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Abstract: Positioning based on Global Navigation Satellite Systems (GNSSs) in urban environments
always suffers from multipath and Non-Line-of-Sight (NLoS) effects. In such conditions, the GNSS
pseudorange measurements can be affected by biases disrupting the GNSS-based applications.
Many efforts have been devoted to detecting and mitigating the effects of multipath/NLoS, but
the identification and classification of such events are still challenging. This research proposes
a method for the post-processing estimation of pseudorange biases resulting from multipath/NLoS
effects. Providing estimated pseudorange biases due to multipath/NLoS effects serves two main
purposes. Firstly, machine learning-based techniques can leverage accurately estimated pseudorange
biases as training data to detect and mitigate multipath/NLoS effects. Secondly, these accurately
estimated pseudorange biases can serve as a benchmark for evaluating the effectiveness of the
methods proposed to detect multipath/NLoS effects. The estimation is achieved by extracting the
multipath/NLoS biases from pseudoranges using a clustering algorithm named Density-Based
Spatial Clustering of Applications with Noise (DBSCAN). The performance is demonstrated using
two real-world data collections in multipath/NLoS scenarios for both static and dynamic conditions.
Since there is no ground truth for the pseudorange biases due to the multipath/NLoS scenarios,
the proposed method is validated based on the positioning performance. Positioning solutions are
computed by subtracting the estimated biases from the raw pseudoranges and comparing them to
the ground truth.

Keywords: multipath; non-line-of-sight; pseudorange bias; clustering algorithm

1. Introduction

Multipath and Non-Line-of-Sight (NLoS) aspects are the most detrimental effects for
Global Navigation Satellite Systems (GNSSs) in urban scenarios, affecting the large plethora
of emerging applications being developed and expected to work in such an environment,
such as autonomous vehicles, smart wearables, etc. [1]. Multipath interference, as the name
implies, happens when a signal is received through multiple paths. This can include the
direct path and one or more reflected paths, or it may involve multiple reflected paths. NLoS
reception occurs when the direct path from the transmitter to the receiver is obstructed and
the signals are received only through a reflected path [2].

The presence of reflected GNSS signals in the case of multipath/NLoS effects causes
biases ranging from several to thousands of meters in pseudorange measurements [3].
Unlike the tropospheric and ionospheric delay contribution and relativistic effect, whose
physical models allow for proper correction, mitigating the impact of multipath/NLoS
effects on pseudorange measurements is challenging due to their complex physical models.

As multipath/NLoS effects pose critical threats to the widespread use of GNSS, nu-
merous efforts have been devoted to detecting and mitigating the pseudorange biases
caused by such propagation conditions. Most of the research efforts can be categorized
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into three groups based on the specific stage of the user receiver at which detection and/or
mitigation are applied:

The first group of solutions includes antenna-based techniques. In scenarios involving
multipath/NLoS effects, the reflected GNSS signals may undergo changes in polarization
and reception angles compared to the direct signals. To mitigate this issue, researchers
developed advanced antenna designs, including choke rings, dual-polarized antennas,
and array antennas, to minimize the reception of reflected signals [2,4,5].

The second family of multipath/NLoS detection and mitigation techniques relies on
signal processing. Multipath occurs when the signals reflected from surfaces reach the
receiver along with the direct signals. In GNSS baseband signal processing, the shift in
auto-correlation functions caused by reflected signals can overlap with the auto-correlation
function of the direct signal. As a result, the computed auto-correlation function in the
Delay-Lock Loop (DLL) will be distorted due to this overlapping. To address this, various
advanced signal tracking techniques have been proposed for identifying and mitigating
multipath interference [6–9].

The third group of techniques operates within the positioning unit to detect and
mitigate multipath/NLoS interference. Pseudorange biases induced by multipath/NLoS
effects pose a threat to the consistency between the pseudorange measurements and the cor-
responding navigation solutions. Some approaches utilize the chi-squared test for detecting
and mitigating the impact of multipath/NLoS effects [10]. Additionally, 3D city models
and cameras are employed to establish the propagation model of reflected signals [11,12].
Furthermore, researchers explore the potential of machine learning algorithms to estab-
lish relationships between multipath/NLoS effects and other indicators, such as satellite
elevations/azimuths and the carrier-to-noise-density ratio (C/N0) [13–15].

