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Abstract: As a result of technological advancements, functional capacity assessments, such as the
6-minute walk test, can be performed remotely, at home and in the community. Current studies,
however, tend to overlook the crucial aspect of data quality, often limiting their focus to idealised
scenarios. Challenging conditions may arise when performing a test given the risk of collecting
poor-quality GNSS signal, which can undermine the reliability of the results. This work shows the
impact of applying filtering rules to avoid noisy samples in common algorithms that compute the
walked distance from positioning data. Then, based on signal features, we assess the reliability of
the distance estimation using logistic regression from the following two perspectives: error-based
analysis, which relates to the estimated distance error, and user-based analysis, which distinguishes
conventional from unconventional tests based on users’ previous annotations. We highlight the
impact of features associated with walked path irregularity and direction changes to establish data
quality. We evaluate features within a binary classification task and reach an F1-score of 0.93 and an
area under the curve of 0.97 for the user-based classification. Identifying unreliable tests is helpful to
clinicians, who receive the recorded test results accompanied by quality assessments, and to patients,
who can be given the opportunity to repeat tests classified as not following the instructions.

Keywords: 6MWT; distance estimation; data reliability; physical assessment

1. Introduction

Standard physical activity tests, such as the Queens College Step Test [1], the Timed
Up and Go Test (TUG) [2], or the 6-Minute Walk Test (6MWT), are often employed to assess
physical capacity and functional performance on populations with limited mobility or
cardiorespiratory and peripheral vascular disease.

Within this study, we focus on the 6MWT, which is a clinical test widely used by
physicians to monitor the progress and deterioration of a patient’s physical and functional
capacity [3]. The distance walked during a 6MWT can be a relevant indicator of health
status within an elderly population [4], and among others, it is helpful in a wide range of
conditions, for example, within cardiovascular and respiratory diseases [5,6].

Performing conventional, in-clinic 6MWT requires patients to physically travel to the
hospital and specialized clinical staff to monitor the test, resulting in a burdensome practice
in terms of time and costs. Additionally, it requires environmental conditions, such as an
obstacle-free hallway, preferably at least 30 m long, which is not always accessible. Thanks
to technological advances in sensors and mobile devices these tests can be performed
remotely and in patients’ homes or communities [7]. Such remote 6MWTs reduces the
required effort for patients and clinical staff, which promotes more frequent and, there-
fore, more robust monitoring of patients [8]. Several algorithmic approaches have been
proposed to estimate the 6-Minute Walk Distance (6MWD) from raw sensor data. Outdoor
solutions are commonly based on Global Navigation Satellite System (GNSS) positioning
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while indoor solutions typically depend on inertial sensors or other modalities, such as
cameras [9].

The primary purpose of GNSS is to offer precise and real-time global navigation and
positioning within a terrestrial reference frame. However, while its use in smartphone
applications has proven to be generally reliable, it can occasionally be susceptible to
inaccuracies [10]. Specifically, within the context of the 6MWT, environmental conditions,
handling of smartphones, and low quality of embedded antennas may significantly impact
positioning performances [11,12]; thus, research developments must take these aspects into
account, especially within the healthcare context.

In this paper, we focus on outdoor GNSS- and smartphone-based 6MWT. We compare
the algorithms that compute the 6MWD from positioning data. Within this context, we
highlight the importance of using filtering rules across the different algorithms.In the
context of data quality assessment, we investigate the role of signal features and the related
classification algorithms coefficients, which enable the differentiation of the tests according
to quality considerations.

The article is structured as follows: Section 2 introduces related research within the
field, while Section 3 covers the datasets’ description and considered methods. Section 4
shows the obtained results, which are then discussed in Section 5. Finally, Section 6
concludes the article by summarizing the main findings and outlines suggested future work.

2. Related Work

The measure of the walked distance can be approached using different types of tech-
nology according to the context of data collection and availability. Within the pedestrian
navigation field, outdoor environments allow data fusion between Inertial Measurements
Unit (IMU) and positioning data to track a person’s walking activity. For example, Basso
et al. [13] proposed a real-time pedestrian navigation system by placing the smartphone
inside a pocket making use of both GNSS and inertial data. Jian et al. [14] made use
of Pedestrian Dead Reckoning (PDR) and GNSS information by using factor-graph op-
timization. However, this implementation relies on considering multiple smartphones
within the area of interest to triangulate information. They furthermore explore the use of
pseudo-range measurements, which correspond to the distance between each satellite and
the user’s antenna [15].

Also within the context of the 6MWT, studies propose using smartphones IMUs [9,16].
For example, Mak et al. [8] conducted an extensive study concerning in-clinic and home-based
6MWT using inertial sensors embedded in iPhone 7 smartphones, Apple.Their findings are
promising, but rely only on the step count, as measuring distance from IMU is not easy to
achieve reliably.

To measure distance accurately, it is more common to rely on the GNSS signal within
outdoor contexts. Regardless of the noise in the GNSS signal, the validity and reproducibil-
ity of the outdoor 6MWT have been proven [17].

One such example is Salvi et al. [18], where the authors developed an algorithm to
compute the 6MWD for the outdoor scenario. Their algorithm works by downsampling
the GNSS signal by selectively using the positions with the highest accuracy, as computed
by the operating system of the phone, over a time window of 5 s and summing the distance
between each selected position. From lab experiments, the authors reported a mean
difference between the output of the algorithm and the ground truth of −0.80 m ± 18.56 m
standard deviation for the outdoor scenario. Tests performed later with 30 pulmonary
hypertension patients during 6 months using supervised in-clinic tests and unsupervised
outdoor tests showed that the outdoor algorithm was also valid and repeatable [19].

Ata et al. [20] developed the VascTrac iPhone application [21] developed by O. Aalami
and available on the iOS app store. The authors tested the app on a peripheral arterial
disease population, where they considered a digital version of the 6MWT provided from the
iPhone’s distance and step-counting algorithms. Their evaluation shows that the distance
algorithm results in an overestimation of the reference measure, with the initial relative
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mean and standard deviation of 43%± 42% and after using a correction factor reduced to
8%± 32%. Additionally, they tested multiple phone positions such as in the hand, pocket,
and bag or purse. They conclude that best performances arise when the phone is hand-held
while reproducing the test.

Research developed by Ziegl et al. [22] investigated how the device positioning
and filtering techniques can impact the walking distance computation. To test this, they
collected data from 166 recordings using a mobile phone application, and based on this
proposed an algorithm based on Kalman filter operations obtaining a 3.7% mean error.

Ogris et al. [23] extended the analysis of the Kalman-based algorithm by considering
multiple combinations of filters and convolutions, and reached a promising performance
where the relative percentage error of 23 experiments out of 24 were below the chosen
threshold of 5%. However, in both studies, the collected tests were performed by healthy
participants. This subsequently leaves some uncertainty if the technique generalises well
on patients.

Van Oirschot et al. [24] implemented a smartphone-based 2-minute walk test based
on Global Positioning System (GPS) data using a proprietary algorithm, which reconstructs
the walked path. They validated the reliability of their method with 25 persons with
relapsing-remitting Multiple Sclerosis (MS) and 79 healthy controls and compared the
computed distance with reference markers. The difference between computed distance
and reference was 5% on average, while the details of the employed algorithms are not
published, and are thus hard to build further research on, the paper provides a relevant
filtering criterion for the test. If the time difference between the first and last GPS data
point (i.e., the overall duration) is not within 120± 20 s the test is automatically discarded.
This is reasonable given the frequency of GPS frequency between 1 and 2 Hz. However, for
a longer test duration, it is harder to fix an established time margin.

As also addressed by Van Oirschot et al. [24], the challenge of dealing with low-
quality positioning data is a problem to consider carefully. Particularly environments, such
as ”urban canyons” are known to affect positioning from satellites [25]. Paziewski [10]
elaborates on factors that affect the GNSS accuracy in smartphone applications for precise
localization purposes. In relation to the 6MWT, Stienen et al. [11] highlights the difficulties
incurred when computing the 6MWD in a smartphone app for remote 6MWT, including
indoor environments, being near high buildings, in rectangular-shaped paths, and at low
speeds. Accuracy and quality issues in GNSS data and their relationship with the 6MWT
have thus been recognized by previous research.

However, in real-life scenarios, it would be ideal to identify low-quality data during
the data collection phase to ensure that recorded tests with poor data quality are not
considered by healthcare professionals. Therefore, there is still the need to perform the
following: (1) better analyse how low quality GNSS data affects the estimation of the
6MWD, and, importantly, (2) explore if it is possible to automatically characterise low-
quality recordings by, for example, analyzing the features extracted from the signal of a
smartphone-based 6MWT.

Informed by the above work, our study relies on walking tests performed outdoors by
recording the GNSS signal and with participants holding the phone in their hand during
the test. Given the need for realistic settings, we could not assume access to multiple phones
for triangulation to improve positioning. Technical issues that affected some participants
during data collection also meant that inertial measurements are not available for all tests.
For the purposes of this paper, we are therefore focusing the analysis on distance estimation
methods that rely only on GNSS information, even if we acknowledge the potential for
data fusion techniques to further improve results in future studies.

