iterations

The main reason for the situations that lower the efficiency of ACO is the insufficient
use of heuristic information. ACO only considers the heuristic information of the current
point and the next point without the global movement trend of the ants. It might give rise
to some ants’ inefficient movement in points or dimensions where the gain to the optimized
objective is little. The dimension reduction while iterating (DRWI) strategy was proposed
to make full use of information on the path that the ants have passed through in previous
iterations. In the iteration after the i-th iteration, the following three variables of the i-th ant
in the previous N iterations (t ≥ N) are considered to determine the inefficient iterations in
advance, then reduce the dimension of this ant to accelerate convergence: the values of the
optimized parameters (Xi), the values on the j-th optimized parameter of Xi (Xij), and the
predicted values of the optimized objective (Yi

P).
Strategy to resolve Situation I. It is determined that the ant falls into the local optimal

solution if the variance of Yi
P (D(Yi

P)) is less than E1 and the variance of Xi (D(Xi)) is less
than ε1, where E1 and ε1 are the thresholds in the previous N iterations. So, the iteration
of the ant is terminated, and the optimal solution of the optimized parameter (Besti) is
the optimal solution in the previous N iterations (arc

Xi
max

n=1,2,...,N
(Yi

P(n))). The variance of

multi-dimensional data is defined as follows:

D(Xi) =
J

∑
j=1

1
N − 1

N

∑
n=1

(Xn
ij − Xij)

2, (6)
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where Yi
P(n) is the value of Yi

P in the n-th iteration of the previous N iterations, Xn
ij is the

value of Xij in the n-th iteration of the previous N iterations, and Xij is the mean of Xij in
the previous N iterations.

Strategy to resolve Situation II. It is determined that the ant converges slowly in
dimension j if the average rate of change of Yi

P to Xij (V(Yi
P, Xij)) is less than ε2, where ε2

is the threshold, indicating that the movement of the ant in dimension j fails to cause the
change of Yi

P. So, the iteration of the ant in dimension j is terminated, and the optimal
solution of the optimized parameters in dimension j(Bestij) is the optimal solution in the
previous N iterations (arc

Xij
max

n=1,2,...,N
(Yi

P(n))). V(Yi
P, Xij) is defined as follows:

V(Yi
P, Xij) =

1
N − 1

N−1

∑
n=1

Yi
P(n + 1)− Yi

P(n)
Xn+1

ij − Xn
ij

(7)

Strategy to resolve Situation III. It is determined that the ant converges with a slight

fluctuation in dimension j if the variance of the mean of Yi
P (D(Yi

P)) is less than E2 and the
variance of D(Xij) is bigger than ε3, where E2 and ε3 are the thresholds, indicating that the
obvious movement of the ant in dimension j causes a fluctuant change of Yi

P in a small
range. So, the iteration of the ant in dimension j is terminated, and the optimal solution of
the optimized parameters in dimension j(Bestij) is the optimal solution in the previous N

iterations (arc
Xij

max
n=1,2,...,N

(Yi
P(n))). D(Yi

P) is defined as follows:

D(Yi
P) =

1
N − 1

N

∑
i=1

(Yi
P(n)− Y

i
P), (8)

where Yi
P(n) is the mean of Yi

P in the n-th iteration of the previous N iterations. Y
i
P is the

mean of Yi
P(n) in the previous N iterations.

Figure 4 shows the improvement of ant colony optimization based on DRWI (DR-
WIACO). Table 1 shows the impact of the above thresholds on the process of DRWI.
Generally, the stricter the threshold is set, the more difficult it is to reduce the dimension of
the ants, that is, the weaker the effect of the DRWI strategy is, leading to the longer runtime
of the DRWIACO.

Table 1. The impact of the thresholds on the performance of DRWIACO.

Threshold Tendency The Number of Terminated Optimized Parameters Runtime

N + − +
E1 − − +
E2 − − +
ε1 − − +
ε2 − − +
ε3 + − +

Remark: + indicates an upward trend, − a downward trend.
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Figure 4. The improvement of ant colony optimization based on dimension reduction using an
iterating strategy.

2.3.3. Evaluation Indicators of the Optimization Performance

The optimization performance of DRWIACO includes accuracy and efficiency. The
accuracy is measured using the error of the optimized objective (EY) and the error of
the optimized parameters (EX). The efficiency is measured using the runtime (t) in the
same experiment environment. Concretely, EY measures the difference between the actual
optimal solution of the optimized objective (YR) and the predicted optimal solution of the
optimized objective (YP), as shown in Equation (9).