In an effort to contribute to the development of methodologies mitigating multi-
path/NLoS effects, this research proposes a post-processing solution for estimating the
pseudorange biases caused by these phenomena. In recent years, new research approaches
have considered machine learning-based algorithms for detecting and mitigating multi-
path/NLoS effects. By extracting certain features in the positioning unit, ref. [11] proposed
a classifier based on supervised machine learning to categorize GNSS pseudorange mea-
surements into three types: clean, multipath, and NLoS. Moreover, ref. [16] adopted
an unsupervised method to identify satellite signals with multipath using carrier phase,
pseudorange, and carrier-to-noise ratio measurements. Additionally, ref. [17] formulated
multipath modeling as a regression task, fitting the multipath errors with respect to the
azimuth and elevation in the spatial domain. To implement multipath detection and mit-
igation, these studies utilized various features derived from GNSS raw data as well as
additional information. Accurate values of pseudorange biases due to multipath/NLoS
effects are pieces of information essential for these machine learning approaches to train the
model, and then they are used to detect and mitigate multipath/NLoS effects. Therefore,
the primary objective of this research is to provide high-precision pseudorange bias values
caused by multipath/NLoS to empower machine learning-based algorithms. Furthermore,
these accurately estimated pseudorange biases can serve as a standard for assessing the
performance of the methods proposed for detecting and mitigating multipath/NLoS effects.

To compute the accurate pseudorange biases caused by multipath/NLoS effects, this
research leverages precise corrections and models for GNSS and employs a clustering
algorithm, namely Density-Based Spatial Clustering of Applications with Noise (DBSCAN).
The main novel contributions of this work can be summarized as follows:

1. Building upon the theoretical analysis of the pseudorange function, this research defines
a leftover term containing the pseudorange biases caused by multipath/NLoS effects.

2. This research derives two probability distributions for the defined leftover term, which
motivates the utilization of a clustering algorithm to estimate multipath/NLoS effects.

3. By utilizing a clustering algorithm, specifically DBSCAN, to isolate the other compo-
nents in the defined leftover term, a procedure is proposed to estimate the values of
multipath/NLoS biases if multipath/NLoS effects are present.
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The paper is organized as follows: in Section 2, the mathematical foundations for the
pseudorange function are established, and the definition of the leftover term is provided.
Section 3 introduces the proposed method for extracting pseudorange biases caused by
multipath/NLoS effects from the leftover term using a clustering algorithm. Subsequently,
Section 4 outlines the details of the real-world experiments under both static and dynamic
scenarios to validate the effectiveness of the proposed method. Finally, Section 5 draws the
conclusions regarding this work.

2. Definition and Computation of the Leftover Term

This section recalls the derivation of the pseudorange observation equation, as outlined
in [18], in order to provide the definition of the leftover term containing the pseudorange
biases due to multipath/NLoS effects, along with other receiver-related error components.

The GNSS receiver generates pseudorange measurements by multiplying the signal
travel time from the satellite to the receiver with the speed of light. It is noted that the
superscript s is used to represent the pseudorandom noise (PRN) code of a specific GNSS
satellite, and the subscript r is used to represent the GNSS receiver. The pseudorange
measurement function is written as

ps
r(t) = c(dr + dtr(t)) + ∥rs(t) + rr(t)∥

+ c
(

ds − dts(t) + δts,rel
stc (t)− δts,rel

clk (t)
)

+ ξs
r(t) + Is(t) + Ts(t) + Fs(t) + es

r(t) (1)

where

• ps
r(t) is the pseudorange measurement obtained from the GNSS receiver for satellite s

at time t;
• c is the speed of light in vacuum;
• dr is the signal instrumental delay of the receiver;
• dtr(t) is the clock bias of the receiver at time t;
• rs(t) is the mass center position of the satellite under Earth Centered Earth Fixed

(ECEF) frames at time t;
• rr(t) is the antenna reference point position of the receiver under ECEF frames at

time t;
• ds is the signal instrumental delay of the satellite;
• dts(t) is clock bias of the satellite at time t;
• δts,rel

stc (t) is the delay caused by space–time curvature of the relativistic effect at time t;
• δts,rel

clk (t) is satellite clock bias caused by the relativistic effect at time t;
• ξs

r(t) is antenna phase center corrections for both transmitting and receiving antennas
at time t;

• Is(t) is the error contribution of the pseudorange measurement due to the ionospheric
delay, expressed in meters at time t;

• Ts(t) is the error contribution of the pseudorange measurement due to the tropo-
spheric delay, expressed in meters at time t;

• Fs(t) is the error contribution of the pseudorange measurement due to the multi-
path/NLoS interference at time t, expressed in meters;

