
Citation: Shayne, M.; Molina, L.A.;

Hu, B.; Chomiak, T. Implementing

Gait Kinematic Trajectory Forecasting

Models on an Embedded System.

Sensors 2024, 24, 2649. https://

doi.org/10.3390/s24082649

Academic Editors: Toshiyo Tamura

and Miguel Velhote Correia

Received: 20 February 2024

Revised: 21 March 2024

Accepted: 17 April 2024

Published: 21 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Implementing Gait Kinematic Trajectory Forecasting Models on
an Embedded System
Madina Shayne 1, Leonardo A. Molina 2 , Bin Hu 3 and Taylor Chomiak 2,3,*

1 Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW,
Calgary, AB T2N 1N4, Canada

2 CSM Optogenetics Platform, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada;
leonardo.molina@ucalgary.ca

3 Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute,
Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary,
3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; hub@ucalgary.ca

* Correspondence: tgchomia@ucalgary.ca

Abstract: Smart algorithms for gait kinematic motion prediction in wearable assistive devices includ-
ing prostheses, bionics, and exoskeletons can ensure safer and more effective device functionality.
Although embedded systems can support the use of smart algorithms, there are important limitations
associated with computational load. This poses a tangible barrier for models with increased complex-
ity that demand substantial computational resources for superior performance. Forecasting through
Recurrent Topology (FReT) represents a computationally lightweight time-series data forecasting
algorithm with the ability to update and adapt to the input data structure that can predict complex
dynamics. Here, we deployed FReT on an embedded system and evaluated its accuracy, computa-
tional time, and precision to forecast gait kinematics from lower-limb motion sensor data from fifteen
subjects. FReT was compared to pretrained hyperparameter-optimized NNET and deep-NNET
(D-NNET) model architectures, both with static model weight parameters and iteratively updated
model weight parameters to enable adaptability to evolving data structures. We found that FReT was
not only more accurate than all the network models, reducing the normalized root-mean-square error
by almost half on average, but that it also provided the best balance between accuracy, computational
time, and precision when considering the combination of these performance variables. The proposed
FReT framework on an embedded system, with its improved performance, represents an important
step towards the development of new sensor-aided technologies for assistive ambulatory devices.

Keywords: gait; sensor; wearable; embedded system; forecast

1. Introduction

The advancement in sensor-aided gait kinematic forecasting methods that can incor-
porate ongoing user-specific sensor signal information on an embedded system could have
a significant impact on the design of intelligent lower-limb assistive devices [1]. Unlike
fixed-motion capture systems, embedded systems offer a low-cost approach for the col-
lection of high-quality, multi-source data for motion control purposes [2,3]. Moreover,
the portability of wearable embedded systems has numerous practical applications for
human–robot interactions to enable more efficient integration of a user’s natural body
motion with an assistive device [4,5]. For instance, the deployment of sensor-aided gait
kinematic forecasting technologies on embedded systems can be used to help reduce dam-
age to joints, enhance rehabilitation outcomes, and even reduce the healthcare economic
burden by lowering total healthcare system utilization [4,5]. While embedded systems can
support the use of gait kinematic forecasting models for a variety of integrated robotic
technologies, there are important limitations related to computational load when using
complex state-of-the-art models on embedded systems [1]. To address this, the primary

Sensors 2024, 24, 2649. https://doi.org/10.3390/s24082649 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24082649
https://doi.org/10.3390/s24082649
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6601-7185
https://doi.org/10.3390/s24082649
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24082649?type=check_update&version=1

Sensors 2024, 24, 2649 2 of 16

objective of this study was to deploy and evaluate a new computationally lightweight
prediction algorithm with reduced complexity and demand for substantial computational
resources to enable more effective gait kinematic forecasting on an embedded system. In
the following, we will first outline work specifically related to this topic and then describe
the methodology and experimental results that are discussed in relation to the use of this
new algorithm for sensor-aided gait kinematic forecasting on embedded systems.