3. Materials and Methods

In this study, we use an existing dataset of positioning traces collected with a smart-
phone during a 6MWT. Approximately half of the used dataset was collected in a way that
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introduced noise on purpose, to ensure that our data contained erroneously conducted
tests. An overview of our research is shown in Figure 1.

The traces were first pre-processed to remove positions deemed inaccurate and to
obtain a constant sampling rate. The data were then used in a series of algorithms for
computation of the 6MWD. The output of those algorithms was compared with the ground
truth measurement to extract statistics about accuracy. We additionally implemented
classifiers to distinguish between traces where the distance estimates are more accurate
and those that produce inaccurate results (error > 30 m). We also classify traces where the
user walked following a regular path (classified as conventional) and those where the user
did not follow the instructions for how to conduct a 6MWT (classified as unconventional).

Figure 1. General overview of the research.

3.1. Dataset

The data used in this article were collected from outdoor 6MWTs. All tests were
performed using the smartphone app named Timed Walk, version 0.3.2, developed by
D. Salvi [26]. This app is based on previous work [18,19] and runs on both Android and
iOS-based smartphones. It collects GNSS signals from the geolocation web API together
with inertial measurements such as the triaxial accelerometer and gyroscope data through
the motion and orientation APIs, and computes the walked distance using the algorithm
described in [18]. All tests were performed with the smartphone in one hand and a a
distance measuring wheel (trundle wheel or odometer, Qingdao Qingqing Hardware Tools
Co., Ltd., Qingdao, China) in the other hand to measure the reference walked distance.

Based on research conducted in lab tests [18], it is known that the distance estimation
of the Timed Walk app is more reliable when the walked path is straight, and if the
environment does not block or reflect satellite signals. Thus, the smartphone app presents
instructions to the user before the start of the test, to perform the test reliably. These include
walking in a straight line or with a gently curved path, ideally in weather conditions where
the sky is visible and avoiding areas with tall buildings or walking under dense trees. Due
to a standard measure for app privacy used by mobile phone operating systems, users
were instructed to keep the display switched on and to avoid using other apps during the
test. Otherwise, if the app is placed in the background (e.g., when the user receives a phone
call) or if the screen is switched off, the app will stop receiving position updates.

The collected data come from two different sets. The first one consists of 107 recordings
collected by 10 volunteers recruited at the Oxford University Hospitals NHS Foundation
Trust who were asked to perform 10 or more outdoor 6MWTs. Of these, 7 were cardiac
patients under treatment at the clinic and 3 were healthy volunteers. Data were collected
within a study with ethical approval from the UK National Health Service Health Research
Authority (protocol reference numbers: 17/WM/0355) and informed consent was obtained
from all participants involved. Each volunteer was asked to perform five conventional tests
following the app instructions, and five “unconventional” tests, in which they would, on
purpose, not follow the instructions, for example, by including several sharp turns. After
each test, the participant noted if the test was made conventionally or unconventionally. In
Figure 2, two examples of conventional and unconventional tests are shown.

An additional 62 recordings were collected at Malmö University by four healthy
researchers. These recordings were acquired following different types of paths, namely,
“regular”, which aligns with the app instructions, “stop and go”, which consists of intervals
of alternating straight walking and standing still, “back and forth”, which consists of
walking back and forth a 20 m distance, and four different types of circular paths named
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“circles0”, “circles1”, “circles2”, and “circles3” characterised by a decreasing radius of the
circular path. Recordings of the type “regular” and “stop and go” are both considered as
“conventional” as the patient is walking straight, while “back and forth”, and all circular
paths are considered as “unconventional”. The goal of these tests was to explore how
distance estimation is affected by the shape of the walked path. These tests were performed
with different durations, from 3 to 6 min, as this interval still ensured that sufficient
positions were collected to be useful when analyzing data quality.

(a) (b)

Figure 2. (a) Example of conventional 6MWT. (b) Example of unconventional 6MWT.

A single test recording consists of a time series of GNSS updates, each one including
latitude, longitude, and elevation, together with the timestamp to which the recorded data
corresponds. Additionally, each sample is associated with a measurement of the confidence
interval of the position, i.e., the estimated horizontal accuracy radius in meters, computed
by the operating system, the heading, i.e., the direction towards which the device is facing
in degrees from the magnetic north, and the travelling speed in the current direction. The
positional signal has a sampling frequency of approximately 1 Hz on all phones, with
some jitter depending on conditions. In addition to the GNSS data, the smartphone’s step
count, triaxial acceleration, triaxial rotation rate, and triaxial orientation were collected at a
sampling frequency of 60 Hz. Inertial data were not available on all recorded traces due to
a bug in the app that prevented inertial measurement collection on iPhones.

3.2. Data Pre-Processing and Filtering

A number of filters were implemented to remove samples that are likely to be affected
by noise that would add error to the overall estimation. Filters were implemented as simple
rules, mostly applied on a single or two consecutive samples. If any of the following was
true, the sample was excluded from the computation of the distance:

• If the sample does not include a value for the altitude. This happens when the position
is not computed using satellites, as mobile operating systems also make use of cellular
network triangulation or WiFi networks to estimate position, while useful in many use
cases, these techniques give less accurate positions than GNSS and were thus excluded;

• If the confidence interval estimated by the operating system was above 25 m. This
threshold was chosen as a compromise between accuracy (the lower the confidence
interval, the more accurate the measurement is) and availability of samples (a higher
confidence interval implies that fewer samples are discarded). Related to this, the app
would only allow the test to start after at least one sample is received with a confidence
interval below 15 m, to ensure that the GNSS system has achieved a strong “lock” on the
signal transmitted by satellites. For each additional satellite being included in the signal,
the confidence interval becomes reduced. A compromise between desired accuracy and
waiting time was chosen as 15 m;

• If the average acceleration magnitude is below 0.5 m/s2. This indicates that the user
could be still. Thus, if the sample is included, even small errors in the position would be
added to the computation of the distance, even if no additional distance was actually
walked. The threshold was chosen empirically from the data collected by the researchers,
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in particular, informed by the “stop and go” recordings. The value was selected so
that the filtering is conservative and excludes only samples that correspond to non-
walking segments;

• If the difference in steps between two consecutive points is zero. This indicates that
there is no movement, and follows the same logic as the case above;

• If the time difference between two consecutive points is less or equal to zero. This
can happen when the system occasionally returns old values, particularly when the
visibility of the satellites is lost, and the operating system resorts to sending the last
known location;

• If the speed computed between two consecutive points is above 5 m/s. This threshold
was chosen as it is substantially higher than a human walking speed [27], very unlikely
to happen in a 6MWT.

Figure 3 shows an example of a 6MWT GNSS signal without the application of any
filter. Additionally, GNSS signals were resampled at 1 Hz in order to be consistent with
algorithms that are designed to be used at a constant sampling frequency.

Figure 3. Example of a 6MWT reported on a map. It is visible how some positions are not likely to
belong to the actual walked path. In red are samples that are eliminated from the pre-processing
filters; in green are samples considered for further analysis.

3.3. Algorithms for Walked Distance Estimation

We implemented and compared the following six algorithms: Alpha-Beta [28], Kalman
1D [29], Kalman 2D [30], Kalman smoothing [22], Quality-based Spatial Subsampling
(QSS) [18], and a simple baseline algorithm that sums the distance between samples. The
following four algorithms are based on the Kalman filter: Alpha-Beta, Kalman 1D, Kalman
2D, and Kalman smoothing. Kalman filter approaches have already been proven to be
reliable in distance computation and position estimation [31,32]. The approach is based on
a set of equations, which recursively estimate the state of a dynamic process to minimize
the squared error mean [33]. For the algorithms that rely on Kalman filters, we used the
resampled GNSS signal at 1 Hz to have a constant sampling frequency. This was performed
to simplify the mathematical modelling needed in these filters and was also as suggested
in some previous work [22].

Baseline algorithm: The simplest of the algorithms adds all the distances “as the crow
flies” between each retrieved position, after initial pre-processing. Given that the GNSS
signal can be noisy, integrating over time has the effect of adding up the error from each
sample. This is exacerbated by the fact that, at the walking speed and at typical GNSS
sampling frequency (1 Hz), recordings can contain several points located close to each
other. This approach therefore tends to compute inaccurate distances unless particular
care is taken to reduce noise. While not expected to perform as well as other approaches,
including this algorithm is useful as an indication of how well a baseline approach stands
up to more sophisticated algorithms.
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Quality-based sub-sampling (QSS): This algorithm is described in [18]. The original
paper did not provide a name for it, but for convenience, we will refer to it as quality-
based sub-sampling (QSS). The algorithm integrates the distances between positions, as in
the baseline algorithm, but sub-sampling is performed first using some heuristics, while
receiving the position updates, the algorithm periodically (every 5 s) selects the position
with the lowest confidence interval in a time window. For the purpose of our study,
thresholds and periods were chosen to be the same as in the original version. The algorithm
applies simple filtering rules similar to the ones that we applied in the data pre-processing
phase, detailed in Section 3.2. In particular, it considers the time difference between two
consecutive samples (which must be greater than zero), the maximum speed allowed
(set to 2 m/s), and if the user is moving by checking the difference in step counting of
consecutive samples.