• es
r(t) is the error contribution of the pseudorange measurement due to the receiver

noise at time t, expressed in meters.
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The Sagnac effect caused by Earth’s rotation should also be compensated for ps
r(t)

according to [18] (Chapter 19.1). By adjusting both sides of (1), we can obtain

Fs(t) + es
r(t) + c(dr + dtr(t))

= ps
r(t)− ∥rs(t)− rr(t)∥ − ξs

r(t)− Is(t)− Ts(t)

− c
(

ds − dts(t) + δts,rel
stc (t)− δts,rel

clk (t)
)

(2)

Thanks to the advancements in the development of physical models and corrections
offered by International GNSS Service (IGS), all the terms on the right-hand side of (2)
can be computed in a post-processing manner, with relatively high accuracy, as outlined
in Table 1. The left-hand side of (2) is designated as the leftover term Ls(t) of a pseudor-
ange measurement:

Ls(t) = Fs(t) + es
r(t) + c(dr + dtr(t))

= Fs(t) + es
r(t) + c · dtrcv

(3)

Table 1. Corrections and models for pseudorange measurement.

Term Computation Method

ps
r(t) Measurements from the receiver

rs(t) IGS final precise orbits products
rr(t) RTK or RTK/INS positioning solutions
ξs

r(t) Absolute IGS phase center corrections (igs14.atx)
Is(t) Final solution of IGS combined GIMs
Ts(t) Saastamoinen model

ds TGD provided by navigation messages
dts(t) Clock biases of the satellites from navigation messages

δts,rel
stc (t) See Appendix A

δts,rel
clk (t) See Appendix B

Since dr and dtr(t) are produced by the GNSS receiver itself, dr remains constant under
a specific epoch t for different satellites. Furthermore, the same dtr(t) is also shared for
every satellite under a certain epoch t. Therefore, these two terms can be combined as a
single term, which is denoted as dtrcv.

3. Multipath/NLoS Bias Estimation Using a Clustering Algorithm

This section will elaborate on the method proposed by this research to estimate the
pseudorange biases caused by multipath/NLoS effects. First, two probability distributions
of leftover terms are generated, distinguishing between conditions with and without multi-
path/NLoS effects. These distinct distributions motivate the use of clustering algorithms
to classify the leftover terms affected by multipath/NLoS effects from those that are not.
Subsequently, we provide a detailed introduction to a density-based clustering algorithm,
namely DBSCAN, and explain its suitability for this task of identifying multipath/NLoS
events. Finally, this section illustrates the proposed procedure of utilizing DBSCAN for
multipath/NLoS estimation.

3.1. Statistical Characterization of the Leftover Terms

Analyzing Ls(t) as in (3), different components with specific features can be recognized:

1. The error contribution of the pseudorange measurement due to the multipath/NLoS
interference Fs(t) is usually different from one satellite to another. Furthermore, Fs(t)
is zero if a satellite is free from both multipath and NLoS interference.

2. The receiver noise es
r(t) is commonly characterized by a Gaussian distribution with

a zero mean and constant variance σ2 under multipath/NLoS-free conditions [19].
However, when multipath/NLoS effects occur, the receiver noise still follows a Gaus-
sian distribution with a zero mean and a different variance σ2

F [20].
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3. The user clock bias term dtrcv keeps the same value for every satellite for a certain epoch.

In both conditions, with and without multipath/NLoS effects, es
r(t) is relatively small

compared to Fs(t). Typically, in the absence of multipath/NLoS effects, the range error due
to receiver noise is in the order of ±1 m for a geodetic-quality receiver and antenna [21].
According to [20], the variance σ2

F increases by approximately two times compared to σ2

when multipath/NLoS effects occur. However, the ranging bias due to multipath can
reach up to about 70 m for GPS L1 C/A signals with one-chip early-to-late spacing [22].
Moreover, NLoS conditions may induce biases in pseudorange measurements spanning
several kilometers [3].

Given that dtrcv and Fs(t) are constant for a given epoch, the leftover term Ls(t)
for a specific satellite can be statistically modeled as Gaussian random variables in both
conditions, whether multipath/NLoS effects occur or not.