EY =||YR − YP||2 (9)

EX measures the difference between the actual optimal solution of the optimized
parameters (XR) and the predicted optimal solution of the optimized parameters (XP).
Since the evaluation function is normally non-monotonic, one YP corresponds to several
XP. Nevertheless, the correctness of XP can only be checked by whether it exists in the
datasets. The results of the optimized parameters that do not exist in the datasets were
identified as unreliable solutions because they could not be guaranteed to be correct
without verification in engineering. εX was set as a threshold to judge the reliability
of XP. As shown in Figure 5, the corresponding relationship between Ypm and Xpmn

is
{

XP11 , XP12, XP13

}
→

{
YP1

}
and

{
XP21 , XP22

}
→

{
YP2

}
. XR was obtained from the

reliable solution set verified in engineering. Xpmn was considered a reliable solution if
||XR − XPmn ||2 < εX . To accurately measure the difference between XP and XR in each
dimension, Ej

X, which means the difference between the actual optimal solution of the

optimized parameters in dimension j (X j
R) and the predicted optimal solution of the

optimized parameters in dimension j (X j
P), was defined as shown in Equations (10)–(12).

Ej
X = (1 +

e − ej

e
)ej, (10)
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ej =
∥∥∥X j

R − X j
P

∥∥∥
2
, (11)

e =
J

∑
j=1

ej, (12)

where ej is the error in dimension j, and e is the sum of the errors in all dimensions.
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Figure 5. The reliability of the predicted value of the optimized parameters is judged using εX .

Equation (10) shows that (1 +
e−ej

e ) ≥ 1 and is determined using (e − ej). The bigger
(e − ej) is, the worse the reliability of ej is, resulting in the enlarging of error in dimension j,
as shown in Figure 6. EX was defined as shown in Equation (13).

EX = (
J

∑
j=1

(Ej
X)

2
)

1/2

(13)
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3. Experiment Results and Discussion
3.1. Data Preparation

The data source in this research is the construction data of the jumbo drill with
three arms in the Qilinguan Tunnel Project in Hubei Province, China. It is a complex
karst tunnel with a total length of 8215 m. The project started in April 2021 and has
not been completed as of April 2022. Factors such as the geological properties of the
rock, the type of drilling tool, and the drilling method affect the feed speed of the jumbo
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drill to a certain extent. However, the optimization objective is subject to a number of
constraints. First of all, the objective is to adjust the driving parameters of the jumbo drill
that have an influence on the feed speed so that the feed speed is as large as possible.
The geological properties of the rock are the working conditions and cannot be adjusted.
Secondly, the jumbo drills used in the Qilinguan Tunnel Project are unchanged, and the
types of drill bits on the hydraulic rock drill are also unchangeable, with the type being
B-R32-45-A63/P. The drills were manufactured by JSI ROCK TOOLs CO. LTD. in Guiyang,
China. Meanwhile, due to the limitation of the geological conditions and other factors,
the construction company determines a set of drilling programs. So, the drilling method
basically remains unchanged. The parameters that can be adjusted within a certain range
are three pressure parameters (impact pressure, feed pressure, and rotational pressure) and
two borehole flushing parameters (water flow and water pressure). The three pressure
parameters are controlled by adjusting the openness of the hydraulic valve, so the values
of the pressure parameters are collected using the pressure sensors (MBS12003411-C1GB04)
arranged here. The origin of the sensors is DANFOSS in Denmark. The values of the water
flow are collected using the flow sensor (VC1F1PS/220). The origin is KRACHT in German.
A piece of data is collected every 0.02 m of feed. The layout of the sensors is shown in
Figure 7. The data in this research were taken from construction data in April 2021, and the
amount of data was 489,823. The construction dataset was determined by screening out
458,862 pieces of data coming from the normal working state of the jumbo drill with the
assistance of engineering personnel. Specifically, the normal working state is manifested
as qualified drilling quality and acceptable wear of drills. The value ranges of the driving
parameters are shown in Table 2.
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Table 2. The value ranges of the driving parameters on the construction dataset.

Driving
Parameter

Impact
Pressure (bar)

Feed Pressure
(bar)

Rotational
Pressure (bar)

Water Pressure
(bar)

Water Flow
(L/min)

Minimum 0 0 0 20 55
Maximum 190 210 130 30 120

To avoid the influence of the magnitude difference in parameters in this research, the
raw data are standardized using the Z-score. The equation of a certain parameter (x) is
represented in Equation (14).