Alpha-beta: This algorithm is based on the alpha-beta equations [34,35] and consists
of a simplified, steady-state version of the Kalman Filter. In the equations, T is the sampling
interval, xk is the vector with the measured coordinates (longitude and latitude) at time
k assumed to be noisy, x̂k is the vector estimating the actual coordinates (longitude and
latitude) at time k, and v̂k is the vector estimating the velocity (over the two components
longitude and latitude) at time k. The initial state corresponds to the first value of longitude
and latitude available while the initial speeds along the two axes are set to zero. At each
update, k, the coordinates are estimated using the speed previously computed as follows:

x̂k ← x̂k−1 + Tv̂k−1 (1)

This estimate is independent of new measurements. When new coordinates are made
available by the GNSS the coordinates can be updated as follows:

x̂k ← x̂k + α(xk − x̂k) (2)

Now velocity can be updated as follows:

v̂k ← v̂k−1 + β(xk − x̂k)/T (3)

The constants α and β work as smoothing factors. Their optimised value [34] is
the following:

α = 1− r2 (4)

β = 2(2− α)− 4
√

1− α (5)

where:

λ =
σwT2

σn
(6)

r =
4 + λ−

√
8λ + λ2

4
(7)

Here σ2
w is the process variance, which we computed as the confidence interval

provided by the phone, while σ2
n is the noise variance and it was assumed constant,

at the value of 3 m/s2. It is possible to observe that the more λ increases, the more α
approaches the value of 1, and the more the algorithm relies on the newly measured co-
ordinates. Conversely, when λ is low, for example, because the confidence interval σn is
high, the filter relies more on the coordinates predicted using velocity rather than the newly
measured coordinates.

Kalman 1D: This Kalman filter can be seen as a generalization of the alpha-beta filter
as it also consists of a prediction step based on past state, and a measurement step based
on newly gathered information. The equations governing the filter are listed in Figure 4
considering x̂k−1 and Pk−1 as initial values of the state and the estimate covariance matrix.
A thorough description of the Kalman filter is outside the scope of this paper.
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• x: State vector;
• Q: Process noise covariance;
• A: State transition matrix;
• B: Control matrix;
• P: Estimate covariance;
• R: Measurement covariance;
• H: Observation matrix;
• K: Kalman gain;
• z: Measurements vector.

(a) (b)

Figure 4. Time update (a) and measurement update (b) equations.

The choice of how to represent the state and how to compute covariance matrices
is what distinguishes the various implementations of the filter. In this one-dimensional
case, the state is represented by a single coordinate and its velocity. Therefore, two fil-
ters are implemented, one for the longitude and one for the latitude [29]. The process
noise covariance matrix (Q) is assumed to be 0.25 m/s2 in [29]. In our case, it is instead
derived from the standard deviation of the process (speed and position), which we set as
fixed values of 2 m/s and 6 m, respectively. The matrix representing Q is based on the
following expression:

Q =

[
std_pos× std_pos std_pos× std_speed

std_pos× std_speed std_speed× std_speed

]
(8)

In [29], a constant value of 1.2 m2 is selected as the measurement covariance. In our
context, we interpret the confidence interval value associated with each sample as the
variance of the measurement. Therefore, we have adopted the square of each sample
confidence interval as the value of the scalar (R). As with the alpha-beta, it is possible to
observe how a high confidence interval corresponds to a reduced gain, which, in turn,
makes the algorithm give higher weight to the prediction rather than the new measurement.

Kalman 2D: This algorithm is an extension of the Kalman 1D to two dimensions [30],
the equations being the same as in Figure 4. In this version of the filter, longitude and
latitude are simultaneously updated through the same set of equations described for
the previous method, together with velocity and acceleration. This approach is more
reasonable since longitude and latitude are strongly related when a person is walking.
Furthermore, in this algorithm, the measurement covariance (R) is computed as the square
of the confidence interval associated with each sample. As with the Kalman 1D case, we
derive the measurement noise covariance matrix from the fixed values of the standard
deviation of the speed and the position and we use the confidence interval of each measured
position in the measurement covariance matrix.

Kalman smoothing: This implementation is based on the algorithm proposed by Ziegl
et al. [22]. Here, the Kalman filter adds a backward recursion to smooth previous samples
based on newly collected measures [36]. In [22], the signal is resampled at 1 Hz and padded
where missing values are found. The initial state of the filter is selected as the first available
position sample. The measurement noise covariance (Q) and the observation covariance (R,
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shown in Equation (9)) were reported based on previous work concerning position tracking
through the Kalman filter [37].

R =

1× 10−8 0× 100 0× 100

0× 100 1× 10−8 0× 100

0× 100 0× 100 1× 104

 (9)

Once the multiple matrixes and initial state are set, each recording is processed. We
strove to implement the algorithm as in the original publication, and we verified its fidelity
by comparing results from data kindly shared by the authors of the paper.

These six algorithms are compared by considering the difference between the ground
truth of the recording and the estimated distance for each algorithm. From the difference,
multiple statistics of the obtained error are computed, including mean difference, standard
deviation, max difference, Root Mean Square Error (RMSE), and the Bland–Altman Limits
of Agreement (LOA).

3.4. Data Quality Estimation

We implemented algorithms to assess signal quality during a 6MWT to provide timely
user warnings when test reliability was low. To do so, we extracted features from each
GNSS recording and analysed them from two perspectives. The first perspective looks at
how features relate to the difference between the computed distance using the baseline
algorithm and the ground truth (the error), which we will refer to as error-based analysis.
The second perspective, which we refer to as user-based analysis, relates to whether the
user performed the test by following the instructions for a valid 6MWT (classified as a
conventional test), or did not follow the instructions on purpose to produce unreliable
estimations (classified as unconventional).

3.4.1. Features Extraction

It has been observed that an optimal recording scenario involves a trajectory under
ideal conditions of satellite visibility, avoiding signal obstruction caused by tall structures
like buildings or trees [38]. In addition, path irregularity given from changes in direction
may result in less accurate position detection. Based on this, we computed a feature repre-
senting changes in direction, which we call “curviness”, corresponding to the measurement
of the angle between three consecutive GNSS samples. Additionally to this feature, we
considered the value of heading, i.e., the direction of the traveller provided by the GNSS
and the delta heading, which corresponds to the difference in consecutive values of heading,
thus relating to the angulation of the walk direction. During the filtering phase, it was
noticed that occasional inaccurate positions may be included in the signal where the user
appears to have walked with a very high speed. For this reason, we included features
related to the point-wise speed, obtained from the GNSS signal itself or, if absent, computed
between two consecutive samples. As the phone provides an estimation of the confidence
interval of the measurement, we included the confidence interval of each GNSS sample
as a measure of quality, and the timestamp differences between samples, which can be
significant for signal loss. For each of these measures, multiple statistics (see Table 1) were
computed, for a total of 52 scalar features. In addition, the following three other summative
statistics were added: the percentage of samples of a single test whose GNSS confidence
interval is above 15 m, the percentage of samples whose recorded speed is above 4 m/s, and
the difference between the distance estimation performed when applying pre-processing
filters or not. The last feature can be indicative of the fact that the filters have a big impact
on distance estimation and therefore the trace may be affected by noise.
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Table 1. Features computed on the GNSS traces. The left column shows the characteristics of the
GNSS signal and the name used in the following sections in reference to specific features. The right
column reports the statistics that were computed.

Characteristic of the Measurement Computed Statistics

Curviness (curve)
Mean, Median,

Standard Deviation, IQR,
Autocorrelation 1st Peak Value
Autocorrelation 1st Peak Lag

Sample entropy

Point–Point Distance (crows)
Speed (speed)

Confidence (quality)
Heading (heading)

Delta Heading (delta heading)
Delta Timestamp (fs)

Additional Features

samples (Accuracy > 15) (q_above_tr) %
samples (Speed > 4) (s_above_tr) % N/A

∆distance (unfiltered–filtered)

3.4.2. Features Validity

We computed multiple correlation coefficients to validate and identify the association
between features and targets for the two considered analyses. The point-biserial correla-
tion [39] and Kolmogorov–Smirnov (KS) statistic were computed in relation to the following
binary targets: low error (error < 30 m) and high error (error > 30 m) for the error-based
analysis considering only Oxford data, while conventional versus unconventional tests for
the user-based analysis considering all available data. The choice of the 30 m threshold
is motivated by the Minimal Detectable Change (MDC) of the 6MWD. Among the most
conservative values, Chan et al., and Ries et al. [40,41] report a MDC of 28.1 m and 33.5 m,
respectively. Given this, we assumed 30 m to be a reasonable choice. Because the MDC can
vary across different populations, it is worth mentioning that other studies report higher
values of MDC, within 54 m–80 m [42].