Ls(t) ∼
{
N

(
c · dtrcv, σ2) without multipath/NLoS

N
(
c · dtrcv + Fs(t), σ2

F
)

with multipath/NLoS
(4)

The proposed method in this research leverages the consistency checking principle
to detect and estimate the multipath/NLoS effects using leftover terms. This research
assumes that at least two satellites are free from the impact of multipath/NLoS effects,
which can cover most conditions according to the previous study [23]. Under this as-
sumption, Ls(t) without multipath/NLoS effects is expected to follow the distribution
N

(
c · dtrcv, σ2), forming a cluster whose size is controlled by es

r(t). On the other hand, Ls(t)
with multipath/NLoS effects should follow the distribution N

(
c · dtrcv + Fs(t), σ2

F
)
, exhibit-

ing a mean Fs(t). Given that Fs(t) is significantly larger than both σ and σF, the leftover
terms affected by multipath/NLoS will be separated from the cluster formed by leftover
terms without multipath/NLoS effects. However, it is unlikely that the leftover terms
impacted by multipath/NLoS can form a consistent cluster due to the distinct values of
Fs(t) for each satellite resulting from different reflection paths.

Based on the previous analysis, clustering algorithms can be utilized to identify
the largest cluster without multipath/NLoS, subsequently enabling the determination of
leftover terms affected by multipath/NLoS.

If the assumption is that at least two satellites are free from multipath/NLoS effects,
the method will be unable to form a cluster consisting of Ls(t) without multipath/NLoS.
Consequently, the multipath/NLoS estimation method will declare a failure rather than
providing an inaccurate estimate. Additionally, the clustering method may make it difficult
to identify small-value Fs(t) because the quantities are close to es

r(t). However, considering
the fact that, as previously recalled, es

r(t) is expected to range in the order of about ±1 m,
those Fs(t) values close to es

r(t) will only produce minor impact positioning errors due to
their small values. As a result, the main focus of this research is on those sufficiently large
values of Fs(t) that will induce detrimental loss of accuracy in the navigation solutions.

3.2. DBSCAN, a Clustering Algorithm for Multipath/NLoS Estimation

After having motivated the use of a clustering algorithm as a means to distinguish
the presence of multipath/NLOS effects, this section will introduce the specific clustering
algorithm, DBSCAN, employed in this work, discussing the parameter selection that makes
it suitable to accomplish the task.

DBSCAN is a minimum density level estimation that clusters data based on the density.
This algorithm first specifies two parameters:

1. minPts: the minimum number of points to form a cluster.
2. ε: the maximum distance between two points to consider them neighbors.

Then, every data point will be classified into three types:

1. Core points: the data points can find at least minPts neighbors within the radius ε.
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2. Non-core points (border points): within radius ε, the data points can find at least one
core point but have no more than minPts neighbors.

3. Outliers: the data points do not satisfy either the definition of core points or the one
of non-core points.

DBSCAN can be described using the flowchart in Figure 1. In the first step of DBSCAN,
the RangeQuery function is employed to identify all the neighbors of a specific point. This
function finds all the data points in DB whose distance to the current point p is closer than
ε. Here, dist is a function used to compute the distance between two data points.

For each point 𝑝𝑝 in 
database 𝐷𝐷𝐷𝐷

Neighbors 𝑁𝑁 ←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐷𝐷𝐷𝐷,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝, 𝜀𝜀)

Yes

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝  ← 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

If 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝 ≠ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

If 𝑁𝑁 < 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

𝑐𝑐 ← 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝) ← 𝑐𝑐

Seed set 𝑆𝑆 ← 𝑁𝑁\{𝑝𝑝}

For each 𝑞𝑞 in 𝑆𝑆

If 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝  ← 𝑐𝑐

If 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝 ≠ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

Neighbors 𝑁𝑁 ←
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐷𝐷𝐷𝐷,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝, 𝜀𝜀)

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝) ← 𝑐𝑐

If 𝑁𝑁 < 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

𝑆𝑆 ← 𝑆𝑆⋃𝑁𝑁

Input: 𝐷𝐷𝐷𝐷: Database
Input: 𝜀𝜀: Radius
Input: 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: Density threshold
Input: 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑: Distance function
Data: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙: Point labels, initially 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

No

Yes

No

Yes

No
Yes

No

Yes

No

Figure 1. Flowchart of the DBSCAN algorithm.

Upon identifying a core point, all its neighbors are assigned to the same cluster as
that core point. If any of these neighbors is itself a core point, the neighbors of this new
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core point are classified into the same cluster. This process is iterated until all data points
are clustered. Points that do not satisfy the aforementioned conditions are designated
as outliers.

DBSCAN is a suitable clustering solution to address the multipath/NLoS problem
since the parameter minPts establishes the minimum number of leftover terms Ls(t) needed
to confirm that they belong to the distribution N

(
c · dtrcv, σ2). Meanwhile, the receiver

noise es
r(t) acts as a reference for setting the parameter ε, thus controlling the boundary of

the cluster free from multipath/NLoS effects.

