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Abstract: Combining multiple devices for localization has important applications in the military
field. This paper exploits the land-based short-wave platforms and satellites for fusion localization.
The ionospheric reflection height error and satellite position errors have a great impact on the
short-wave localization and satellite localization accuracy, respectively. In this paper, an iterative
constrained weighted least squares (ICWLS) algorithm is proposed for these two kinds of errors.
The algorithm converts the nonconvex equation constraints to linear constraints using the results
of the previous iteration, thus ensuring convergence to the globally optimal solution. Simulation
results show that the localization accuracy of the algorithm can reach the corresponding Constrained
Cramér–Rao Lower Bound (CCRLB). Finally, the localization results of the two methods are fused
using Kalman filtering. Simulations show that the fused localization accuracy is improved compared
to the single-means localization.

Keywords: fusion result; short-wave localization; satellite localization; Kalman filtering

1. Introduction

Source localization has important applications in wireless sensor networks, radar,
navigation, and other fields [1–4]. Typical localization parameters include direction of
arrival (DOA), time difference of arrival (TDOA), frequency difference of arrival (FDOA),
and so on. Over-the-horizon (OTH) localization is very common for emitters such as
aircrafts and warships in the military field. For important military targets, it is very
necessary to utilize multiple means and multiple platforms to locate and surveillance them,
and the positioning accuracy is higher compared to single means. For targets such as
ships, the signals they send can usually be received by land-based shortwave stations as
well as satellites. Therefore, it is necessary to study accurate and effective multi-platform
localization algorithms [5].

For short-wave stations, the frequency range of the received signal is from 3 MHz
to 30 MHz, and the signal usually arrives at the observatory station after reflection from
the ionosphere. The state of the ionosphere has a great influence on the localization
results, so it is necessary to use an appropriate ionosphere model. Recently, TDOA-based
localization for short waves as a new method has attracted the interest of many scholars.
A mathematical solution for short-wave TDOA-based localization was proposed in the
study of Jain A [6]. Huang S [7] proposed a gradient-type algorithm based on the Quasi-
Parabolic (QP) ionosphere model. Although the QP model can describe the ionospheric
state more accurately and can give analytic equations for a ray path, it involves a number of
ionospheric parameters, which brings more errors. Although the ionospheric virtual height
(IVH) reflection model [8–10] is relatively simple, it contains the ionospheric reflection
height as the main parameter, which can accurately reflect the state of the ionosphere and
can effectively simplify the localization problem.

However, ionospheric reflection height errors can also have a significant impact on the
localization results, so the influence on the localization algorithm needs to be considered.
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The time-varying property of the ionosphere leads to a large error in the estimation of
the TDOA and thus low accuracy in TDOA-based localization for short-wave sources. In
contrast, DOA-based localization for short-wave emitters has gained maturity, and the
localization results are more stable. Wang [9] proposed a new algorithm for short-wave
sources using orthogonal triangular decomposition (QR decomposition) based on the IVH
model. The positioning accuracy of this algorithm can reach the corresponding Cramér–Rao
Lower Bound (CRLB).

In addition, satellite-based localization is a high-precision method that typically uti-
lizes the TDOA. A closed-form algorithm for TDOA-AOA hybrid localization was pro-
posed in [11] based on weighted least squares (WLS). Ref. [12] analyzes the effect of earth
constraints on multi-satellite localization and obtains the final result by weighting the
positioning results under different constraints through weighting coefficients. However,
the position of satellites is usually inaccurate due to orbital errors, altitude errors, and other
reasons [13]. Therefore, satellite position errors need to be considered in order to improve
the localization accuracy [14]. Ref. [15] corrects for satellite errors using the calibration
source and proposed a Lagrange algorithm. Ref. [16] proposed a moving horizon estima-
tion (MHE)-based technique to achieve source tracking using TDOA-FDOA measurements
from multiple satellites.

The surveillance of enemy warships is an important application in the military field,
which usually utilizes short waves or satellites for communication. Therefore, high-
precision positioning is of great significance. However, short-wave positioning is greatly
affected by ionospheric interference, while satellite positioning is affected by orbital errors.
Combining multiple platforms to localize important sources can effectively improve the
localization accuracy, which is a very effective means in practice. By combining land-
based short-wave stations with satellites for localization, a hybrid localization algorithm
based on a penalty function was proposed in [5]. But, Ref. [5] does not exploit the eleva-
tion information and does not consider the position errors of the satellite. Moreover, the
equation constraints in the localization optimization problem are nonconvex, and thus
the method can fall into a local optimal solution, which leads to a degradation of the
localization accuracy.

In this paper, an iterative constrained weighted least squares (ICWLS) algorithm is
proposed for sources such as warships transmitting multiple types of signals, which are
localized using land-based short-wave stations and satellites. By introducing auxiliary
variables, the DOA-based localization using short-wave stations and the TDOA-based
localization using satellites can be modeled as optimization problems with two quadratic
equation constraints, respectively. The quadratic nonconvex equation constraints are
linearized using the results of the previous iteration [17,18], which converts the nonconvex
constraints to linear constraints and ensures the algorithm can converge to the global
optimal solution. Due to the difference in auxiliary variables between the DOA pseudo-
linear equation and the TDOA pseudo-linear equation, a unified pseudo-linear equation
cannot be established. Therefore, it is proposed in this paper that the localization results of
the two methods are fused using Kalman filtering to improve the localization accuracy.

The mathematical symbols used in this paper and explanations are shown in Table 1.
This paper is organized as follows: Section 2 introduces the localization scenario and the
measurement model; Section 3 establishes the corresponding pseudo-linear equations;
Section 4 derives the Constrained CRLB (CCRLB); Section 5 gives the proposed localization
algorithms and the method for fusion; Section 6 shows the simulation results; and Section 7
is the conclusion.
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Table 1. Mathematical symbols and explanations.