3.4.3. Feature Selection and Classification

To select a reduced number of features considered as input of a classification model,
we used the Recursive Feature Elimination (RFE) feature selection method with Logistic
Regression (LR) as classifier. This method is a wrapper feature selection method that relies
on the recursive fit of a model, which, at each iteration, considers fewer features [43]. In
particular, a 10-fold cross-validation was repeated five times, considering at each repetition
different sets of training and test participants. Five different sets of selected features were
obtained and the ones, which were common to at least three of the five sets were considered.
Multicollinearity was addressed for both feature sets by observing the characteristics’
Variance Inflation Factor (VIF), which is a metric of the multicollinearity of predictors
for a regression analysis task. When using VIF, the accepted threshold can vary for to
different applications, where values above 10 usually imply the presence of collinearity
between predictors, while for smaller dataset sizes values above 2.5 can also show moderate
collinearity [44,45]. In our case, features with VIF higher than 2.5 were linearly combined
until there was no such phenomenon.

Once the feature sets were removed from multicollinearity, they were used as in-
put to the following three Machine Learning (ML) classification models: LR, Support
Vector Machine (SVM), and Random Forest (RF). These models were selected given
their interpretability and low complexity. The classification outcome corresponded to
the discrimination between low and high error (threshold at 30 m) for the error-based
analysis and to the discrimination between recording types (conventional or unconven-
tional) previously declared by the user for the user-based analysis. The code used to
implement the classification models is published with an open-source license at https:
//github.com/SaraCaramaschi/6mwt_quality, accessed on 15 March 2024.

https://github.com/SaraCaramaschi/6mwt_quality
https://github.com/SaraCaramaschi/6mwt_quality
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The models were trained using stratified 5-fold cross-validation and the feature set
was normalized by subtracting the mean and dividing by the standard deviation. To
evaluate these models, the results from each cross-validation iteration were aggregated and
metrics of sensitivity, specificity, F1-score, accuracy, and Area Under the Curve (AUC) were
extracted. From the LR classifier, model coefficients were retrieved, odds ratio computed
and compared to understand features impact.

4. Results

Of the 169 traces, 75 (44%) were produced by 7 pulmonary hypertension patients
at Oxford and 94 (56%) by healthy volunteers, 3 at Oxford and 4 at Malmö. Seventy-
seven tests (46%) were performed following the guidelines provided by the smartphone
app (conventional tests), while 92 (54%) were recorded not following these guidelines
(unconventional tests).

The distribution of ground truth 6MWD of the tests is shown in Figure 5. We can see
that the Oxford tests are slightly skewed towards distances above 500 m indicating good
walking capabilities. On the other side, the tests performed by healthy researchers are
generally shorter in distance. This shorter distance was related to the variable duration
of those tests between 3 and 6 min, with a focus on generating controlled differences in
walking styles during their traces. For this reason, further analysis will consider results
in absolute terms for the Oxford set, which included only 6 min-duration tests, while we
will include the results in percentage values for all tests from Oxford and Malmö together
to obtain an overall relative result. The usage of the datasets across the walked distance
estimation and the data quality assessment of this research is further represented for clarity
purposes in Figure 6.

Figure 5. Frequency histogram of the 6MWD reference measurement for Oxford and Malmö tests.

Figure 6. Schema representing the dataset usage across the following two main aspects of this
research: distance and data quality estimation.

4.1. Walked Distance Estimation

We applied the pre-processing methods reported in Section 3.2 and computed the
walked distance using the algorithms described in Section 3.3. Figure 7 shows the mean
absolute percentage error for all the traces, with and without the pre-processing steps
(filtering and, where applicable, resampling). It is noticeable that the pre-processing
positively impacts all algorithms by significantly reducing the percentage error except for
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the QSS algorithm, which already incorporates filtering rules in its original design [18]. This
indirectly illustrates that the built-in filtering mechanism is effective and its application
is relevant.

Table 2 reports the statistics relating to the difference between ground truth 6MWD and
estimated 6MWD (the error) after pre-processing for all tests and, in absolute values, using
the Oxford dataset. The accuracy is comparable for all algorithms, with the QSS obtaining
the lowest mean percentage error with conventional tests (3.04%) and the Kalman 1D for the
generalised case and the unconventional tests (8.94% and 13.03%, respectively). Additional
information about the performances of the algorithms is provided in the Appendix A,
Table A1.

To understand how the shape of the path affects results, Figure 8 reports the absolute
percentage error for the tests conducted by healthy volunteers at Malmö with different
types of paths considering pre-processed data. The path types “regular” and “stop and
go”, which, for the purpose of our analysis, are considered as conventional tests, obtain
the lowest median error values, while the recordings including u-turns and circular paths
obtain higher median errors. All the algorithms have comparable performances for the
same recording type.

Alpha-beta Kalman 1D Kalman 2D Kalman smoothing QSS Baseline
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Figure 7. Mean absolute difference, in percentage, between ground truth 6MWD and the one
computed by multiple distance estimation algorithms, with and without pre-processing. The error is
capped at 100%.

Table 2. Statistics about the difference between ground truth 6MWD and estimated 6MWD (error) for
all algorithms, with pre-processed data. Absolute mean, absolute standard deviation (SD), absolute
maximum, and limits of agreement are reported for the error of Oxford 6MWTs and in percentage for
all tests. The results are also reported separately for conventional and unconventional test types.

Oxford Tests #107 [m] Conventional Oxford #55 [m] Unconventional Oxford #52 [m]
Mean (SD) Max LOA Mean (SD) Max LOA Mean (SD) Max LOA

Alpha-beta 39.04 (62.59) 401.58 −103.91, 161.94 14.09 (13.57) 62.84 −34.93, 40.86 65.44 (80.68) 401.58 −114.22, 227.35
Kalman 1D 33.6 (52.71) 384.24 −117.25, 127.04 16.96 (15.35) 64.25 −48.67, 38.95 51.2 (69.76) 384.24 −151.75, 182.17
Kalman 2D 36.09 (52.57) 380.06 −125.48, 124.49 21.22 (20.28) 100.7 −64.11, 44.03 51.83 (69.07) 380.06 −158.6, 177.79

Kalman smoothing 43.5 (68.41) 407.85 −101.3, 178.32 13.37 (12.59) 50.53 −25.25, 40.37 75.36 (86.52) 407.85 −105.03, 247.53
QSS 51.06 (81.65) 413.27 −116.16, 211.65 12.25 (11.73) 45.89 −22.22, 37.31 92.1 (101.46) 413.27 −111.8, 292.34

Baseline 36.5 (58.64) 396.86 −106.95, 150.2 14.47 (14.94) 85 −42.34, 38.92 59.8 (76.05) 396.86 −120.18, 212.8

All Tests #169 [%] Conventional All #77 [%] Unconventional All #92 [%]
Mean (SD) Max LOA Mean (SD) Max LOA Mean (SD) Max LOA

Alpha-beta 9.62 (12.91) 80.7 −23.2, 35.28 3.47 (3.16) 14.68 −8.79, 9.55 14.76 (15.48) 80.7 −25.42, 46.99
Kalman 1D 8.94 (11.84) 78.14 −28.57, 29.57 4.06 (3.62) 16.15 −11.61, 9.2 13.03 (14.49) 78.14 −36.07, 39.94
Kalman 2D 9.64 (12.01) 78.08 −31.07, 29.21 4.89 (4.34) 19.47 −14.31, 9.6 13.63 (14.64) 78.08 −38.94, 39.47

Kalman smoothing 10.35 (13.29) 77.04 −23.34, 37.01 3.49 (3.46) 21.83 −9.47, 9.8 16.09 (15.56) 77.04 −24.08, 48.92
QSS 11.77 (15.48) 79.93 −22.68, 42.68 3.04 (2.9) 15.25 −6.83, 9.06 19.07 (17.77) 79.93 −20.55, 55.42

Baseline 9.12 (12.28) 78.57 −23.96, 33.21 3.55 (3.44) 15.62 −10.28, 8.92 13.79 (14.81) 78.57 −26.39, 44.52
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Given that no major differences exist in terms of accuracy among algorithms after the
data are pre-processed, we will use the baseline algorithm for further analysis, due to the
fact that it is easiest to develop and interpret.
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Figure 8. Absolute percentage error for multiple algorithms and recording types of Malmö tests. Data
were filtered and resampled except for QSS and baseline algorithms, which were only filtered. The
error is capped at 80%.

4.2. Data Quality Estimation

In the following subsection, we go through feature validity, selection and classification
results to establish a method to determine data quality. All of the steps consider the
two perspectives: the error-based analysis, which has a binary differentiation of low or
high error (threshold 30 m), and the user-based analysis, which distinguishes between a
conventional or unconventional test. The error-based perspective includes only Oxford
6MWTs and, therefore, the MDC threshold comparison of 30 m is applicable. The user-
based perspective considers both tests from Oxford and Malmö given that the test type is
not affected by the test duration.

4.2.1. Feature Validity

Feature validity is assessed by computing point-biserial correlation and the KS statistic
between each feature and the binary target of the respective analysis (error-based or
user-based). These statistics are shown in Figure 9, and numerical values of correlation
coefficients are reported in the Appendix A, Table A2.

Figure 9. Point-biserial correlation coefficients and KS statistic of the error-based (Oxford only) and
user-based (Oxford and Malmö) analyses between features and respective targets. Only statistically
significant results (p < 0.05) are shown.
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Table 3 reports the number of tests that fall into the categories of low and high error
(the Oxford set) or conventional and unconventional (all tests). The 30 m threshold is not
applicable for tests performed in Malmö given that their duration was variable.