3.3. Implementation of Multipath/NLoS Estimation Based on DBSCAN

In total, four steps are involved in estimating the Fs(t) term. The fundamental concept
is to isolate c · dtrcv from Ls(t) for the pseudorange containing multipath/NLoS using the
DBSCAN algorithm.

In the initial step, all M leftover terms according to (2) for a certain epoch are computed:

Ls(t), s = 1, . . . , M (5)

The second step is detecting which leftover terms are affected by multipath/NLoS.
By setting the parameters ε, minPts, and dist, DBSCAN will analyze and identify clusters
that meet the specified parameter configuration. Let L̃s(t) be the leftover terms belonging
to the largest cluster assumed to represent the one free from multipath/NLoS effects.
The leftover terms not belonging to the largest cluster are determined to be affected by
multipath/NLoS effects.

Although such a condition is very rare, sometimes Ls(t) values with multipath/NLoS
effects from different satellites could be similar and, therefore, form a cluster. Considering
the low probability of different multipath/NLoS biases being similar to each other, selecting
the largest cluster further decreases the risk of incorrectly judging the multipath/NLoS-
free cluster.

The third step is to estimate dtrcv by computing the mean value of L̃s(t):

d̂trcv = mean
(

L̃s(t)
)

(6)

The final step is to estimate the biases on pesudorange measurements due to multi-
path/NLoS effects. According to (3), this estimation is completed by separating c · d̂trcv
from Ls(t) using the estimated d̂trcv obtained from the previous step.

F̂s(t) = Ls(t)− c · d̂trcv, ∀s out of the largest cluster (7)

4. Experiments
4.1. Static Experiment
4.1.1. Experimental Setup

A real-world experiment was carried out in a multipath scenario at the Metropolitan
City of Turin (Italy), as shown in Figure 2, to demonstrate the proposed method. A Leica
GS18 receiver gathered raw GNSS measurements of GPS L1 C/A signals at a rate of 10 Hz at
the position depicted in Figure 3. The antenna was fixed and static for the entire collection
process. Its position was georeferenced by means of an RTK solution, thus providing the
position ground truth for the test. It is important to highlight that, in order to ensure the
reliability of the ground truth, only the fixed RTK solutions were chosen and averaged to
derive the ground truth under the conditions affected by multipath/NLoS. The GNSS data
collection lasted for around 40 min. The skyplot with carrier-power-to-noise-density ratio
(C/N0) is provided in Figure 4. The receiver was deployed close to the buildings on the
east side of the road but kept a short distance away from the buildings on the west side.

To obtain the Ls(t) values of the pseudorange measurements, all the corrections
and models were computed according to Table 1. As far as the DBSCAN is concerned,
the minPts and ε parameters were set as 2 and 2 m, respectively. Given the limited satellite



Sensors 2024, 24, 2611 8 of 20

visibility in urban areas, minPts was set to 2 since at least 2 points are required to confirm
membership of the same cluster. For the parameter ε, it should represent the maximum
distance between two points within the same cluster. In our specific context, this maximum
distance of the distribution N

(
c · dtrcv, σ2) is dependent on the variance σ2, which is

associated with receiver noise (±1 m), and it is then set to 2 m.
DB in this research contains all the Ls(t) values, which are one-dimensional data.

Hence, dist is set to compute the absolute value of the difference between two Ls(t) values.

Figure 2. Surrounding buildings of data collection scenario.

© Copyright 
NavSAS 23

GNSS receiver

Figure 3. Location of GNSS antenna.
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Figure 4. Skyplot with corresponding signal C/N0.

4.1.2. Experimental Results of Multipath/NLoS Estimation

As an initial step, all the corrections and models listed in Table 1 were computed using
the library provided by RTKLIB [24]. Subsequently, the pseudorange leftover terms Ls(t)
for all epochs were calculated applying these corrections and models. Figure 5 depicts all
the Ls(t) values, which are marked in different colors to distinguish the corresponding
satellite pseudorandom noise. It can be seen that most Ls(t) values exhibit similar trends,
indicating they are influenced solely by c · dtrcv and es

r(t). Conversely, certain Ls(t) values
deviate from this trend, suggesting the presence of the large biases Fs(t) caused by multi-
path/NLoS effects. PRN 18 shows significantly different Ls(t) values compared to other
PRNs, indicating a high probability of suffering from multipath/NLoS effects. Based on
the skyplot in Figure 4 and the surroundings of the GNSS receiver in Figure 3, the reflected
signal for PRN 18 may be attributed to the building on the west side of the road.
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Figure 5. Computed leftover terms Ls(t) for GPS satellites.
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Then, Figure 6 shows all the L̃s(t) values in the largest cluster provided by DBSCAN,
together with their mean value estimated as c · d̂trcv.