Symbols Explanations

[·]T Matrix or vector transpose
[·]† Generalized inverses
[·]−1 The inverse of the matrix

trace(·) Traces of the matrix
E[·] Mathematical expectation

diag{·} Diagonal matrix
blkdiag{·} Chunked diagonal matrix

|| · ||2 Euclidean norm
< · >i The ith element of the vector

∏⊥[A]
Orthogonal projection matrix onto the

orthogonal subspace of range A
Rm×n Real matrices of size m × n

2. Measurement Models
2.1. Localization Scenario

We assume a total of N1 + N2 stations, including N1 land-based stations and N2 satel-
lites. These stations are used to locate the source on the Earth’s surface. The longitude and
latitude of the source are denoted as ωu,1 and ωu,2, respectively. The station is represented
by O1, O2, . . . , ON1 , ON1+1, . . . , ON1+N2 , where O1, O2, . . . , ON1 represents the land-based
stations and ON1+1, . . . , ON1+N2 represents satellites. The longitude and latitude of the
jth station are ωj,1 and ωj,2, 1 ≤ j ≤ N1 + N2, respectively. There is a ground station
for satellites, with a longitude and latitude of ωt,1 and ωt,2, respectively. Based on the
Earth ellipsoid model, (1) provides the transformation relationship between the geodetic
coordinate system [ω1, ω2, H]T (ω1 and ω2 denote the longitude and latitude, respectively,
and H is the altitude) and the space rectangular coordinate system [19]:x

y
z

 =

(α + H)cos(ω2)cos(ω1)
(α + H)cos(ω2)sin(ω1)((

1 − e2)+ H
)
sin(ω2)

 (1)

α = Re/
√

1 − (esin(ω1))
2, where Re = 6378.137 km is the radius of the Earth’s equator

and e =
√

1 − R2
p/R2

e denotes the eccentricity. Rp = 6356.752 km is the polar radius of the
Earth. Therefore, based on (1), the position vector of the land-based station and satellite

can be so
j =

[
so

j,x, so
j,y, so

j,z

]T
. The source position vector is represented as u =

[
ux, uy, uz

]T,

and the ground station position vector is t =
[
tx, ty, tz

]T. Since the source is located on the
Earth surface, u satisfies the following equation:

uTΛ1u − R2
e = 0 (2)

where Λ1 = diag
{

1, 1, 1/(1 − e2)
}

.

2.2. DOA Measurement Model for Land-Based Station

Figure 1 is the IVH model, which shows the short-wave signal sent by the source
reaching the land-based station after being reflected by the ionosphere. θo

i represents the
true value of the azimuth and φo

i is the true value of elevation. θo
i is defined as the angle

between the projection of the incidence direction on the surface plane and the local north
direction of the station. φo

i is defined as the angle between the incidence direction and the
surface plane of the station. ho

i is the ionosphere reflection height and Ro = 6371.393 km is
the average radius of the Earth.

Combining all position vectors of land-based stations yields: so
a = [

(
so

1
)T, (so

2)
T, . . . ,(

so
N1

)T
]T. The ionosphere reflection height is often difficult to measure accurately and is
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therefore usually modeled as measurements with errors: hi = ho
i + δhi, 1 ≤ i ≤ N1. The

reflection height measurement vector is thus given as h =
[
h1, h2, . . . , hN1

]T
= ho + nh,

and ho =
[

ho
1, ho

2, . . . , ho
N1

]T
denotes the true value of the ionosphere reflection height.

nh =
[
δh1, δh2, . . . , δhN1

]T denotes the measurement error, and its covariance matrix is
denoted as Qh.

o
i

𝑅௢

B

C

A

o
ih

o
i

1,1iO i N 

Ionosphere

Source

North

i

True pathVirtual signal path

Earth Center

Figure 1. IVH model.

In the local coordinate system of the station, the target coordinate vector u can be trans-
formed:

u
′
i =

 − sin(ωi,1) cos(ωi,1) 0
− cos(ωi,1) sin(ωi,2) − sin(ωi,1) sin(ωi,2) cos(ωi,2)
cos(ωi,1) cos(ωi,2) sin(ωi,1) cos(ωi,2) sin(ωi,2)

T

(u − so
i ) (3)

The origin of the local coordinate system is the station. Therefore, θo
i can be given as

θo
i = arctan

(
bT

i,1
(
u − so

i
)

bT
i,2
(
u − so

i
)) (4)

where bi,1 = [−sin(ωi,1), cos(ωi,1), 0]T, bi,2 = [−cos(ωi,1)sin(ωi,2),−sin(ωi,1)sin(ωi,2), cos(ωi,2)]
T.

According to (4), the true value vector of azimuth can be given as θo =
[
θo

1, θo
2, . . . , θo

N1

]T
.

In practice, there will be measurement noise, so the following measurement vector can be
obtained as:

θ =
[
θ1, θ2, . . . , θN1

]T
= θo + nθ ∈ RN1×1 (5)

where nθ =
[
δθ1, δθ2, ..., δθN1

]T
denotes the noise vector, which follows a zero-mean Gaus-

sian distribution, and the covariance matrix is Qθ = E
(
nθnT

θ

)
.

△ABC, based on the sine theorem, yields
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ho
i + Ro

sin
(
π/2 + φo

i
) =

Ro

sin
(
π −

(
π/2 + φo

i + βi
)) (6)

where βi = arcsin
( ||u−so

i ||2
2Ro

)
. (6) can be converted into

φo
i = arctan

((
Ro + ho

i
)
cos(βi)− Ro(

Ro + ho
i
)
sin(βi)

)
, 1 ≤ i ≤ N1 (7)

Based on (7), the true value vector of the elevation angle is expressed as

φo =
[

φo
1, φo

2, . . . , φo
N1

]T
, and further, the measurement vector is given as

φ =
[
φ1, φ2, . . . , φN1

]T
= φo + nφ ∈ RN1×1 (8)

nφ =
[
δφ1, δφ2, . . . , δφN1

]T denotes the elevation noise vector, and the covariance matrix of
nφ is Qφ.