Table 3. Number of tests classified as conventional vs. unconventional or low-error vs. high-error
for both datasets. As the data collected in Malmö were of varying duration, it is not possible to fix a
threshold for low/high error.

Error-Based Analysis
Low Error High Error

User-based
analysis

Conventional 43 12 22
Unconventional 20 35 40

Oxford Malmö

4.2.2. Feature Selection

RFE feature selection was performed for both the error-based and the user-based
analysis, providing two reduced sets of features to consider as input data for the subsequent
classification task. For the error-based analysis, the following six features were selected:
crows_median, speed_iqr, curve_iqr, heading_sampen, fs_sampen, and fs_iqr. For the
user-based analysis, the following six different features were chosen: quality_sampen,
curve_mean, curve_sampen, heading_std, deltaheading_mean, and deltaheading_iqr. Once
the two feature sets were decided, multicollinearity was investigated and addressed.

Figure 10 shows the feature correlation maps for the two analyses (error-based and
user-based). As expected, high correlation appears between features derived from the
same signal characteristic (e.g., fs_sampen and fs_iqr, or deltaheading_mean and delta-
heading_iqr).

To remove collinearity, correlated features were combined through simple linear
operations. During this process, VIF values were observed iteratively. Within the error-
based feature set the median of consecutive distances (crows) and the IQR of the time delta
between samples (fs) were summed and the single features dropped, respectively. For the
user-based feature set, the delta heading mean and IQR were summed, and curve mean
and sample entropy were summed as combined features, while the single components
(deltaheading_mean and deltaheading_iqr, curve_mean and curve_sampen) were dropped.
The original and final values of VIF are reported in Table 4 for the two analyses.

4.2.3. Classification Results

The results of the three classification algorithms (LR, SVM, and RF) for both the
error-based and the user-based perspective are shown in Figure 11. The models’ input
corresponds to the set of features derived from RFE selection and reduction of collinearity
methods. The Oxford dataset was used for the error-based classification, whereas both
datasets were used for the user-based classification. The performances of the binary
classification from the error-based analysis reach the highest AUC of 0.83 using the LR
algorithm, but the difference from the other models (RF and SVM) is small. The performance
of the binary classification for the user-based analysis reaches an AUC of 0.97 for LR and
SVM. Table 5 reports the sensitivity, specificity, F1-score, and accuracy of the three models
according to the considered analysis. Overall, the models better succeed in distinguishing
a conventional test from an unconventional test rather than one with high error from one
with low error.
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Figure 10. Correlation matrix of the selected features.

Table 4. Values of VIF for the original set of selected features obtained through RFE, and the non-
collinear set of features for both error-based and user-based analyses.

Error-Based Analysis

Original Features VIF Non-Collinear Features VIF

crows_median 2.22 crows_median+fs_iqr 1.09
speed_iqr 1.24 speed_iqr 1.19
heading_sampen 1.30 heading_sampen 1.29
curve_iqr 1.28 curve_iqr 1.25
fs_sampen 1.63 fs_sampen 1.06
fs_iqr 1.83

User-Based Analysis

Original Features VIF Non-Collinear Features VIF

quality_sampen 1.32 quality_sampen 1.07
curve_mean 3.89 heading_std 1.23
curve_sampen 3.20 curve_mean+sampen 1.36
heading_std 1.34 deltaheading_mean+iqr 1.56
deltaheading_mean 6.04
deltaheading_iqr 5.17
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(a) Error-based analysis. Class 0 = low error, class 1 = high error.
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Figure 11. Classification results after feature selection and collinearity reduction.

Table 5. Sensitivity, specificity, F1-score, accuracy, and AUC obtained from the three ML models for
the two analyses.

Error-Based Analysis User-Based Analysis
LR SVM RF LR SVM RF

Sensitivity 0.69 0.66 0.63 0.91 0.95 0.87
Specificity 0.82 0.83 0.82 0.95 0.95 0.90
F1-score 0.67 0.66 0.63 0.93 0.95 0.89

Accuracy 0.78 0.78 0.76 0.93 0.95 0.88

The performances of the LR classifier are promising, given its interpretability and
low computational requirements. We report the two corresponding LR equations for
error-based analysis, Equation (10), and for user-based analysis, Equation (11).

P(y = High error 6MWT) =
1

(1 + e−z1)
(10)
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P(y = Unconventional 6MWT) =
1

(1 + e−z2)
(11)

For error-based analysis, z1 corresponds to the following:

z1 = −0.22 + 0.26X1 + 0.52X2 ++0.51X3 − 0.18X4 + 0.26X5 (12)

where the inputs correspond to the following features: X1 = speed_iqr, X2 = curve_iqr,
X3 = heading_sampen, X4 = fs_sampen, and X5 = crows_median + fs_iqr.

For the user-based analysis, z2 is as follows:

z2 = 0.90 + 1.03X1 + 0.81X2 − 2.65X3 + 1.54X4 (13)

where the inputs are as follows: X1 = quality_sampen, X2 = heading_std, X3 = curve_mean
+ sampen, and X4 = deltaheading_mean + iqr.

To observe the actual contribution of each feature, the odds ratios were computed and
reported in Figure 12.
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Figure 12. Features odds ratio in error-based and user-based classification of a 6MWT.

5. Discussion
5.1. Walked Distance Estimation

We investigate the accuracy of a set of algorithms reported in the literature to compute
the 6MWD from GNSS data when the test is performed outdoors. All the algorithms work
by integrating the distance between consecutive positions received by the GNSS receiver.
The ones based on the Kalman filter (alpha-beta, Kalman 1D, Kalman 2D, and the smoothing
algorithm from [22]) include a model of the current position, speed, and confidence interval
of the user. In contrast, the baseline algorithm and the QSS [18] only make informed
decisions about what samples to include in the processing. Other algorithms could be
explored, such as deep-learning and data fusion techniques, but since we focus on using
consumer technology like smartphones and wearables for the 6-minute walk test, we have
opted for simpler techniques.

The results clearly show that all algorithms except the QSS, where pre-processing is
already embedded, benefit substantially from resampling and filtering the data to remove
samples likely affected by noise. This finding is relevant especially because no previous
work investigated the role of pre-processing on accuracy within the context of GNSS-based
6MWT. For example, [22] does not describe any data filtering, but reports an accuracy of
3.7% (for the absolute error), while [20] reports a relative mean error of 8%± 32%, though
using a correction factor computed by a retrospective analysis of their data. With our
dataset, we obtain 20.14% mean percentage absolute error on unfiltered data and 10.35%
on filtered data for the same algorithm. If we consider only conventional tests, the absolute
error drops to 3.49%, which is comparable to the results provided in the reported papers.
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These results show the effect of the shape of the walked path and of the application
of filtering techniques to noisy samples and reinforce (a) the need to test algorithms with
different walked paths, (b) the importance of providing good instructions to the user, and
(c) the need to identify and flag tests that are likely to produce inaccurate results.

Overall, no specific algorithm consistently outperforms the others across different
recording types (Table 2), but some distinctions stand out. The QSS algorithm obtains the
best accuracy for conventional recordings with percentage LOA of −6.83%, 9.06% and,
in absolute terms for Oxford 6MWTs −22.22 m, and 37.31 m. This is comparable to the
MDC value of 30 m associated with the 6MWT, and is similar to the value reported in the
original paper [18]. Unconventional tests are, however, better tolerated by Kalman-based
algorithms, such as the Kalman 1D and Kalman 2D. This can be explained by the fact that
the QSS algorithm undersamples the signal, which, in the presence of accentuated curves,
approximates the path too much. In the case of unconventional tests, none of the limits of
agreement are within even the least conservative MDC value for the 6MWT of 80 m [42].
In other words, if users do not follow instructions, even the currently best algorithms to
compensate for this cannot reliably produce clinically relevant walked distance estimations.
Instructions that are easily understandable and clear are thus crucial.

Given the similar results obtained by all the considered algorithms after pre-processing,
it may be tempting to use the baseline algorithm as it is simplest to implement. However,
in conventional tests, this algorithm shows limits of agreements of −44 and 38 m, above the
30 m MDC. According to the Bland-Altman method, the mobile-based version of the 6MWT
cannot therefore be considered equivalent to the trundle wheel. It is however relevant to
consider that the criterion for the MDC as a threshold for equivalence is quite conservative,
and in cases with a softer criterion, the algorithm could still be deemed acceptable. These
include e.g., home monitoring contexts where repeated tests can compensate for lower
accuracy [46].

5.2. Estimating the Quality of Distance Estimation

Previous work has highlighted the problem of low-quality data coming from GNSS
signal, in particular, by Stienen et al. [11] in the context of the 6MWT, and by Paziewski [10]
in a general framework of usage of the GNSS signal in smartphone applications. In a study
from Van Oirschot et al. [24], the authors considered recordings as low-quality if they
fulfilled the following criteria: invalid test duration, invalid calculated distance walked,
GNSS confidence interval median >30 m, and GNSS confidence interval standard deviation
>100 m. Our approach to detect low-quality data, compared with [24], is driven by data
instead of somewhat arbitrary rules. By analysing recordings that produce inaccurate
distance estimations, we can investigate which properties of the signal characterise these
tests. The aim is to detect tests that are likely to be inaccurate at the time of conducting the
tests, so that these can be flagged, discarded, used to ask the patient to repeat the test, and
potentially also explain to the patient why the test was inaccurate so that they can learn
how to follow the instructions.