Zi =
xi − µ

σ
, (14)

where xi is the ith data of x, µ is the mean of x, σ is the standard deviation of x, and Zi is
the standardized value of xi.
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3.2. Performance Validation of the Feed Speed Prediction Model
3.2.1. Comparison with Other Machine Learning Algorithms

To verify the performance of the predicted model for the feed speed, three regression
algorithms commonly used in engineering were selected to conduct control experiments:
multiple linear regression algorithm, random forest algorithm (RF), and BP neural network
algorithm (BPNN). Eighty percent of the data on the construction dataset was randomly
selected as the training set, and the remaining data as the test set. The experiment environ-
ment was Python 3.8, the Pentium CPU i9, 32.0 GB RAM with Windows 10. The models
were obtained using 10-fold cross-validation on the training set. Ten-fold cross-validation
means that the training set is randomly divided into 10 subsets. Nine subsets were selected
to train the model, and the remaining one was used as the validation set to test the accuracy
of the model. The process was repeated until all the subsets were used as validation sets
one time so that 10 evaluation results of model accuracy were obtained. The average of
all the evaluation results was taken as the accuracy of the model. Optuna was employed
to determine the optimal hyper-parameters. With the help of this tool, the accuracy of
the model under 10-fold cross-validation was used as an evaluation index to determine
the optimal hyper-parameters of the model. The hyper-parameters are as follows. In
the RF model, the number of CARTs (M) was 600, the learning rate (β) was 0.14, and the
maximum depth of the CART was full-grown. In the XGBoost model, M = 600, β = 0.11,
the subsample ratio was 0.86, the minimum number of leaf nodes of the CART was three,
and the maximum depth of the CART tree was full-grown. In the BPNN model, β = 0.05,
the number of hidden layer layers (M) was two, the number of hidden layer nodes (N) was
20, and the activation function was ReLU.

The above hyper-parameters have an important impact on the performance of the
comparison models. For XGBoost, RF, and BPNN, a learning rate that is too small results
in local optimum or converges slowly when training a model. The consequence is that
the model is unable to adequately learn the correlation of the data, leading to the model
under-fitting. Comparatively, a learning rate that is too large causes the model to oscillate
or diverge during the training process. Moreover, the model fails to converge, resulting in
poor model performance. M for XGBoost and RF, as well as M and N for BPNN, can change
the complexity of the model, which in turn affects the performance of the model. Too small
a value of the above hyper-parameters results in a model structure that is too simple to
learn the data information, which, in turn, results in under-fitting. Conversely, the model
with a complex structure learns the noise of the data, which, in turn, causes over-fitting.

The evaluation indicators of accuracy are the coefficient of determination (R2) and
predicted error (RMSE). The efficiency was measured using runtime (t) in the same
experiment environment, including runtime when training the model (ttrain) and runtime
when testing the model (ttest). R2 represents the extent to which input parameters explain
output parameters in the model, with a range of valid values being [0, 1]. A large value of
R2 means the high accuracy of the model. RMSE represents the error between the predicted
value and actual value, which takes a value not less than 0. The optimal model was
obtained using the hyper-parameter optimization process, and the model performance was
evaluated on the test set. The above training and testing process was repeatedly executed
100 times, and the results of R2, RMSE, and t were averaged, as shown in Table 3. The
purpose of repeating the process 100 times to obtain the mean is to avoid the impact on
model accuracy due to the chance of sample division. Figure 8 shows the fitting effect of the
predicted value and the actual value of the feed speed for 200 random samples on the test
set. It shows that the accuracy of the prediction model based on XGBoost is significantly
higher than that of other models. ttrain and ttest of XGBoost are slightly larger than that of
the multiple linear regression model, and the efficiency loss is less than 6%. Compared
with BPNN and RF, the efficiency improvement of XGBoost be greater than 25%, which
reflects a significant efficiency advantage. The proposed model is most likely to meet the
requirements of high reliability and efficiency for tunnel construction.
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Table 3. Performance of the prediction model for the feed speed based on 4 regression algorithms on
the test set.

Algorithm R2 RMSE ttrain (s) ttest (s)

Multiple linear regression 0.5652 0.786 2.004 0.0294
BPNN regression 0.8034 0.357 3.976 0.0466
Random forest regression 0.8527 0.261 2.977 0.0397
XGBoost regression 0.8734 0.247 2.121 0.0311
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Figure 8. The fitting results of the prediction models based on 4 regression algorithms on the test set:
(a) multiple linear regression model, (b) BPNN regression model, (c) random forest regression model,
and (d) XGBoost model.

3.2.2. Comparison with the Model-Driven Methods

Two feed speed prediction models based on the model-driven method that are widely
used in engineering were selected to verify the advantages of the proposed model. Both
models use feed pressure to predict feed speed. Model 1 [18] is a polynomial function, and
Model 2 [17] is a piecewise polynomial function. The coefficients of the above polynomials
depend on the actual working conditions and can be fitted to the training set. Table 4 shows
the performance of the above models on the test set. It is clear that the accuracy of Model 1
and Model 2 is much lower than that of the proposed model, which is comparable to the
linear regression model, as shown in Table 3.