Combining (5) and (8) gives the DOA measurement model for land-based stations as

z =
[
θT,φT

]T
= zo + na (9)

where zo =
[
(θo)T, (φo)T

]T
and na =

[
nT

θ , nT
φ

]T
. The covariance matrix of na is

Qa = blkdiag
{

Qθ, Qφ

}
.

2.3. TDOA Measurement Model for Land-Based Station

The signals emitted by the source are forwarded by satellites to the ground station,
which receives the signals sent by all the satellites and can obtain the TDOAs. Figure 2
shows the schematic diagram of the satellite forwarding the signal to the ground station.

1 2,2N iO i N  

Source
Earth Surface

Earth Center

oR

Ground
Station

SatelliteSatellite 1 1NO 

Figure 2. Schematic diagram of a satellite relaying the source signal.

Satellites are in high-speed motion and thus the positions are also in error, so the
satellite positions are modeled as measurements with errors: sN1+j = so

N1+j + δsN1+j,

1 ≤ j ≤ N2 , δsN1+j = [δsN1+j,x, δsN1+j,y, δsN1+j,z]
T is the random error. Thus, the satellite
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position vector is obtained as st = so
t + ns, where so

t =
[
(so

N1+1)
T, (so

N1+2)
T, ..., (so

N1+N2
)T
]T

.

ns =
[
(δsN1+1)

T(δsN1+2)
T, ..., (δsN1+N2)

T
]T

with the covariance matrix Qs.
From Figure 2, the propagation length can be expressed as

ro
j = ||u − so

N1+j||2 + ||so
N1+j − t||2, 1 ≤ j ≤ N2 (10)

Taking the first satellite as the reference satellite, the TDOA can be obtained as

τo
i1 =

1
c
(ro

i − ro
1), 2 ≤ i ≤ N2 (11)

where c is the signal propagation velocity and is a known constant. Thus, the TDOA shown
in (11) can be converted to the range difference of arrival (RDOA) shown in (12):

ro
i1 = ||u − so

N1+i||2 − ||u − so
N1+1||2 + ||so

N1+i − t||2 − ||so
N1+1 − t||2, 2 ≤ i ≤ N2 (12)

The measurement vector of RDOA is denoted as

r =
[
r21, r31, ..., rN21

]T
= ro + nr ∈ R(N2−1)×1 (13)

where nr =
[
δr21, δr31, ..., δrN21

]T
is the measurement noise with the covariance matrix Qr .

3. Pseudo-Linear Equation
3.1. DOA Pseudo-Linear Equation for Land-Based Station

The linear equation of azimuth is first established. Based on (4), we have

sin(θo
i )b

T
i,2(u − so

i ) = cos(θo
i )b

T
i,1(u − so

i ), 1 ≤ i ≤ N1 (14)

Simplifying (14) gives(
sin(θo

i )bi,2 − cos(θo
i )bi,1

)Tu =
(
sin(θo

i )bi,2 − cos(θo
i )bi,1

)Tso
i , 1 ≤ i ≤ N1 (15)

Combining (15) of all land-based stations obtains

Go
θu = yo

θ (16)

where

Go
θ =



(
sin(θo

1)b1,2 − cos(θo
1)b1,1

)T(
sin(θo

2)b2,2 − cos(θo
2)b2,1

)T

...(
sin(θo

N1
)bN1,2 − cos(θo

N1
)bN1,1

)T

 ∈ RN1×3 (17)

yo
θ =



(
sin(θo

1)b1,2 − cos(θo
1)b1,1

)Tso
1(

sin(θo
2)b2,2 − cos(θo

2)b2,1
)Tso

2
...(

sin(θo
N1
)bN1,2 − cos(θo

N1
)bN1,1

)T
so

N1

 ∈ RN1×1 (18)

Converting (7) gives

(Ro + ho
i ) sin(βi) sin(φo

i ) = ((Ro + ho
i ) cos(βi)− Ro) cos(φo

i ) (19)
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Substituting βi into (19) yields

(Ro + ho
i ) sin(φo

i )||u − so
i ||2 + 2R2

o cos(φo
i ) = (Ro + ho

i ) cos(φo
i )
√

4R2
o − ||u − so

i ||22 (20)

Squaring and simplifying both sides of (20) simultaneously yields

ci,1||u − so
i ||22 + ci,2||u − so

i ||2 + ci,3 = 0 (21)

where ci,1 =
(

Ro + ho
i
)2, ci,2 = 2R2

o
(

Ro + ho
i
)

sin
(
2φo

i
)

, and ci,3 = −4R2
o

((
ho

i
)2

+ 2Roho
i

)
(
cos
(

φo
i
))2.

(21) is a quadratic equation about ||u − so
i ||2. Appendix A proves that ||u − so

i ||2 is the
only positive root of the equation shown in (21). Therefore, we have

ci,4 =

√
c2

i,2 − 4ci,1ci,3 − ci,2

2ci,1
= ||u − so

i ||2 (22)

Squaring both sides of (22) simultaneously yields

2soT
i u − ||u||22 = ||so

i ||22 − c2
i,4, 1 ≤ i ≤ N1 (23)

The pseudo-linear equation for elevation is obtained as follows:

Go
φηo

a = yo
φ (24)

where

Go
φ =


2
(
so

1
)T −1

2(so
2)

T −1
...

...