We identified a set of features that are correlated with the error and/or to the user-
reported test type (conventional or unconventional). For both types of classes, we observed
a high correlation for features quantifying changes in the direction of the path (the curviness
and the delta heading). This is in accordance with causes of inaccuracy reported in previous
studies [10,24] and reflects the fact that users performing unconventional tests accentuated
the irregularity of the path. Additional information about the validity of the identified
features comes from feature selection. The selected features partially confirm the role of
some aspects, such as the curviness, but also add aspects that did not come up as strongly
correlated, such as the speed IQR. This is justified by the fact that positions affected by
noise induce a more irregular velocity, even after filtering. A fairly constant speed is
to be expected during the test, except in situations where the user is required to stop,
because of fatigue or external factors. In addition, also the confidence interval complexity
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(quality_sampen) and the difference in time between two consecutive positions are selected
(fs_iqr, fs_sampen).

A selection of features that is representative of data quality should subsequently in-
clude a mix of factors that indicate curved paths (e.g., curve_mean or deltaheading_mean),
variations in how the paths are curved (e.g., deltaheading_iqr, curve_iqr, or heading_std),
path complexity (e.g., heading_sampen, or curve_sampen), variations in measurement confi-
dence intervals (quality_sampen), and distances between the positions (e.g., crows_median).
Furthermore, the time difference between the samples seems to affect error-based classifi-
cation (fs_sampen and fs_iqr), this relates to the sampling frequency of the GNSS point,
which can vary along the test and across devices. When assessing potential error, speed,
distances and curviness are of particular importance, whereas for detecting if a test was
performed according to instructions, variations in curviness and confidence interval are
more important.

We trained and tested three simple ML models to perform binary classification, for
both the error-based and user-based analysis using Oxford 6MWTs for the former, and all
available tests for the latter. The results obtained from the error-based classification are
promising. However, we can see that the binary classification performed considering the
user-based analysis achieves better performances across all observed metrics, as reported
in Table 5. Thus, it is easier for the models to differentiate the tests considering the user
adherence to the instructions rather than discriminating lower or higher errors produced
by the baseline algorithm. From Figure 12, we can see that features considered in the
error-based analysis similarly impact the LR model. While, in the user-based analysis, the
sum of delta heading mean and IQR (odds ratio of 4.64) appears to have a major impact
on the LR equation. Interestingly, the combined feature of the curve mean and the sample
entropy sum seems to not affect the model in a noteworthy way. This could potentially be
explained by similar information being provided by the delta heading feature.

5.3. Limitations and Future Works

Despite the promising results and insights on the discussed topics, some limitations
still apply to our study.

The algorithms to compute the walked distance only consider the GNSS signal as
information source. We acknowledge the potential of using data fusions techniques by
including inertial measurements in further developments and we aim at sharing more work
specifically on this topic in the future.

Researchers faced challenges in verifying how individual patients in Oxford reported
if they followed the suggested guidelines or not, as no context was provided. In contrast,
the data obtained from experimental settings in Malmö were accurately defined and
documented. Additionally, when trying to replicate unconventional tests, the primary
aspect under control was the path direction. Our efforts to handle the GNSS signal error
involved enclosing the smartphone in aluminium foil; however, this intervention did not
yield any changes in the GNSS signal error.

Furthermore, the comparison between error-based and user-based classification might
be compromised given the difference in datasets used. The presentation of both sets of
results remains pertinent though, affording valuable insights that merit investigation in the
context of following developments in this domain.

Finally, future enhancements in the performance of binary classification can be achieved
by exploring alternative techniques for feature extraction and modelling, such as incorpo-
rating deep learning methods.

6. Conclusions

The exploration of remote-based functional capacity assessments has been a subject of
investigation in the existing literature. However, the current studies tend to overlook the
crucial aspect of data quality, often limiting their focus to idealised scenarios. In our study,
we present a novel approach to address this gap by introducing a feature-based method to
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evaluate the quality of the collected data from these tests. Our research aims to provide
valuable feedback on whether a smartphone-based, outdoor 6MWT can be deemed of good
quality and reliable or not. This information holds significant potential benefits for both
end-users and clinicians. On one side, when the feedback indicates low quality, end-users
have the opportunity to repeat the test. On the other side, clinicians receive the recorded
test results accompanied by quality assessments, enabling them to assess the reliability of
the calculated 6MWD. Moreover, being the LR an interpretable model and provided with
its coefficients, its implementation on hardware is feasible and it allows the explanation of
why the test is likely to be unreliable (e.g., because of the path, or poor satellite visibility).

In this research, we addressed the following two main aspects: the application of
filtering rules together with the comparison of algorithms to compute 6MWD, and the
quality estimation of a 6MWT. In addition, we provided logistic regression coefficients and
features to distinguish 6MWT based on two different perspectives, thereby enabling the
system to raise warnings when data quality is likely to be compromised.

In conclusion, this article provides valuable insights into the field of remote 6MWT
and the importance of data quality and reliability. We hope that the methodologies and
findings presented here will contribute to the advancement of remote functional capacity
assessment, ultimately improving the care and monitoring of patients in various healthcare
contexts. With these contributions, we look forward to a future where remote functional
capacity assessment becomes an indispensable tool in the healthcare industry, facilitating
patient care and outcomes. We acknowledge the need for more research and development
in this field, as it holds promising ways to assess patients’ functional capacity.
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Appendix A

Table A1 reports the results of Oxford 6MWTs and all 6MWTs without pre-processing
as associated in Figure 7. Table A2 shows the correlation coefficients for the error- and
user-based analyses
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Table A1. Statistics about distance estimation error for all algorithms, with non-pre-processed data.
Absolute mean, absolute standard deviation (SD), absolute maximum, and limits of agreement are
reported of the error for Oxford 6MWTs and in percentage for all tests.

Oxford Tests #107 [m] Conventional Oxford #55 [m] Unconventional Oxford #52 [m]
Mean (SD) Max LOA Mean (SD) Max LOA Mean (SD) Max LOA

Alpha-beta 182.56
(891.15) 7650.71

−1902.26,
1620.61

54.66
(100.97) 608.05

−251.95,
162.88

317.84
(1260.05) 7650.71

−2744.93,
2259.59

Kalman 1D 110.24
(276.72) 2688.59

−651.12,
442.88

52.83
(129.96) 970.34

−307.08,
205.63

170.96
(364.05) 2688.59

−883.32,
562.13

Kalman 2D 323.2
(981.03) 8643.36

−2245.32,
1602.83

129.44
(363.01) 1985.54

−840.76,
583.09

528.15
(1326.37) 8643.36

−3127.08,
2077.57

Kalman
smoothing

92.27
(233.31) 1879.98

−477.8,
504.33

21.7
(32.89) 189.78

−81.29,
72.1

166.91
(316.27) 1879.98

−665.92,
730.23

QSS 49.11
(81.24) 407.72

−128.71,
208.75

12.51
(12.21) 45.89

−30.63,
36.83

87.82
(102.51) 407.72

−135.37,
293.51

Baseline 152.48
(764.22) 6293.09

−1621.68,
1402.87

44.02
(117.86) 742.81

−271.28,
203.9

267.19
(1077.72) 6293.09

−2333.84,
1954.86

All Tests #169 [%] Conventional All #77 [%] Unconventional All #92 [%]
Mean (SD) Max LOA Mean (SD) Max LOA Mean (SD) Max LOA

Alpha-beta 31.75
(159.6) 1877.98

−337.74,
294.47

12.75
(18.9) 116.49

−50.11,
27.43

47.66
(214.32) 1877.98

−456.48,
395.98

Kalman 1D 22.49
(34.41) 326.29

−90.27,
48.41

15.47
(28.18) 157.22

−70.72,
40.47

28.36
(37.87) 326.29

−103.55,
51.98

Kalman 2D 2102.78
(19,631.66) 230,418.77

−40,580.23,
36,376.19

46.43
(128.49) 819.01

−298.26,
205.57

3823.85
(26,484.93) 230,418.8

−55,733.38,
48,088.31

Kalman
smoothing

20.14
(41.52) 446.95

−91.58,
89.27

9.76
(13.37) 55.68

−36.43,
21.52

28.83
(53.4) 446.95

−114.55,
122.79

QSS 11.32
(14.98) 77.35

−26.79,
41.2

3.53
(4.27) 30

−11.84,
9.35

17.84
(17.43) 77.35

−25.82,
54.36

Baseline 26.65
(143.83) 1719.57

−301.21,
268.63

10.41
(21.07) 138.58

−51.56,
33.64

40.23
(192.94) 1719.57

−406.2,
361.36

Table A2. Correlation coefficients between features and target of the error-based and user-based
analyses. The features are reported if the correlation coefficient is higher than 0.2 and p < 0.05.