Sensors 2024, 24, 2600 14 of 23

Table 4. Performance of the models based on model-driven method and proposed model on the test set.

Model R2 RMSE ttrain (s)

Model 1 0.5332 0.791 1.224
Model 2 0.5921 0.702 1.001

XGBoost Model 0.8651 0.251 2.155

3.3. Verification of the Efficiency Improvement of DRWIACO
3.3.1. Test Method

Step I. Standardize the data of the public dataset. Train a model that uses optimized
parameters to predict the optimized objective on the dataset as the evaluation function
(E(X)).

Step II. Take the objective function as Obj = max(E(X)). Select the data with the
maximum value of the optimized objective in the dataset as the optimal solution.

Step III. Take the value range of the optimized parameters in the dataset as the
constraints and randomly determine the initial population of ants within this range.

Step IV. Apply DRWIACO and ACO to seek the optimal solution. Use EY, EX , and t to
evaluate the optimization performance.

The experiment environment is Python 3.8, the Pentium CPU i9, 32.0 GB RAM with
Windows 10. The key hyper-parameters of DRWIACO and ACO are set with the same
value to reduce the impact of irrelevant variables on performance comparison, as shown in
Table 5.

Table 5. The values of key hyper-parameters for DRWIACO and ACO on the public datasets.

Hyper-Parameter ACO DRWIACO

Population size (m) 200 200
Volatilization rate of the pheromone (ρ) 0.3 0.3
Maximum iterations (Tmax) 200 200
Control parameter (α and β) α = 1; β = 5 α = 1; β = 5

3.3.2. The Reference Value Range of the Thresholds for DRWIACO

The stricter the thresholds are set, the more difficult it is to reduce the dimension,
resulting in the lower efficiency of the proposed method. On the contrary, the looser the above
thresholds are set, the more parameters are eliminated in the iterative process, which may
lead to the optimal solution being ignored. Moreover, the accuracy of the proposed method is
reduced. To synthesize the efficiency and accuracy of the method, the following evaluation
indicator is set when determining the value range of the thresholds by debugging on the
public datasets. Firstly, it is required that the improvement of efficiency is greater than 15%
to highlight the efficiency advantages. Secondly, to ensure accuracy, it is required that the
difference between the results of the optimized objective for DRWIACO and ACO is no more
than 15%. The reference value range of the thresholds is shown in Table 6. Figure 9 specifically
shows the reference value of iterative times N corresponding to the number of optimized
parameters. The light gray area is the reference value range, and the dark gray area is the
recommended value range with the highest selected frequency. The reference values of other
thresholds are given in Appendix A. It should be noted that the above results were obtained
using experiments on limited datasets. When the algorithm is applied to specific data, the
values of the thresholds need to be adjusted around this value range.

Table 6. The reference value range of the thresholds for DRWIACO on the public datasets.

Hyper-Parameter E1 E2 ε1 ε2 ε3 N

Reference
value range 0.01–0.05 0.08–0.25 0.12–0.50 0.06–0.20 0.65–0.85 4–6
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3.3.3. Results and Analysis

The DRWIACO and ACO were applied to five public dataset methods to seek the optimal
solution. In the Computer Hardware dataset, computer hardware parameters, such as cache
memory, channels, and maximum main memory, were optimized to obtain the best computer
performance. In the Auto MPG dataset, parameters such as horsepower, weight, and cylinders
were optimized to make the car fuel-efficient. In the Concrete Slump Test dataset, parameters
such as cement, slag, and water were adjusted to minimize the concrete slump. In the Concrete
Compressive Strength dataset, parameters such as water, fly ash, and superplasticizer were
optimized to make concrete compressive strength maximum. In the Automobile dataset,
parameters such as price, horsepower, and wheel-base were optimized to minimize the loss
payment of the automobile. These datasets were chosen for three reasons. First, the selected
datasets can be used to build regression models with the same type of feed speed prediction
model. Second, the selected datasets have multiple features, and the effectiveness of the DRWI
strategy can be highlighted. Third, they have been used in other studies for optimization
performance validation, which is more convincing and reasonable. The value of εX was set to
1.32, and the experiments were repeated until 10 sets of results that meet εX were obtained on
each dataset. The results of EY, EX, and t are shown in Table 7. The runtime of DRWIACO
was reduced by over 30% compared with ACO, and the efficiency improvement was more
significant with the number of optimization parameters increasing. The mean of EY and EX
for DRWIACO was slightly larger than ACO, and the accuracy difference was within 5%.
Meanwhile, the variance of EY and EX for DRWIACO was slightly larger than that of ACO,
which is due to the randomness of the DRWI process. Given the above, the efficiency of
DRWIACO increased by more than 30%, with the accuracy loss being less than 5% compared
with ACO. It proves that the DRWI strategy accelerates the convergence rate. Furthermore, the
five public datasets are related to various application fields, such as construction engineering,
transportation, and computer. The experimental results prove the generality of the proposed
method in several engineering fields.