2
(

so
N1

)T
−1

 ∈ RN1×4, yo
φ =


||so

1||22 − c2
1,4

||so
2||22 − c2

2,4
...

||so
N1
||22 − c2

N1

 ∈ RN1×1 (25)

ηo
a =

[
u

||u||22

]
∈ R4×1 (26)

Combining (16) and (24) yields the DOA pseudo-linear equation as

Go
aηo

a = yo
a (27)

where

Go
a =

[
Go

θ 0N1×1
Go

φ

]
∈ R2N1×4, yo

a =

[
yo

θ
yo

φ

]
∈ R2N1×1, ηo

a =

[
u

||u||22

]
∈ R4×1 (28)

In (27), ||u||22 is the auxiliary variable. ηo
a satisfies the following equation:

(ηo
a)

T
Λ̃2ηo

a + γT
1 ηo

a = 0 (29)

where Λ̃2 = diag{1, 1, 1, 0} and γ1 = [0, 0, 0,−1]T.

3.2. TDOA Pseudo-Linear Equation for Satellite

Let go
i = ro

i1 − ||so
N1+i − t||2 + ||so

N1+1 − t||2. Shifting the terms and squaring both
sides simultaneously of (10) yields(

go
i + ||u − so

N1+1||2
)2

= ||u − so
N1+i||22, 2 ≤ i ≤ N2 (30)
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Expanding and simplifying (30) yields

2
(

so
N1+i − so

N1+1

)T
u + 2go

i ||u − so
N1+1||2 =

(
so

N1+i

)T
so

N1+i −
(

so
N1+1

)T
so

N1+1 − (go
i )

2 (31)

Therefore, the pseudo-linear equation for the satellite can be given as

Go
t ηo

t = ho
t (32)

where

Go
t =



2
(

so
N1+2 − so

N1+1

)T
2go

2

2
(

so
N1+3 − so

N1+1

)T
2go

3
...

...

2
(

so
N1+N2

− so
N1+1

)T
2go

N2


∈ R(N2−1)×4 (33)

ho
t =


soT

N1+2so
N1+2 − soT

N1+1so
N1+1 − (go

2)
2

soT
N1+3so

N1+3 − soT
N1+1so

N1+1 −
(

go
3
)2

...

soT
N1+N2

so
N1+N2

− soT
N1+1so

N1+1 −
(

go
N2

)2

 ∈ R(N2−1)×1 (34)

ηo
t =

[
u

||u − so
N1+1||2

]
∈ R4×1 (35)

In (35), ||u − so
N1+1||2 is similarly an introduced auxiliary variable. And, ηo

t satisfies

(ηo
t )

T
Λ̃3ηo

t + 2
[
−
(

so
N1+1

)T
, 0
]

ηo
t = −

(
so

N1+1

)T
so

N1+1 (36)

where Λ̃3 = diag{1, 1, 1,−1}.

Remark 1. Any two equations having the form (27) and (32) can be combined into one equation by
expanding the matrix dimension. However, this is a simple stacking of matrices and vectors and does
not take advantage of the connection between the two. Since the auxiliary variables utilized in (27)
and (32) are different, the unknown variables in the two equations are also different. Thus, it is not
possible to directly combine (27) and (32) into one equation. Although it is possible to combine (27)
and (32) to obtain an equation, the combination of the two equations is a simple matrix combination
that does not take advantage of the connection between the two equations.

4. CCRLB

The CRLB gives the theoretical lower bound that unbiased estimation can achieve,
and the CRLB can be given by the inverse of the Fisher information matrix (FIM).

4.1. CCRLB for Land-Based Station

Under the Gaussian noise assumption, the log-likelihood function of zo with respect

to ξ1 =
[
uT, (ho)T

]T
can be expressed as [20,21]

ln(p{zo|ξ1}) = λa −
1
2
(z − zo)TQ−1

z (z − zo)− 1
2
(h − ho)TQ−1

h (h − ho) (37)

λa is a constant. The corresponding FIM is denoted as

FIMDOA = E

(
∂ ln(p{zo|ξ1})

∂ξ1

∂ ln(p{zo|ξ1})
∂ξT

1

)
=

 FDOA
1 FDOA

2(
FDOA

2

)T
FDOA

3

 (38)
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where 
FDOA

1 =
(
∂zo/∂uT)TQ−1

z
(
∂zo/∂uT)

FDOA
2 =

(
∂zo/∂uT)TQ−1

z

(
∂zo/∂(ho)T

)
FDOA

3 =
(

∂zo/∂(ho)T
)T

Q−1
z

(
∂zo/∂(ho)T

)
+ Q−1

h

(39)

The CRLB for DOA-based localization can be given as

CRLBDOA = (FIMDOA)
−1 =

 XDOA
1 XDOA

2(
XDOA

2

)T
XDOA

3

 (40)

where XDOA
1 ∈ R3×3 gives the CRLB for source localization.

Since the source position vector satisfies (2), the CCRLB with the source constraint can
be expressed as [9]

CCRLBDOA = CRLBDOA − CRLBDOAΛ̃
(

Λ̃
TCRLBDOAΛ̃

)−1
Λ̃

TCRLBDOA (41)

where Λ̃ = [Λ1u]T.

4.2. CCRLB for Satellite

In the presence of errors in the satellite position, the TDOA-based log-likelihood
function can be expressed as

ln(p{ro|ξ2}) = λt −
1
2
(r − ro)TQ−1

r (r − ro)− 1
2
(st − so

t )
TQ−1

s (st − so
t ) (42)

λt is also a constant and ξ2 =
[
uT, (so

t )
T
]T

.
The FIM can be given as

FIMTDOA =

 FTDOA
1 FTDOA

2(
FTDOA

2

)T
FTDOA

3

 (43)

where 
FTDOA

1 =
(
∂ro/∂uT)TQ−1

r
(
∂ro/∂uT)

FTDOA
2 =

(
∂ro/∂uT)TQ−1

r

(
∂ro/∂(so

t )
T
)

FTDOA
3 =

(
∂ro/∂(so

t )
T
)T

Q−1
r

(
∂ro/∂(so

t )
T
)
+ Q−1

s

(44)

The CRLB for TDOA-based localization is obtained as

CRLBTDOA = (FIMTDOA)
−1 =

 XTDOA
1 XTDOA

2(
XTDOA

2

)T
XTDOA

3

 (45)

where XTDOA
1 ∈ R3×3.