Error-Based Analysis User-Based Analysis

Feature PB Feature KS Feature PB Feature KS

curve_mean 0.55 curve_mean 0.52 deltaheading_mean 0.60 deltaheading_iqr 0.73
curve_std 0.54 curve_std 0.49 deltaheading_iqr 0.55 deltaheading_mean 0.67
curve_iqr 0.54 curve_iqr 0.48 curve_std 0.54 deltaheading_median 0.62

deltaheading_iqr 0.52 heading_sampen 0.48 heading_std 0.49 curve_std 0.62
curve_median 0.47 deltaheading_median 0.48 deltaheading_std 0.47 curve_mean 0.62

deltaheading_mean 0.46 deltaheading_iqr 0.47 deltaheading_median 0.47 curve_iqr 0.54
deltaheading_median 0.44 curve_median 0.44 curve_mean 0.46 curve_median 0.52

heading_sampen 0.35 heading_acflag 0.42 heading_acfpeak 0.43 heading_iqr 0.50
deltaheading_sampen 0.32 speed_iqr 0.41 curve_iqr 0.41 heading_std 0.48

deltaheading_std 0.25 deltaheading_mean 0.40 heading_iqr 0.41 deltaheading_sampen 0.46
speed_median 0.25 deltaheading_std 0.37 deltaheading_sampen 0.38 deltaheading_std 0.46
speed_mean 0.24 deltaheading_sampen 0.35 heading_sampen 0.38 speed_iqr 0.46

curve_acfpeak 0.22 curve_acflag 0.33 speed_mean 0.36 heading_sampen 0.44
heading_acfpeak 0.22 speed_sampen 0.32 curve_median 0.36 speed_mean 0.40

curve_acflag 0.21 fs_acfpeak 0.31 speed_median 0.35 heading_acfpeak 0.39
curve_sampen 0.31 speed_sampen 0.29 speed_median 0.39
speed_acfpeak 0.30 speed_iqr 0.29 deltaheading_acfpeak 0.38
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Table A2. Cont.

Error-Based Analysis User-Based Analysis

Feature PB Feature KS Feature PB Feature KS

heading_mean 0.30 heading_acflag 0.28 heading_mean 0.37
speed_std 0.29 speed_acfpeak 0.24 heading_median 0.36

heading_median 0.29 deltaheading_acfpeak 0.22 heading_acflag 0.33
deltaheading_acfpeak 0.29 quality_acflag 0.22 speed_std 0.28

speed_median 0.27 curve_sampen 0.21 speed_sampen 0.28
quality_acflag 0.25

quality_std 0.24
curve_sampen 0.23

crows_std 0.22
speed_acfpeak 0.22

quality_acfpeak 0.22
quality_sampen 0.21

speed_acflag 0.21

References
1. Koju, B.; Chaudhary, S.; Shrestha, A.; Joshi, L.R. Cardio-respiratory fitness in medical students by queen’s college step test: A

cross-sectional study. J. Lumbini Med. Coll. 2019, 7, 29–33. [CrossRef]
2. Herman, T.; Giladi, N.; Hausdorff, J.M. Properties of the ‘timed up and go’test: More than meets the eye. Gerontology 2011,

57, 203–210. [CrossRef] [PubMed]
3. Bean, J.F.; Kiely, D.K.; Leveille, S.G.; Herman, S.; Huynh, C.; Fielding, R.; Frontera, W. The 6-minute walk test in mobility-limited

elders: What is being measured? J. Gerontol. Ser. Biol. Sci. Med. Sci. 2002, 57, M751–M756. [CrossRef] [PubMed]
4. Bautmans, I.; Lambert, M.; Mets, T. The six-minute walk test in community dwelling elderly: Influence of health status. BMC

Geriatr. 2004, 4, 1–9. [CrossRef] [PubMed]
5. Enright, P.L. The six-minute walk test. Respir. Care 2003, 48, 783–785. [PubMed]
6. Holland, A.E.; Spruit, M.A.; Troosters, T.; Puhan, M.A.; Pepin, V.; Saey, D.; McCormack, M.C.; Carlin, B.W.; Sciurba, F.C.; Pitta, F.;

et al. An official European Respiratory Society/American Thoracic Society technical standard: Field walking tests in chronic
respiratory disease. Eur. Respir. J. 2014, 44, 1428–1446. [CrossRef] [PubMed]

7. Kim, E.K.; Conrow, L.; Röcke, C.; Chaix, B.; Weibel, R.; Perchoux, C. Advances and challenges in sensor-based research in mobility,
health, and place. Health Place 2023, 79, 102972. [CrossRef] [PubMed]

8. Mak, J.; Rens, N.; Savage, D.; Nielsen-Bowles, H.; Triggs, D.; Talgo, J.; Gandhi, N.; Gutierrez, S.; Gutierrez, S.; Aalami, O.
Reliability and repeatability of a smartphone-based 6-min walk test as a patient-centred outcome measure. Eur. Heart J. Digit.
Health 2021, 2, 77–87. [CrossRef] [PubMed]

9. Pires, I.M.; Denysyuk, H.V.; Villasana, M.V.; Sá, J.; Marques, D.L.; Morgado, J.F.; Albuquerque, C.; Zdravevski, E. Development
technologies for the monitoring of six-minute walk test: A systematic review. Sensors 2022, 22, 581. [CrossRef]

10. Paziewski, J. Recent advances and perspectives for positioning and applications with smartphone GNSS observations. Meas. Sci.
Technol. 2020, 31, 091001. [CrossRef]

11. Stienen, M.N.; Gautschi, O.P.; Staartjes, V.E.; Maldaner, N.; Sosnova, M.; Ho, A.L.; Veeravagu, A.; Desai, A.; Zygourakis, C.C.;
Park, J.; et al. Reliability of the 6-minute walking test smartphone application. J. Neurosurg. Spine 2019, 31, 786–793. [CrossRef]
[PubMed]

12. Zangenehnejad, F.; Gao, Y. GNSS smartphones positioning: Advances, challenges, opportunities, and future perspectives. Satell.
Navig. 2021, 2, 24. [CrossRef] [PubMed]

13. Basso, M.; Martinelli, A.; Morosi, S.; Sera, F. A real-time GNSS/PDR navigation system for mobile devices. Remote Sens. 2021,
13, 1567. [CrossRef]

14. Jiang, C.; Chen, Y.; Chen, C.; Jia, J.; Sun, H.; Wang, T.; Hyyppä, J. Smartphone PDR/GNSS Integration via Factor Graph
Optimization for Pedestrian Navigation. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [CrossRef]

15. Jiang, C.; Chen, Y.; Chen, C.; Hyyppä, J. Walking Gaits Aided Mobile GNSS for Pedestrian Navigation in Urban Areas. IEEE
Internet Things J. 2023, 11, 8499–8510. [CrossRef]

16. Shah, V.V.; Curtze, C.; Sowalsky, K.; Arpan, I.; Mancini, M.; Carlson-Kuhta, P.; El-Gohary, M.; Horak, F.B.; McNames, J. Inertial
Sensor Algorithm to Estimate Walk Distance. Sensors 2022, 22, 1077. [CrossRef] [PubMed]

17. Wevers, L.; Kwakkel, G.; van de Port, I. Is outdoor use of the six-minute walk test with a global positioning system in stroke
patients’ own neighbourhoods reproducible and valid? J. Rehabil. Med. 2011, 43, 1027–1031. [PubMed]

http://doi.org/10.22502/jlmc.v7i1.268
http://dx.doi.org/10.1159/000314963
http://www.ncbi.nlm.nih.gov/pubmed/20484884
http://dx.doi.org/10.1093/gerona/57.11.M751
http://www.ncbi.nlm.nih.gov/pubmed/12403805
http://dx.doi.org/10.1186/1471-2318-4-6
http://www.ncbi.nlm.nih.gov/pubmed/15272934
http://www.ncbi.nlm.nih.gov/pubmed/12890299
http://dx.doi.org/10.1183/09031936.00150314
http://www.ncbi.nlm.nih.gov/pubmed/25359355
http://dx.doi.org/10.1016/j.healthplace.2023.102972
http://www.ncbi.nlm.nih.gov/pubmed/36740543
http://dx.doi.org/10.1093/ehjdh/ztab018
http://www.ncbi.nlm.nih.gov/pubmed/36711173
http://dx.doi.org/10.3390/s22020581
http://dx.doi.org/10.1088/1361-6501/ab8a7d
http://dx.doi.org/10.3171/2019.6.SPINE19559
http://www.ncbi.nlm.nih.gov/pubmed/31518975
http://dx.doi.org/10.1186/s43020-021-00054-y
http://www.ncbi.nlm.nih.gov/pubmed/34870240
http://dx.doi.org/10.3390/rs13081567
http://dx.doi.org/10.1109/TIM.2022.3186082
http://dx.doi.org/10.1109/JIOT.2023.3319014
http://dx.doi.org/10.3390/s22031077
http://www.ncbi.nlm.nih.gov/pubmed/35161822
http://www.ncbi.nlm.nih.gov/pubmed/22031349


Sensors 2024, 24, 2632 23 of 24

18. Salvi, D.; Poffley, E.; Orchard, E.; Tarassenko, L. The mobile-based 6-minute walk test: Usability study and algorithm development
and validation. JMIR mHealth uHealth 2020, 8, e13756. [CrossRef]