𝑐 ∙ ෢𝑑𝑡rcv

Figure 6. Leftover terms in the largest cluster determined by DBSCAN and c · d̂trcv.

Given the estimated c · d̂trcv, the F̂s(t) values can be obtained for the leftover terms
not belonging to the largest cluster based on (7), and they are depicted in Figure 7. It can
be seen that positive values of F̂s(t) are observed more frequently than negative values,
consistent with the theoretical analysis in [2]. In fact, multipath can introduce both positive
and negative biases to pseudoranges, while NLoS tends to produce only positive biases.
Therefore, positive biases are more frequent.

0 500 1000 1500 2000 2500

Epoch

–40

–30

–20

–10

0

10

20

30

40

50

60

M
ul

tip
at

h/
N

Lo
S

 b
ia

s 
[m

]

 PRN 2
 PRN 7
 PRN 8
PRN 10
PRN 15
PRN 16
PRN 18
PRN 23
PRN 26
PRN 27

Figure 7. Estimated multipath/NLoS bias on pseudoranges.
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After obtaining the F̂s(t), it is necessary to prove the reliability of these estimates.
Since there are no ground truth values for pseudorange measurement, in this work, we
use a Generalized Least Squares (GLSs) positioning algorithm operating on pseudoranges
corrected for the estimated values of F̂s(t). Even if, as explained in the experimental setup,
a reliable ground truth for the position can be obtained, it is not straightforward to obtain
the ground truth for each pseudorange measurement since, in particular, a true value
for the receiver clock dtr(t) in (1) is not known. Only the estimated value is available,
and such estimates are affected by the presence of multipath/NLoS biases. For this reason,
to validate the accuracy of the estimated multipath/NLoS biases, we prove the effectiveness
of the method at the Position, Velocity, and Time level by comparing the accuracy of the
solution obtained using pseudoranges with and without the application of the correction
for the multipath/NLoS biases. Following this principle, new positioning results are
computed using a new GNSS dataset, which is generated by compensating for F̂s(t) in the
pseudorange measurements. This compensating action is conducted by subtracting the
estimated F̂s(t) from the corresponding pseudorange measurements.

Figure 8 compares positioning scatters with and without multipath/NLoS compen-
sation. Given that F̂s(t) is estimated from the leftover term, which contains ground truth
information, the scatter of positioning after multipath/NLoS compensation is concen-
trated around the true position with high accuracy. This indicates that the computed F̂s(t)
values closely approximate the actual pseudorange biases caused by multipath/NLoS
effects. Figure 9 shows the positioning error time series in both the horizontal and vertical
directions before and after the multipath/NLoS compensation. It is observed that the
positioning errors are smaller in magnitude than the estimated F̂s(t) for the dataset without
multipath/NLoS compensation. This occurs because the locations are computed based on
both the pseudorange measurements with and without multipath/NLoS effects. The pseu-
dorange measurements without multipath can provide accurate positioning information,
thereby mitigating the multipath/NLoS positioning accuracy degradation.

The Cumulative Distribution Functions (CDFs) of these positioning errors are provided
in Figure 10. The CDF illustrates the distribution of positioning errors, serving a crucial
role in assessing the enhanced positioning accuracy after multipath/NLoS compensation.
The 3D Root Mean Squared Error (RMSE) can be improved from 13.92 m to 3.01 m (reduced
by 78%) using the new dataset that compensates for multipath/NLoS biases.
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Figure 8. Positioning scatters before and after pseudorange multipath/NLoS compensation in the
horizontal plane.
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Figure 9. Positioning error time series before and after pseudorange multipath/NLoS compensation
in East, North, and Up directions.

Table 2 presents the horizontal and vertical errors (at the 95th percentile of the CDFs)
derived from the GNSS datasets both before and after the multipath/NLoS compensation.
The positioning solutions after the multipath/NLoS compensation in Figure 8 still contain
slight biases. However, these positioning results meet the standard accuracy performance
criteria for GPS, as outlined in [25].

Table 2. Horizontal and vertical positioning errors at 95th percentile of the CDFs.

Horizontal [m] Vertical [m]

Before Compensation 10.94 31.04
After Compensation 2.54 4.22
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Figure 10. CDFs of positioning errors before and after pseudorange multipath/NLoS compensation
in horizontal and vertical directions.