And, the CCRLB can be given as

CCRLBTDOA = CRLBTDOA − CRLBTDOAΛ̃
(

Λ̃
TCRLBTDOAΛ̃

)−1
Λ̃

TCRLBTDOA (46)
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4.3. CCRLB for DOA-TDOA Hybrid Localization

Define the unknown vector ξ =
[
uT, (ho)T, (so

t )
T
]T

and the measurement vector is

z = zo + n. zo =
[
(θo)T, (φo)T, (ro)T

]T
. The covariance matrix of n is Qz. The FIM of

hybrid localization can be given as

FIM =

 F1 F2 F3

(F2)
T F4 F5

(F3)
T (F5)

T F6

 (47)

where 

F1 =
(
∂zo/∂uT)TQ−1

z
(
∂zo/∂uT)

F2 =
(
∂zo/∂uT)TQ−1

z

(
∂zo/∂(ho

t )
T
)

F3 =
(

∂zo/∂(uo)T
)T

Q−1
z

(
∂zo/∂(so

t )
T
)

F4 =
(

∂zo/∂(ho)T
)T

Q−1
z

(
∂zo/∂(ho)T

)
+ Q−1

h

F5 =
(

∂zo/∂(ho)T
)T

Q−1
z

(
∂zo/∂(so

t )
T
)

F6 =
(

∂zo/∂(so
t )

T
)T

Q−1
z

(
∂ro/∂(so

t )
T
)
+ Q−1

s

(48)

Therefore, the CRLB and CCRLB can be expressed as

CRLB = FIM−1 =

 F1 F2 F3

(F2)
T F4 F5

(F3)
T (F5)

T F6


−1

(49)

CCRLB = CRLB − CRLBΛ
(

Λ
TCRLBΛ

)−1
Λ

TCRLB (50)

where Λ = blkdiag
(

Λ̃, 0(N1+3N2)×(N1+3N2)

)
.

5. Proposed Method
5.1. Proposed Method for Land-Based Station
5.1.1. Localization Method for Land-Based Station

Since in the practical process, only the measurement with errors is available, the
following error equation can be established:

εa = ya − Gaηa (51)

Substituting the measurements with errors into (25) gives ya and Ga. Performing
first-order Taylor expansion for ya and Ga yields{

ya ≈ yo
a + A1na + A2nh

Ga ≈ Go
a + ∑2N1

d1=1 < z>d1 B1,d1 + ∑N1
d2=1 < h>d2 B2,d2

(52)

where A1 =
∂ya
∂zT , B1,d1 = ∂Ga

∂<z>d1
, 1 ≤ d1 ≤ 2N1

A2 =
∂ya
∂hT B2,d2 = ∂Ga

∂<h>d2
, 1 ≤ d2 ≤ N1

(53)

Substituting (52) into (51) yields

C1 =
(

A1 −
[
B1,1ηa, B1,2ηa, ..., B1,2N1 ηa

])
∈ R2N1×2N1

C2 =
(

A2 −
[
B2,1ηa, B2,2ηa, ..., B2,N1 ηa

])
∈ R2N1×N1

(54)
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Therefore, the DOA localization problem for land-based stations can be modeled as
min

ηa
Ja(ηa) = (ya − Gaηa)

TW a(ya − Gaηa)

s.t. uTu − ||u||22= 0

uTΛ1u = R2
e

(55)

W a is the weighted matrix, which is defined as

W a =
(

E[εaεT
a]
)−1

=
(

C1QaCT
1 + C2QhCT

2

)−1
(56)

As can be seen from (55), the cost function is convex and the equation constraints are
nonconvex. The equation constraints are written in matrix form as

Daηa = da (57)

where

Da =

[
uT −1

uTΛ1 0

]
, da =

[
0

R2
e

]
(58)

Da is related to u, so the estimate of u can be substituted into Da to obtain Dk
a during

the iteration process. Ja(ηa) in (55) can be expressed as

Ja(ηa) = yT
a W aya − 2yT

a W aGaηa + ηT
a GT

a W aGaηa (59)

yT
a W aya is a constant with respect to ηa. Therefore, substituting the results of the kth

iteration into (57), (55) can be converted to{
min

ηa
Ja(ηa) = ηT

a G̃aηa − 2ỹT
a ηa

s.t. Dk
aηa = dk

a

(60)

where G̃a = GT
a W aGa and ỹa = GT

a W aya. k is the iteration number. Dk
a and dk

a can be
obtained by substituting the kth iteration result uk

a into (58).
As can be seen in (60), the cost function is still convex. However, by using the results

of the previous iteration, the nonconvex quadratic equation constraints can be converted to
linear constraints, which can ensure that the algorithm converges to the globally optimal
solution. Thereby, the optimal solution of (60) is [17,22]:

η̃k
a =

(
Dk

a

)†
dk

a + Pk
aζk

a (61)

where ζk
a =

(
Pk

aG̃k
aPk

a

)†
Pk

a

(
ỹk

a − G̃k
a

(
Dk

a

)†
dk

a

)
and Pk

a = I −
(

Dk
a

)†
Dk

a.

Therefore, the iteration results can be updated by Equation (62):

η̂k+1
a = κaη̂k

a + (1 − κa)η̃
k
a (62)

0 < κa < 1 denotes the weighting factor.
The initial estimation can usually be obtained by making W a = Q−1

z and then obtain-

ing an initial estimation based on η̂0
a =

(
GT

a W aGa

)−1
GT

a W aya .
The DOA localization algorithm for land-based stations is summarized in Table 2.
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Table 2. Summary of land-based localization.