Figure 10 intuitively shows the convergence performance of DRWIACO and ACO on
the Auto MPG dataset. The local optimal solutions are mainly located in Area I and II, and
the global optimal solution is marked as the white five-pointed star in Area I. In Area I, many
ants reach the points near the optimal solution in the 100th iteration for DRWIACO, while the
optimized results for ACO are more scattered, as shown in Figure 10a,c. It indicates that the
DRWI strategy is beneficial in guiding the search direction. In Area II, the optimized results
for DRWIACO do not change significantly in the 100th and 200th iterations, as shown in
Figure 10a,b. The distribution of ants is more scattered than that of ACO in the 200th iteration
in Area II, as shown in Figure 10b,d. It reveals that the optimal solution in Area II is judged as
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the local optimum by the DRWI strategy, and the iterations of ants in Area II are terminated to
reduce the number of invalid calculations and improve efficiency.

Table 7. Comparison of optimization performance for DRWIACO and ACO in 5 public datasets.

Dataset Algorithm
EY EX t (s)

Mean Variance Mean Variance Mean Variance

I with 6 optimized
parameters

ACO 0.364 0.176 0.852 0.255 9.05 1.431

DRWIACO 0.387 0.185 0.896 0.273 6.74 0.962

II with 7 optimized
parameters

ACO 0.401 0.463 1.034 0.565 15.36 1.674

DRWIACO 0.426 0.527 1.167 0.621 11.33 1.024

III with 7 optimized
parameters

ACO 0.454 0.505 1.125 0.581 16.87 1.854

DRWIACO 0.465 0.529 1.236 0.614 10.94 1.145

IV with 8 optimized
parameters

ACO 0.491 0.641 1.297 0.741 24.71 2.124

DRWIACO 0.522 0.695 1.311 0.843 16.45 1.247

V with 14 optimized
parameters

ACO 0.636 0.855 1.305 1.024 50.56 3.211

DRWIACO 0.674 0.964 1.320 1.127 31.54 1.545

Remark: Names of the datasets are as follows. I. Computer Hardware; II. Auto MPG; III. Concrete Slump Test;
IV. Concrete Compressive Strength; V. Automobile.
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Figure 10. The convergence performance of DRWIACO and ACO on the Auto MPG dataset:
(a) DRWIACO in the 100th iteration; (b) DRWIACO in the 200th iteration; (c) ACO in the 100th
iteration; (d) ACO in the 200th iteration.
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The CEC2017 and CEC2022 test sets are commonly used to test the performance of
optimization algorithms. Four sets of tests were selected on the test sets to further validate
the effectiveness of DRWIACO: I. Function F1 of CEC2017 with dimension 10; II. Function
F3 of CEC2017 with dimension 30; III. Function F3 of CEC2022 with dimension 20; and
IV. Function F10 of CEC2022 with dimension 20. The optimization tests were conducted
using DRWIACO and ACO, respectively, and each set of tests was repeated 100 times. The
results are shown in Table 8. It can be seen that the optimization accuracy of DRWIACO is
slightly smaller than that of ACO in all four sets of tests, with an accuracy loss interval of
[3.7%, 4.9%]. Meanwhile, the optimization efficiency improvement interval of DRWIACO
is [33%, 42%]. This suggests that the conclusion that an accuracy loss of less than 5% for an
efficiency improvement of more than 30% is still valid.

Table 8. Comparison of optimization performance for DRWIACO and ACO on the CEC2017 and
CEC2022 test sets.

Dataset Algorithm
EY t (s)

Mean Variance Mean Variance

CEC2017-F1, Dim = 10
ACO 9.62 2.33 12.58 1.74

DRWIACO 10.09 2.64 9.46 1.13

CEC2017-F3, Dim = 30
ACO 15.66 4.02 33.72 3.79

DRWIACO 16.42 4.66 23.74 3.01

CEC2022-F3, Dim = 20
ACO 18.25 6.37 22.60 2.54

DRWIACO 18.93 7.65 16.34 2.04

CEC2022-F10, Dim = 20
ACO 87.32 15.97 28.78 3.50

DRWIACO 91.59 18.44 20.41 2.97

3.4. Performance Verification of the XGBoost-DRWIACO Framework
3.4.1. Test Method

The driving parameter optimization to increase the feed speed of the jumbo drill under
specific working conditions can be described as follows:

Obj = max(M(X))

S. t.
{

X1 = G
Dl ≤ X2 ≤ Du

, (15)

where M(X) is the prediction model for the feed speed, and X= (X1, X2) is the input
parameters of the model. X1 is the surrounding rock classification. G is the surrounding
rock classification of current working conditions. X2 is the set of driving parameters,
including impact pressure, feed pressure, rotational pressure, water pressure, and water
flow. Dl and Du are the lower bound and upper bound of the value range of the driving
parameters, respectively, in the current state of the equipment.