4.2. Dynamic Experiment
4.2.1. Experimental Setup

The dynamic experiment utilizes the UrbanNav dataset provided by Hong Kong
Polytechnic University [26]. The specific dataset used, named Odaiba, was collected within
the challenging urban canyons of Tokyo. This experiment focuses on single-frequency
GPS L1 C/A signals. The GNSS data were acquired at a rate of 10 Hz using Trimble
NetR9. The ground truth information was provided by the integration of RTK and INS,
offering an RMSE of 5 cm and a frequency of 10 Hz under the multipath/NLoS conditions.
The trajectory for the entire experiment is illustrated in Figure 11. It is important to note
that the experiment was carried out based on a segment of the entire trajectory featuring
strong multipath/NLoS interference.

The settings for DBSCAN totally inherit the parameters provided in Section 4.1.1.

Figure 11. Vehicle trajectory for the Odaiba dataset [27].
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4.2.2. Experimental Results of Multipath/NLoS Estimation

Figure 12 illustrates all the Ls(t) values for the pseudorange measurements computed
using the corrections and models outlined in Table 1. It is worth noting that, due to the
Trimble receiver’s relatively large clock bias and drift, the dominating factor in the Ls(t)
values is the term c · dtrcv. Consequently, the visual impact of Ls(t) values influenced
by multipath/NLoS effects may not be immediately apparent in Figure 12. However,
the DBSCAN algorithm is still able to recognize and segregate Ls(t) values affected by
multipath/NLoS effects. This is achieved by identifying deviations from the general trend
formed by Ls(t) values that are free from multipath/NLoS effects. This can be observed in
the magnified section of Figure 12.

Figure 12. Computed leftover terms Ls(t) for GPS satellites.

To mitigate the impact of clock bias and drift on visualization, the DBSCAN algorithm
is initially employed to identify Ls(t) values unaffected by multipath/NLoS effects within
the largest cluster. Subsequently, the time series of the estimated c · d̂trcv is computed by
averaging all the Ls(t) values within this cluster for each epoch. Figure 13 illustrates the
time series of Ls(t)− c · d̂trcv within the largest cluster. As per (3), Ls(t)− c · d̂trcv should
only be contributed by receiver noises for the cluster free from multipath/NLoS effects.
The majority of the values in Figure 13 fall within the ±2 m range, which has a similar level
to the receiver noise. This observation validates the analysis in Section 3.1, which further
shows the effectiveness of the DBSCAN algorithm.
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Figure 13. Ls(t)− c · d̂trcv in the largest cluster determined by DBSCAN.

Then, the F̂s(t) values can be separated from the leftover terms out of the largest
cluster based on (7). Figure 14 presents F̂s(t) for each satellite. It is observed that PRN 5
produced significant multipath/NLoS biases, reaching up to 120 m. This is more likely
caused by NLoS rather than multipath, considering that the maximum multipath bias for
GPS L1 C/A signals is estimated to be around 70 m, as discussed in the theoretical analysis
in [18].

Like the static dataset, a new GNSS dataset is generated by applying these F̂s(t) to
pseudorange measurements to evaluate the effectiveness of the estimated F̂s(t) values.
Subsequently, new positioning results are obtained using these adjusted pseudoranges.

Figure 15 shows a comparison of positioning trajectories with and without multi-
path/NLoS compensation. The positioning accuracy after the multipath/NLoS compen-
sation proves that these computed F̂s(t) values are close to the real pseudorange biases
caused by multipath/NLoS effects. Figure 16 illustrates the time series of positioning
errors in both the horizontal and vertical directions before and after the multipath/NLoS
compensation. The CDFs of these positioning errors are presented in Figure 17. The 3D
RMSE shows a significant improvement, decreasing from 26.0103 m to 5.5094 m (reduced
by 79%), using the new dataset that compensates for multipath/NLoS biases.
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Figure 14. Estimated multipath/NLoS bias on pseudorange.
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Figure 15. Positioning trajectory before and after pseudorange multipath/NLoS compensation in the
horizontal plane.



Sensors 2024, 24, 2611 17 of 20

0 500 1000 1500 2000 2500 3000 3500 4000
–40

–20

0

20

40

60

E
rr

or
 [m

]

Positioning error in E-direction

Before multipath/NLoS compensation
After multipath/NLoS compensation

0 500 1000 1500 2000 2500 3000 3500 4000
–40

–20

0

20

40

60

E
rr

or
 [m

]

Positioning error in N-direction

0 500 1000 1500 2000 2500 3000 3500 4000

Epoch

–40

–20

0

20

40

60

E
rr

or
 [m

]

Positioning error in U-direction

Figure 16. Positioning error time series before and after pseudorange multipath/NLoS compensation
in East, North, and Up directions.