Step 1: Set k = 0 and choose appropriate δa > 0 and κa. Let W a = Q−1
z to obtain the initial result;

Step 2: Set k = k + 1. Substituting η̂k−1
a and ûk−1

a into (56) and (58) yields W k−1
a , Dk−1

a , and dk−1
a ;

Step 3: Calculate η̃k
a based on (61) and update the iteration result by (62);

Step 4: If

||η̂k
a − η̂k−1

a ||2/||η̂k
a||2 < δa (63)

Stop the iteration and output η̂a = η̂k
a. If not, go to Step 2.

5.1.2. Covariance Matrix of DOA Result

The DOA localization error is defined as η̂a. Thus, ∆ηa = η̂a − ηo
a is the optimal

solution to the following problem:
min
∆ηa

(Ga∆ηa − εa)
TW a(Ga∆ηa − εa)

s.t. (∆ηa)
TΛ̃1ηo

a = 0

(∆ηa)
T(2Λ̃2ηo

a + γ1
)
= 0

(64)

where Λ̃1 = blkdiag(Λ1, 0). The constraints in (64) are derived from (2) and (29), respectively.
∆ηa can be represented as [5]

∆ηa =

(
I4 − G̃−1

a Ψa

(
ΨT

a G̃−1
a Ψa

)−1
ΨT

a

)
G̃−1

a GT
a W aεa (65)

where Ψa =
[
ψa1, ψa2

]
=
[
Λ̃1ηo

a, 2Λ̃2ηo
a + γ1

]
.

The covariance matrix of ∆ηa is expressed as

cov(∆ηa) = G̃−1/2
a

(
Π⊥
[

G̃−1/2
a Ψa

])
G̃−1/2

a (66)

The covariance matrix of the source estimate can be obtained as

cov(ûa) = [I3, 03×1]G̃
−1/2
a

(
Π⊥
[

G̃−1/2
a Ψa

])
G̃−1/2

a [I3, 03×1]
T (67)

5.1.3. Computational Complexity of Land-Based Localization

Table 3 gives the number of multiplications required for some elements.

Table 3. Computational complexity of land-based localization.

Computational Element Computational Complexity

Go
a 3N1 + 4N1

yo
a 2N1

η̂0
a 8N2

1 + 32N1 + O
(
43)

W k
a and

(
W k

a

)−1
2(2N1)

3 + 6N3
1 + O

(
(2N1)

3
)

G̃k
a 16N2

1 + 32N1

ỹk
a 8(2N1)

2

Pk
a 32 + O

(
23)

ζk
a 280 + O

(
23)+ O

(
43)

η̂k
a 56 + O

(
23)

cov(ûa) 276 + O
(
23)

5.2. Proposed Method for Satellite
5.2.1. Localization Method for Satellite

Substituting the measurements into (32) gives
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εt = yt − Gtηt (68)

Performing the first-order Taylor expansion of yt and Gt gives{
yt ≈ yo

t + A3nr + A4ns

Gt ≈ Go
t + ∑N2−1

d1=1 < r>d1 B3,d1 + ∑3N2
d2=1 < st>d2 B4,d2

(69)

where A3 =
∂yt
∂rT , B3,d1 = ∂Gt

∂<r>d1
, 1 ≤ d1 ≤ N2 − 1

A4 =
∂yt
∂sT

t
B4,d2 = ∂Gt

∂<st>d2
, 1 ≤ d2 ≤ 3N2

(70)

Substituting (69) into (68) gives

C3 =
(

A3 −
[
B3,1ηt, B3,2ηt, ..., B3,N1−1ηt

])
∈ R(N2−1)×(N2−1)

C4 =
(

A4 −
[
B4,1ηt, B4,2ηt, ..., B4,3N2 ηt

])
∈ R(N2−1)×3N2

(71)

Therefore, the TDOA localization for the satellite can be modeled as
min

ηt
Jt(ηt) = (yt − Gtηt)

TW t(yt − Gtηt)

s.t.
(

u − so
N1+1

)T
u − ||u − so

N1+1||22=
(

u − so
N1+1

)T
so

N1+1

uTΛ1u = R2
e

(72)

W t is defined as

W t =
(

C3QrCT
3 + C4QsCT

4

)−1
(73)

Similarly, to ensure that the algorithm converges to the global optimal, a transforma-
tion of the nonconvex equality constraint is required. Writing the two equality constraints
in matrix form gives

Dtηt = dt (74)

where

Dt =

[(
u − so

N1+1

)T
||u − so

N1+1||2
uTΛ1 0

]
, dt =

[(
u − so

N1+1

)T
so

N1+1

R2
e

]
(75)

Substituting the results of the dth iteration into (72) gives{
min

ηt
Jt(ηt) = ηT

t G̃tηt − 2ỹT
t ηt

s.t. Dk
t ηt = dk

t

(76)

where G̃t = GT
t W tGt and ỹt = GT

t W tyt.
The optimal solution of (76) is expressed as

η̃k
t =

(
Dk

t

)†
dk

t + Pk
t ζk

t (77)

where ζk
t =

(
Pk

t G̃k
t Pk

t

)†
Pk

t

(
ỹk

t − G̃k
t

(
Dk

t

)†
dk

t

)
and Pk

t = I −
(

Dk
t

)†
Dk

t .

The k + 1th iteration result is obtained by the following equation:

η̂k+1
t = κtη̂

k
t + (1 − κt)η̃

k
t (78)

where 0 ≤ κt ≤ 1.
In summary, the TDOA localization algorithm for satellites is summarized in Table 4.
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Table 4. Summary of satellite-based localization.

Step 1: Set k = 0 and choose appropriate δt > 0 and κt. Let W t = Q−1
r to obtain the initial result;

Step 2: Set k = k + 1. Substituting η̂k−1
t and ûk−1

t into (73) and (75) yields W k−1
t , Dk−1

t , and dk−1
t ,

respectively;
Step 3: Calculate η̃k

t based on (77) and update the iteration result by (78);
Step 4: If

||η̂k
t − η̂k−1

t ||2/||η̂k
t ||2 < δt (79)

Stop the iteration and output η̂t = η̂k
t . If not, go to Step 2.