The method of testing the performance of the proposed framework on the driving
parameter optimization is as follows.

Step I. Set constraints, including G, Dl , and Du. Filter out all the data that meet the
constraints on the construction dataset as the reliable solution set verified in engineering
(SetR).

Step II. Select the data with the largest feed speed in SetR as the optimal solution.
Step III. Optimize driving parameters to maximize the feed speed using DRWIACO

and obtain the predicted value of the optimal solution under the constraints in Step I.
Step IV. Employ the ACO, GA, PSO, and imperialist competition algorithm (ICA) to

optimize the driving parameters as the control experiments.
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The experiment environment is Python 3.8, the Pentium CPU i9, 32.0 GB RAM with
Windows 10. Based on empirical equations and pre-experiments, the reasonable values of
the key hyper-parameters are obtained to achieve good optimization performance for the
above algorithms, as shown in Table 9.

Table 9. The value of the key hyper-parameter for the 5 optimization algorithms.

Hyper-Parameter ACO DRWIACO GA PSO ICA

Population size 200 200 200 150 150
Maximum iterations 200 200 200 200 200

Addition ρ = 0.3; α = 1; β = 5 ρ = 0.3; α = 1; β = 5 Crossover rate is 0.7;
Selectivity is 0.5.

Inertia weight is 0.8;
Learning rate is 0.35. \

3.4.2. Model Comparisons

The above algorithms were used to optimize the feed speed under five constraints.
The test was executed 20 times under each constraint. In addition to EY, EX, and t, the
predicted value closest to the optimal solution (YC) was added as the evaluation indicator to
intuitively display the accuracy. Considering that the value range of the driving parameters
in the construction dataset was [20,160][20,160], the raw value of εX was set to 10. That is,
the results of the driving parameters were considered a reliable solution when the average
error of each driving parameter was within five. Table 10 shows the optimized results
under two constraints. Results under all constraints are given in Appendix B. The data have
been converted into the order of magnitude of raw data to display the optimized results
intuitively. In terms of optimization accuracy, the mean (µ) of EY and EX for DRWICAO
was small, and the error between YC and the optimal solution was controlled within 10%,
indicating that the accuracy of the optimized results was high. Furthermore, the optimized
results were stable since the variance (σ2) of EY was small. The high accuracy and stability
of the optimized results met the requirements of high reliability for tunnel construction.
ACO achieved the highest accuracy, which is reflected in the fact that the error between
YC and the optimal solution was controlled within 8%. Meanwhile, σ2 was similar to that
of DRWIACO, indicating a high stability of the optimized results. Compared with ACO,
DRWIACO had slightly lower optimization accuracy, with an accuracy loss of less than
5%. The reason is that the DRWI strategy reduces the dimensionality of the optimization
space, which prevents some feasible solutions from being accurately obtained. This reflects
the strategy of sacrificing some accuracy for efficiency improvement. Compared with
PSO and ICA, which have the lowest optimization accuracy, the accuracy improvement of
DRWIACO was greater than 50%. Moreover, the accuracy improvement was greater than
10% compared with GA. This is due to the fact that the DRWI strategy determines three
inefficient iterative situations, which makes the subsequent ants avoid the inefficient paths
to improve the possibility of obtaining more feasible solutions.

Table 10. The optimization performance of 5 algorithms under 2 constraints.

Constraint Algorithm Optimal
Solution

YC
EY EX t (s)

Mean Variance Mean Mean

DRWIACO

4.70

4.91 0.604 0.286 5.914 4.23

1

PSO 4.93 1.467 0.504 16.247 5.24
ACO 4.86 0.565 0.275 5.228 6.17
ICA 3.84 1.751 0.600 18.014 10.87
GA 5.46 0.516 0.257 4.501 12.74

3

DRWIACO

5.18

4.96 0.714 0.321 6.007 5.00
PSO 4.90 1.652 0.716 19.271 5.78
ACO 5.00 0.651 0.311 5.854 7.56
ICA 5.90 1.574 0.722 18.523 11.71
GA 4.53 0.627 0.307 5.252 13.17



Sensors 2024, 24, 2600 19 of 23

In terms of optimization efficiency, compared with the ACO and GA with higher
accuracy, the runtime of DRWICAO was the smallest, with t ≤ 5 s, and the optimization
efficiency was improved by more than 30%. The optimization efficiency of PSO was
slightly smaller than that of DRWIACO, with an efficiency loss of about 15%. However,
the optimization accuracy of PSO was poor and could not meet the requirements of high
accuracy for tunnel engineering. The accuracy and efficiency of ICA are much smaller than
that of DRWIACO, which may be due to the method’s poor ability to generalize engineering
data. It should be noted that the runtime of DRWIACO is within 5 s, which basically meets
the optimization efficiency requirements of the jumbo drill with slow building speed.