19. Salvi, D.; Poffley, E.; Tarassenko, L.; Orchard, E. App-based versus standard six-minute walk test in pulmonary hypertension:
Mixed methods study. JMIR mHealth uHealth 2021, 9, e22748. [CrossRef]

20. Ata, R.; Gandhi, N.; Rasmussen, H.; El-Gabalawy, O.; Gutierrez, S.; Ahmad, A.; Suresh, S.; Ravi, R.; Rothenberg, K.; Aalami,
O. Clinical validation of smartphone-based activity tracking in peripheral artery disease patients. Npj Digit. Med. 2018, 1, 66.
[CrossRef]

21. Ata, R.; Gandhi, N.; Rasmussen, H.; El-Gabalawy, O.; Agrawal, A.; Kongara, S.; Majeed, M.; Aalami, O. IP225 VascTrac: A study
of peripheral artery disease via smartphones to improve remote disease monitoring and postoperative surveillance. J. Vasc. Surg.
2017, 65, 115S–116S. [CrossRef]

22. Ziegl, A.; Rzepka, A.; Kastner, P.; Vinatzer, H.; Edegger, K.; Hayn, D.; Prescher, S.; Möller, V.; Schreier, G. mHealth 6-minute
walk test–accuracy for detecting clinically relevant differences in heart failure patients. In Proceedings of the 2021 43rd Annual
International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual, 1–5 November 2021; IEEE:
New York, NY, USA, 2021; pp. 7095–7098.

23. Ogris, M.; Edegger, K.; Rzepka, A.; Ziegl, A.; Schreier, G. Improved Global Navigation Satellite System filtering methods for
the mobile six-minute walk test. In Current Directions in Biomedical Engineering; De Gruyter: Berlin, Germany, 2022; Volume 8,
pp. 221–224.

24. Van Oirschot, P.; Heerings, M.; Wendrich, K.; Den Teuling, B.; Dorssers, F.; Van Ee, R.; Martens, M.B.; Jongen, P.J. A two-minute
walking test with a smartphone app for persons with multiple sclerosis: Validation study. JMIR Form. Res. 2021, 5, e29128.
[CrossRef] [PubMed]

25. Xie, P.; Petovello, M.G. Measuring GNSS multipath distributions in urban canyon environments. IEEE Trans. Instrum. Meas. 2014,
64, 366–377.

26. Timed Walk App. Available online: https://dariosalvi78.github.io/TimedWalkApp/index.html (accessed on 15 January 2024).
27. Alves, F.; Cruz, S.; Ribeiro, A.; Bastos Silva, A.; Martins, J.; Cunha, I. Walkability index for elderly health: A proposal. Sustainability

2020, 12, 7360. [CrossRef]
28. Painter, J.H.; Kerstetter, D.; Jowers, S. Reconciling Steady-State Kalman and Alpha-Beta Filter Design. IEEE Trans. Aerosp. Electron.

Syst. 1990, 26, 986–991. [CrossRef]
29. Sadli, R. Object Tracking: Simple Implementation of Kalman Filter in Python. 2020. Available online: https://

machinelearningspace.com/object-tracking-python/ (accessed on 15 January 2024).
30. Sadli, R. Object Tracking: 2-D Object Tracking Using Kalman Filter in Python. 2020. Available online: https://

machinelearningspace.com/2d-object-tracking-using-kalman-filter/ (accessed on 15 January 2024).
31. Deep, A.; Mittal, M.; Mittal, V. Application of Kalman Filter in GPS Position Estimation. In Proceedings of the 2018 IEEE 8th

Power India International Conference (PIICON), Kurukshetra, India, 10–12 December 2018; pp. 1–5. [CrossRef]
32. Ashok Kumar, N.; Suresh, C.; Sasibhushana Rao, G. Extended Kalman filter for GPS receiver position estimation. In Intelligent

Engineering Informatics: Proceedings of the 6th International Conference on FICTA, Singapore, 2018; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 481–488.

33. Welch, G.; Bishop, G. An Introduction to the Kalman Filter; Department of Computer Science University of North Carolina at
Chapel Hill: Chapel Hill, NC, USA, 1995.

34. Kalata, P.R. The tracking index: A generalized parameter for α-β and α-β-γ target trackers. IEEE Trans. Aerosp. Electron. Syst.
1984, AES-20, 174–182. [CrossRef]

35. Gray, J.; Murray, W. A derivation of an analytic expression for the tracking index for the alpha-beta-gamma filter. IEEE Trans.
Aerosp. Electron. Syst. 1993, 29, 1064–1065. [CrossRef]

36. Byron, M.Y.; Shenoy, K.V.; Sahani, M. Derivation of Kalman Filtering and Smoothing Equations; Technical Report; Stanford University:
Stanford, CA, USA, 2004.

37. Wilhelm, F. Handling GPS Data with Python. 2016. Available online: https://github.com/FlorianWilhelm/gps_data_with_
python/blob/master/notebooks/4-pykalman.ipynb (accessed on 15 January 2024).

38. Government, U. GPS Accuracy. Available online: https://www.gps.gov/systems/gps/performance/accuracy/ (accessed on 15
January 2024).

39. Tate, R.F. Correlation between a discrete and a continuous variable. Point-biserial correlation. Ann. Math. Stat. 1954, 25, 603–607.
[CrossRef]

40. Chan, W.L.; Pin, T.W. Reliability, validity and minimal detectable change of 2-minute walk test, 6-minute walk test and 10-meter
walk test in frail older adults with dementia. Exp. Gerontol. 2019, 115, 9–18. [CrossRef]

41. Ries, J.D.; Echternach, J.L.; Nof, L.; Gagnon Blodgett, M. Test-retest reliability and minimal detectable change scores for the timed
“up & go” test, the six-minute walk test, and gait speed in people with Alzheimer disease. Phys. Ther. 2009, 89, 569–579.

42. Wise, R.A.; Brown, C.D. Minimal clinically important differences in the six-minute walk test and the incremental shuttle walking
test. COPD J. Chronic Obstr. Pulm. Dis. 2005, 2, 125–129. [CrossRef] [PubMed]

43. Venkatesh, B.; Anuradha, J. A review of feature selection and its methods. Cybern. Inf. Technol. 2019, 19, 3–26. [CrossRef]
44. Senaviratna, N.; A Cooray, T. Diagnosing multicollinearity of logistic regression model. Asian J. Probab. Stat. 2019, 5, 1–9.

[CrossRef]

http://dx.doi.org/10.2196/13756
http://dx.doi.org/10.2196/22748
http://dx.doi.org/10.1038/s41746-018-0073-x
http://dx.doi.org/10.1016/j.jvs.2017.03.217
http://dx.doi.org/10.2196/29128
http://www.ncbi.nlm.nih.gov/pubmed/34787581
https://dariosalvi78.github.io/TimedWalkApp/index.html
http://dx.doi.org/10.3390/su12187360
http://dx.doi.org/10.1109/7.62250
https://machinelearningspace.com/object-tracking-python/
https://machinelearningspace.com/object-tracking-python/
https://machinelearningspace.com/2d-object-tracking-using-kalman-filter/
https://machinelearningspace.com/2d-object-tracking-using-kalman-filter/
http://dx.doi.org/10.1109/POWERI.2018.8704368
http://dx.doi.org/10.1109/TAES.1984.310438
http://dx.doi.org/10.1109/7.220956
https://github.com/FlorianWilhelm/gps_data_with_python/blob/master/notebooks/4-pykalman.ipynb
https://github.com/FlorianWilhelm/gps_data_with_python/blob/master/notebooks/4-pykalman.ipynb
https://www.gps.gov/systems/gps/performance/accuracy/
http://dx.doi.org/10.1214/aoms/1177728730
http://dx.doi.org/10.1016/j.exger.2018.11.001
http://dx.doi.org/10.1081/COPD-200050527
http://www.ncbi.nlm.nih.gov/pubmed/17136972
http://dx.doi.org/10.2478/cait-2019-0001
http://dx.doi.org/10.9734/ajpas/2019/v5i230132


Sensors 2024, 24, 2632 24 of 24

45. Midi, H.; Sarkar, S.K.; Rana, S. Collinearity diagnostics of binary logistic regression model. J. Interdiscip. Math. 2010, 13, 253–267.
[CrossRef]

46. Stevens, N.T.; Steiner, S.H.; MacKay, R.J. Assessing agreement between two measurement systems: An alternative to the limits of
agreement approach. Stat. Methods Med. Res. 2017, 26, 2487–2504. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/09720502.2010.10700699
http://dx.doi.org/10.1177/0962280215601133

	Introduction
	Related Work
	Materials and Methods
	Dataset
	Data Pre-Processing and Filtering
	Algorithms for Walked Distance Estimation
	Data Quality Estimation
	Features Extraction
	Features Validity
	Feature Selection and Classification


	Results
	Walked Distance Estimation
	Data Quality Estimation
	Feature Validity
	Feature Selection
	Classification Results


	Discussion
	Walked Distance Estimation
	Estimating the Quality of Distance Estimation
	Limitations and Future Works

	Conclusions
	Appendix A
	References