Table 3 provides the horizontal and vertical errors, specifically the 95th percentile
of the CDFs, obtained from the GNSS datasets before and after the compensation for
multipath/NLoS effects.

Table 3. Horizontal and vertical positioning errors at 95th percentile of the CDFs.

Horizontal [m] Vertical [m]

Before Compensation 38.75 28.68
After Compensation 9.98 6.43
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Figure 17. CDFs of positioning errors before and after pseudorange multipath/NLoS compensation
in horizontal and vertical directions.

5. Conclusions

This study proposed a post-processing method to calculate the pseudorange biases
resulting from multipath/NLoS effects. Leveraging the physical models and corrections
from IGS, pseudorange leftover terms were computed. The application of the DBSCAN
algorithm facilitated the separation of the receiver clock parameters.

The novelty of this paper can be summarized in three key aspects. Firstly, the paper de-
fined a novel leftover term derived from insights into the pseudorange equation. Secondly,
through theoretical analysis, two probability models for this leftover term were established
under conditions with and without multipath/NLoS effects. The analysis demonstrates
that leftover terms without multipath/NLoS effects can form a cluster. Finally, the pa-
per proposed a post-processing procedure based on a clustering algorithm for estimating
multipath/NLoS biases.

The experimental results, derived from two real-world datasets in challenging GNSS
scenarios for both static and dynamic conditions, demonstrate the effectiveness of the
proposed method. Firstly, the successful estimation of receiver clock parameters d̂trcv
was achieved using the DBSCAN method. Secondly, the pseudorange biases due to mul-
tipath/NLoS effects were isolated from the leftover terms. Finally, compensating for
the estimated pseudorange biases in the measurement results in a significant improve-
ment in 3D positioning accuracy. The 3D positioning RMSE was reduced by 78% (from
13.9217 m to 3.0121 m) and by 79% (from 26.0103 m to 5.5094 m) for the static dataset and
dynamic dataset, respectively. The experimental results highlight the effectiveness of the
proposed method.

While the proposed method has demonstrated promising results, as outlined earlier,
its application is subject to certain limitations. For instance, in scenarios where the inter-
ference leading to multipath/NLoS effects is particularly strong, biases may affect all the
measurements. Under such extreme conditions, the clustering algorithm may fail as there
may be insufficient measurements unaffected by the influence of multipath/NLoS effects.

In the future, several aspects will be considered for extending the proposed mul-
tipath/NLoS estimation method, including its application to multi-constellation GNSS
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systems. Additionally, it would be valuable to explore the factors that influence the accuracy
of the clustering algorithms employed in this context.

Author Contributions: Conceptualization, Y.G.; methodology, Y.G.; software, Y.G.; validation, Y.G.,
S.Z., P.D. and F.D.; formal analysis, S.Z. and F.D.; resources, P.D.; data curation, P.D.; writing—original
draft preparation, Y.G.; writing—review and editing, S.Z. and F.D.; supervision, F.D. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Chinese Scholarship Council (grant code 202008310182).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The static GNSS data used in this research are available from Yihan
Guo (yihan.guo@polito.it) upon reasonable request; The dynamic GNSS data can be downloaded
from https://github.com/weisongwen/UrbanNavDataset (accessed on 25 October 2023).

Acknowledgments: Yihan Guo acknowledges the help from Shuyang Li (Department of Electron-
ics and Telecommunications, Politecnico di Torino, Turin, Italy) for the discussion regarding the
clustering algorithms.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Shapiro Effect Correction for δts,rel
stc (t)

Earth’s gravitational field causes the Shapiro effect, which results in a time delay for
GNSS signal propagation. The correction for the Shapiro effect can be compensated by

δts,rel
stc =

2µ

c3 ln
(
∥rs∥+ ∥rr∥+ ρs

r
∥rs∥+ ∥rr∥ − ρs

r

)
(A1)

where

• µ is the gravitational constant of Earth.

Appendix B. Relativistic Clock Correction for δts,rel
clk (t)

The relativity affects the satellite clock through both the satellite motion and the
unsteady gravitation field. Although the oscillator frequency of the satellite clock has been
intentionally offset to compensate for the relativistic effect, the elliptical satellite orbits
cause deviations to the set offset. The compensation due to the orbit eccentricity can be
calculated from

δts,rel
clk = − 2

c2
√

aµe sin E (A2)

• a is the orbit semimajor axis;
• e is the orbit eccentricity;
• E is the eccentric anomaly of the satellite.
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