The construction data of the Qilinguan Tunnel Project in May 2022 contain more than
1000 samples, with the surrounding rock classification being III. Model comparison experi-
ments were conducted on the above samples to test the robustness of the proposed frame-
work under complex geological conditions. The training and testing steps of DRWIACO
and the four comparison methods were the same as above. Moreover, the experimental
results under Constraint 1 are shown in Table 11. It illustrates that the error between YC
and the optimal solution was still less than 10%. Furthermore, µ and σ2 of EY were small,
indicating that the optimization accuracy and stability are good. Meanwhile, compared
with ACO and GA, the optimization efficiency of DRWIACO was improved by 31%. This
indicates that the proposed method still meets the requirements of high reliability and high
efficiency under varying geological conditions; that is, the DRWIACO framework is robust.

Table 11. The optimization performance of 5 algorithms, with the surrounding rock classification
being III.

Algorithm Optimal
Solution

YC
EY EX t (s)

Mean Variance Mean Mean

DRWIACO

3.91

4.10 0.520 0.252 5.52 3.93
PSO 4.31 1.257 0.433 14.385 4.77
ACO 4.05 0.512 0.258 4.880 5.68
ICA 3.44 1.510 0.512 15.822 9.40
GA 4.20 0.450 0.242 4.143 11.00

3.5. Analysis of the Economic Benefits

The construction cost difference between the actual feed speed and optimized feed
speed using the XGBoost-DRWIACO framework was compared in the construction data
set, and the improvement of the economic benefit was verified. The construction dataset
covered engineering data in 12 days. The surrounding rock classification was IV, and the ex-
cavation method was the top heading and bench excavation method. The machine worked
one shift per day, and the footage for each shift was 3.8 m. According to surrounding rock
conditions and construction needs, the actual blasthole depth was 4 m–5 m. The number of
blastholes in the tunnel section was 180; that is, 60 blastholes were drilled for each drilling
arm. The cost breakdown is shown in Table 12.

Table 12. The cost breakdown for the jumbo drill with 3 arms.

Cost Item Details Unit Price

Labor cost (CLabor) Three operators CNY 40 (USD 5.53, EUR 5.19) per person
per hour

Rent cost of the machine (CRent) One jumbo drill CNY 400 (USD 55.3, EUR 51.9) per hour

Electricity (CElec) Machine power is 325 KW. CNY 1.025 (USD 0.142, EUR 0.133) per
kilowatt-hour

Source: provided by the constructors in the Qilinguan Tunnel Project.
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The unit output cost (Ce) of the jumbo drill was applied to measure the construction
cost [34]. The formula is as follows.

Ce =
CLabor + CRent + CElec

QF
, (16)

where QF is the total drilling distance of the jumbo drill, and ti is the drilling time of the
i-th shift.

During the actual drilling process, the feed speed was set by the operators according
to the engineering experience, which is generally 2.5–3.5 m/min. ti can be calculated using
Equation (17). The drilling time in both modes is shown in Figure 11.

ti =
Dh

i
FSi

× Nh, (17)

where Dh
i is the drilling depth of the i-th shift, FSi is the feed speed of the i-th shift, and Nh

is the number of blastholes for each drilling arm.
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Figure 11. Drilling time of actual drilling process and optimized drilling process.

According to Equations (16) and (17), Ce of the actual drilling process is CNY 1.5443
(USD 0.2134, EUR 0.2005) per meter, while Ce of the optimized drilling process is CNY
1.2499 (USD 0.1727, EUR 0.1623) per meter. The construction cost was reduced by 19.06%
by increasing the feed speed using the XGBoost-DRWIACO frame, which improves the
economic benefit. In the U.S. or Europe, the labor cost, rent cost of the machine, electricity
cost, etc., are higher than the cost in China. Therefore, it can be roughly concluded that
applying the proposed feed speed optimization method of the jumbo drill to the U.S. and
Europe would be more economically efficient.