5.2.2. Covariance Matrix of TDOA Result

Define the TDOA estimation error as ∆ηt = η̂t − ηo
t . Therefore, ∆ηt is the optimal

solution to the following problem:
min
∆ηt

(Gt∆ηt − εt)
TW t(Gt∆ηt − εt)

s.t. (∆ηt)
TΛ̃1ηo

t = 0

(∆ηt)
T
(

2Λ̃3ηo
t + 2

[
−
(

so
N1+1

)T
, 0
])

= 0

(80)

∆ηt is defined as

∆ηt =

(
I4 − G̃−1

t Ψt

(
ΨT

t G̃−1
t Ψt

)−1
ΨT

t

)
G̃−1

t GT
t W tεt (81)

where Ψt =
[
ψt1, ψt2

]
=

[
Λ̃1ηo

t , 2Λ̃3ηo
t + 2

[
−
(

so
N1+1

)T
, 0
]]

.

The covariance matrix of ∆ηt can be given as

cov(∆ηt) = G̃−1/2
t

(
Π⊥
[

G̃−1/2
t Ψt

])
G̃−1/2

t (82)

Therefore, the covariance matrix of the source estimate is

cov(ût) = [I3, 03×1]G̃
−1/2
t

(
Π⊥
[

G̃−1/2
t Ψt

])
G̃−1/2

t [I3, 03×1]
T (83)

5.2.3. Computational Complexity of Satellite-Based Localization

Table 5 gives the number of multiplications required for some elements.

5.3. Localization Result Fusion

ûa and ût are asymptotically unbiased estimates which, respectively, obey the follow-
ing distribution:

ûa ∼ N(u, cov(ûa)), ût ∼ N(u, cov(ût)) (84)

Based on Kalman filtering [23], the DOA-based localization results and TDOA-based
localization results can be fused to obtain

û = ûa + K(ûa − ût) (85)

where K denotes the Kalman gain, which is defined as [24,25]

K =
trace(cov(ûa))

trace(cov(ûa)) + trace(cov(ût))
(86)

The details of the proposed method are given in Figure 3. The computational com-
plexity of the proposed method can be obtained by combining Tables 3 and 5, although



Sensors 2024, 24, 2628 15 of 22

the proposed method has an increased computational complexity compared to land-based
localization or satellite-based localization. However, since N1 and N2 are both small, the
increase in computation is acceptable.

Table 5. Computational complexity of satellite-based localization.

Computational Element Computational Complexity

Go
t 4(N2 − 1)

yo
t N2 − 1

η̂0
t 8(N2 − 1)2 + 32(N2 − 1) + O

(
43)

W k
t and

(
W k

t

)−1 (3N2 + 2)(N2 − 1)2 + (3N2)
2(N2 − 1) +

O
(
(N2 − 1)3

)
G̃k

t 4(N2 − 1)2 + 16(N2 − 1)
ỹk

t 4(N2 − 1)2 + 4(N2 − 1)
Pk

t 32 + O
(
23)

ζk
t 280 + O

(
23)+ O

(
43)

η̂k
t 56 + O

(
23)

cov(ût) 276 + O
(
23)

Figure 3. Block diagram for the proposed method.

6. Simulation

Simulations are set up with a total of 10 observation stations, including 5 land-based
stations and 5 satellites. The longitude and latitude of the land-based station and the
corresponding ionospheric reflection heights are shown in Table 6. The longitude and
latitude of the satellite and its altitude are shown in Table 7. The ground station is located
at (110.3◦ E, 25.7◦ N). The source longitude and latitude are (126◦ E, 37◦ N), respectively.

Remark 2. The main application scenario of this paper is the military field, and the targets are
mainly military targets such as warships. In addition, limited to the current level of the authors, no
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publicly available short-wave dataset has been found. The method proposed in this paper can not
be tested on public datasets. Therefore, this paper uses simulation to verify the performance of the
proposed method.

Assuming that the noise between each parameter is uncorrelated, the covariance
matrix can be set as Qθ = σ2

θ IN1 , Qφ = σ2
φIN1 , Qh = σ2

h IN1 , Qs = σ2
s I3N2 , Qr = σ2

r RN2−1,
where RN2−1 denotes the (N2 − 1)× (N2 − 1) matrix with a diagonal element of 1 and the
rest of the elements are 0.5.

Table 6. Longitude and latitude (E: east, N: north) and the corresponding ionospheric reflection
height for land-based stations.

Station 1 2 3 4 5

Longitude 119.27◦ E 114.03◦ E 114.54◦ E 112.54◦ E 116.00◦ E
Latitude 26.05◦ N 30.58◦ N 38.04◦ N 33.00◦ N 29.71◦ N

Reflection height 365.00 385.00 350.00 390.00 370.00

Table 7. Longitude and latitude (E: east, N: north) and the corresponding altitude for satellites.

Satellite 1 2 3 4 5

Longitude 124.32◦ E 118.35◦ E 120.87◦ E 116.56◦ E 122.54◦ E
Latitude 30.57◦ N 29.19◦ N 32.65◦ N 27.32◦ N 29.62◦ N

Altitude (km) 1000.00 1000.00 1200.00 1200.00 1200.00

The root mean square error (RMSE) is used as the localization accuracy criterion and
is defined as follows:

RMSE(ûa) =

√
∑M

j=1 ||ûa − u||22
M

, RMSE(ût) =

√
∑M

j=1 ||ût − u||22
M

(87)

where M denotes the number of Monte Carlo experiments. Set δa = δt = 10−6, κa = 0.9k,
and κt = 0.9k, where k denotes the number of iterations. The maximum number of iterations
is set to 50.

6.1. Error Ellipse

Set σθ = 0.5◦, σφ = 0.75◦, σh = 2 km, σr = 0.5 km, and σs = 1.5 km. The localization
results and the corresponding uncertainty error ellipses are given in Figure 4 , with ellipse
probabilities of 0.5 and 0.9, respectively.