4. Conclusions

To fulfill the requirements of high reliability and efficiency for optimizing the driving
parameters of the jumbo drill, a method based on the XGBoost-DRWIACO framework to
optimize the driving parameters to increase feed speed was proposed. This method solves
the defects of low accuracy under complex working conditions for the model-driven evalu-
ation function and low efficiency of swarm intelligent algorithms. The optimized results
meet the above-mentioned requirements in tunnel engineering and reduce construction
costs. This method has the potential to be applied to tunnel construction decision-making
and production automation. The contributions of this paper are as follows.

I. An idea of using the data-driven method to establish the evaluation function was
proposed, and a prediction model for feed speed based on XGBoost was established.
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The accuracy of the model under complex working conditions is better than that of the
model-driven methods and the comparative data-driven methods.

II. DRWIACO was proposed to resolve three situations that cause the inefficient
iterations of ACO. It shows that the efficiency of DRWIACO increased by more than 30%,
with the accuracy loss being less than 5% compared with ACO in five public datasets.

III. The experimental results reveal that the error of DRWIACO was less than 10%, and
the efficiency increased by over 30% compared with the comparison methods, which meet
the requirements of high accuracy and efficiency for tunnel construction. It demonstrates a
19% increase in economic efficiency by comparing the cost before and after optimization.

It should be noted that six thresholds need to be assigned in DRWIACO. The reference
value range was given by experiments in limited datasets. The values of the thresholds
should be adjusted within this value range based on the specific dataset. It is necessary
to further study the relationship between optimized parameters and the values of the
thresholds to simplify the thresholds assignment.
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Constraint Algorithm 
Optimal 

Solution 
C

Y  Y
E  

X
E  t  (s) 

Mean Variance Mean Mean 

1 

ACO 

4.70 

4.91 0.565 0.275 5.228 6.17 

DRWIACO 4.93 0.604 0.286 5.914 4.23 

GA 4.86 0.516 0.257 4.501 12.74 

PSO 3.86 1.467 0.504 16.247 5.24 

ICA 5.46 1.751 0.600 18.014 10.87 

2 

ACO 

3.91 

4.09 0.485 0.260 4.904 7.54 

DRWIACO 3.69 0.514 0.272 5.467 4.65 

GA 3.75 0.443 0.254 4.252 13.86 

Reference value range Recommended value Reference value range Recommended value Reference value range Recommended value

Reference value range Recommended value Reference value range Recommended value Reference value range Recommended value

Figure A1. The reference value range of the thresholds for DRWIACO.
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Appendix B

Table A1. Five constraints in the construction dataset.

Constraint Bound Impact Pressure Feed Pressure Rotational Pressure Water Pressure Water Flow

1
Dl 90 40 45 20 55
Du 145 120 120 30 100

2
Dl 80 30 35 20 55
Du 150 120 120 30 90

3
Dl 120 45 50 20 55
Du 160 120 130 30 100

4
Dl 100 30 35 20 55
Du 120 115 125 30 95

5
Dl 80 20 30 20 55
Du 120 60 125 30 100

Remark: Surrounding rock classification is IV on the construction dataset.

Table A2. The optimization performance of 5 algorithms under 5 constraints.

Constraint Algorithm Optimal
Solution

YC
EY EX t

Mean Variance Mean Mean

1

ACO

4.70

4.91 0.565 0.275 5.228 6.17
DRWIACO 4.93 0.604 0.286 5.914 4.23

GA 4.86 0.516 0.257 4.501 12.74
PSO 3.86 1.467 0.504 16.247 5.24
ICA 5.46 1.751 0.600 18.014 10.87

2

ACO

3.91

4.09 0.485 0.260 4.904 7.54
DRWIACO 3.69 0.514 0.272 5.467 4.65

GA 3.75 0.443 0.254 4.252 13.86
PSO 4.54 1.497 0.543 14.822 5.97
ICA 4.65 1.856 0.514 14.554 9.67

3

ACO

5.18

4.96 0.651 0.311 5.854 7.56
DRWIACO 4.90 0.714 0.321 6.007 5.01

GA 5.00 0.627 0.307 5.252 13.17
PSO 5.90 1.652 0.716 19.271 5.78
ICA 4.53 1.574 0.722 18.523 11.71

4

ACO

3.14

3.24 0.394 0.154 4.574 6.45
DRWIACO 3.10 0.416 0.161 3.613 4.21

GA 3.04 0.347 0.124 4.274 11.97
PSO 2.51 1.271 0.527 12.071 5.71
ICA 2.44 1.514 0.714 10.674 9.64

5

ACO

2.62

2.75 0.341 0.124 3.348 5.97
DRWIACO 2.76 0.382 0.158 4.562 3.94

GA 2.51 0.310 0.117 3.107 9.37
PSO 3.02 1.047 0.514 10.952 4.64
ICA 3.06 1.134 0.526 12.004 8.64
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