As can be seen from Figure 4, the localization results are consistent with the ellipse,
proving the effectiveness of the proposed ICWLS algorithm. In addition, the ellipse area of
the fusion result is smaller compared to the single-method localization, which demonstrates
that the fusion method improves the localization accuracy.

6.2. Localization Accuracy

This subsection simulates the localization accuracy of the proposed algorithm under
the influence of different errors. Set σθ = 0.2σ1, σφ = 0.3σ1, and σr = 0.3σ1, where σ1 is
the localization parameter error. Let σh = 0.5σ2 and σs = 0.2σ2, where σ2 is the systematic
error parameter.

Remark 3. The effects of the signal-noise ratio (SNR) and propagation channel will ultimately
affect the estimation accuracy of the DOA and TDOA. Therefore, the error parameters σ1 and σ2
can ultimately reflect the individual errors. This paper focuses on the localization algorithm and
thus mainly simulates the effect of the DOA error and TDOA error on the positioning accuracy.
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(a) X–Y plane (b) X–Y plane enlarged

(c) X–Z plane (d) X–Z plane enlarged

(e) Y–Z plane (f) Y–Z plane enlarged

Figure 4. Localization results and uncertainty error ellipses.

Firstly, set σh = 3 km and σs = 2 km and simulate the localization accuracy with σ1.
Figure 5 is the localization result. Then, let σθ = 1.5◦, σφ = 2.25◦, and σr = 0.5 km, and
Figure 6 is the corresponding result.

From Figures 5 and 6, the positioning accuracy of the proposed ICWLS algorithm for
land-based DOA localization and satellite TDOA localization can reach the corresponding
CCRLB. In addition, it can be seen that the fusion result can significantly improve the
localization accuracy, which further proves the effectiveness of the proposed fusion method.

Figure 4. Localization results and uncertainty error ellipses.

Firstly, set σh = 3 km and σs = 2 km and simulate the localization accuracy with σ1.
Figure 5 is the localization result. Then, let σθ = 1.5◦, σφ = 2.25◦, and σr = 0.5 km, and
Figure 6 is the corresponding result.

From Figures 5 and 6, the positioning accuracy of the proposed ICWLS algorithm for
land-based DOA localization and satellite TDOA localization can reach the corresponding
CCRLB. In addition, it can be seen that the fusion result can significantly improve the
localization accuracy, which further proves the effectiveness of the proposed fusion method.
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Figure 5. The localization accuracy varies with localization parameter error.

Figure 6. The localization accuracy varies with systematic error.

6.3. Robustness

A total of 10 sources are randomly selected within the range of [120◦ E∼130◦ E]×
[20◦ N∼30◦ N]. The localization accuracy of the proposed algorithm and the corresponding
CCRLB distribution are tabulated.

First, set σh = 3 km and σs = 2 km, and the corresponding results are shown in
Figure 7. Then, set σθ = 1.5◦, σφ = 2.25◦, and σr = 0.5 km, and the results are shown in
Figure 8.

As can be seen from Figures 7 and 8, both the RMSE and CCRLB increase as the
error increases, and the distribution is more dispersed. In addition, the distribution of
the RMSE is basically the same as that of the CCRLB, and the localization results do not
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produce abnormal distribution values, which indicates that the proposed algorithm has
good robustness in terms of the source location.

(a) CCRLB for land-based station (b) RMSE for land-based station

(c) CCRLB for satellite (d) RMSE for satellite

(e) CCRLB for hybrid localization (f) RMSE for hybrid localization

Figure 7. Distribution of RMSE and CCRLB with localization parameter error. ‘+’ is the outlier.
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(a) CCRLB for land-based station (b) RMSE for land-based station

(c) CCRLB for satellite (d) RMSE for satellite

(e) CCRLB for hybrid localization (f) RMSE for hybrid localization

Figure 8. Distribution of RMSE and CCRLB with systematic error.

7. Conclusions

This paper investigated the fusion localization of land-based stations and satellites.
And, the corresponding ICWLS algorithm is proposed for DOA-based localization and
TDOA-based localization, respectively. Firstly, the pseudo-linear equations are established
by using auxiliary variables, and then the localization problem is modeled as an optimiza-
tion problem with two quadratic equation constraints. To ensure that the algorithm can
converge to the global optimal solution, the results of the previous iteration are substituted
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into the equation constraints so that the nonconvex quadratic constraints can be converted
into linear constraints. Simulations show that the localization accuracy of the proposed
method can reach the corresponding CCRLB. In addition, this paper proposed to fuse the
DOA-based localization and TDOA-based localization results using Kalman filtering. The
simulation results show that the accuracy of fusion result is higher than the DOA-based
localization and TDOA-based localization.

Although the proposed method can improve the positioning accuracy, the method
requires the ability to receive signals from different frequencies. In addition, the method
does not take into account the errors caused by the ionospheric multi-path effect and other
effects. These will be studied in depth in the next step. In addition, we will further consider
the practical application of the proposed method.
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Appendix A

In a practical scenario, Ro and ho
i are both positive. In addition, the range of elevation

is 0 < φo
i < π/2 , so cos(φo

i ) > 0 and sin
(
2φo

i
)
> 0 are valid. Based on the definition of

ci,1, ci,2, and ci,3, we have ci,1 > 0, ci,2 > 0, ci,3 < 0. Therefore, the discriminant of (21) is

(ci,2)
2 − 4ci,1ci,3 > 0 (A1)

Thus, the two solutions of (21) can be given as

x1 =
−ci,2 +

√
c2

i,2 − 4ci,1ci,3

2ci,1
, x2 =

−ci,2 −
√

c2
i,2 − 4ci,1ci,3

2ci,1
(A2)

Therefore, x1 > 0 and x2 < 0 are valid. x1 > 0 is the only positive solution of (21).
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