2. Related Work

Walking is an essential activity in daily life. Mobility augmentation through the use
of wearable assistive ambulatory devices can provide vertical support, assist in lower-
limb motion, and improve the quality of life for users [4,6–15]. In addition to the medical
applications of wearable assistive ambulatory devices, the impact of various non-medical
applications of these devices is also being realized, as they may be able to help healthy
individuals perform important activities in daily life [4,5,16]. While there are intricate
complexities related to safety regulatory requirements, user acceptance, as well as device
reliability and adaptability that need to be considered, assistive ambulatory devices have
the potential to help in such situations and may even reduce the burden on healthcare
resources [4]. Nevertheless, given the importance of mobility assistance for both medical
and non-medical end-user applications, there has been increasing interest in designing
more effective and intelligent assistive ambulatory technologies [1,4–6,8,9,11,12,17–29].

Walking trajectory-tracking controllers, characterized by the sensor-aided forecast-
ing of gait kinematic trajectories, represent the next generation in the design of assistive
ambulatory devices. This technology aims to achieve natural, stable, and accurate in-
teractive control with respect to human motion intention [3]. It can be used to reduce
injury to users as well as compensate for delays in the response time of more complex
control systems [1,3,17,18,22,23,30]. Forecasting gait kinematics can also enable targeted
functional electrical stimulation at specific points in the gait cycle, leading to more effective
rehabilitation therapy, and may even minimize the risk of falling by detecting deviations in
the anticipated gait trajectory [1,23,28,29]. However, while lower-limb kinematic trajectory
prediction can be used to solve numerous problems facing lower-limb robotics, a significant
limiting factor for the implementation of accurate gait forecasting in the design of smart
devices is the inability of most forecasting models to support continuous model learn-
ing [1]. Continuous learning (CL) would enable adaptive model building to continuously
incorporate user-specific [25,31] and current dynamic signal information. This can lead to
reliable predictions needed for improved device functionality and user safety [8,10,17,24]
while avoiding prediction errors when pretrained models are used under unexpected
conditions or conditions that were not included in the initial training process [32–34]. This
is particularly relevant for gait, which is dynamically modulated to adjust for differing
environmental conditions and meet the needs of ever-changing motor demands [26].

An obvious prerequisite for adaptive model building is the ability for CL to be com-
pleted quickly. However, modern prediction models are inherently complex, often requiring
hyperparameter optimization and tuning in high-dimensional parameter space [1,6,35–38].
Increasing the number of parameter weights, which is inextricably linked with model
architecture complexity, also increases computation time [39]. While increasing model
complexity can improve model performance, it is at the expense of rapid CL capabilities [1].
In other words, the fast arrival of new data, together with increasingly slow retraining and
optimization processes that are constrained on embedded ambulatory systems, poses a
significant barrier to CL. Thus, new methods that permit CL capabilities on embedded
systems could have a broad range of practical applications.

Local topological recurrence analysis represents a new computational approach we
developed for identifying emergent recurring patterns in a signal’s surface topology [40].
Recently, we have expanded on the theoretical and practical properties of local topological
recurrence analysis to provide a simple solution for time-series forecasting [38]. Forecasting
through Recurrent Topology (FReT) identifies recurring patterns in local signal shapes to

Sensors 2024, 24, 2649 3 of 16

reveal unique memory traces embedded in a time-series signal that can be used to forecast
a system’s upcoming time evolution [38]. Furthermore, unlike many other types of models,
there is no need for computationally costly optimization and tuning procedures [38]. FReT’s
simplicity may therefore enable new capabilities for CL to incorporate current dynamic
signal information into forecasting. Hence, the objective of this study was to deploy and
evaluate FReT-enabled gait kinematic forecasting on an embedded system for prototyping
on affordable, embedded hardware that can simplify the integration of sensor-aided gait
forecasting into real-world applications.

3. Materials and Methods
3.1. Artificial Neural Network Models

Artificial neural networks are a type of artificial intelligence technology that mimics
the human brain’s powerful ability to recognize patterns [39]. These models have been
used successfully for modelling a broad range of time-series data [36,38,41,42]. The task
of the artificial neural network is to model the underlying data-generating process during
training so that valid forecasts can be made when the parameterized model is subsequently
presented with new input data [35]. The most widely used and often preferred models
when building artificial neural network forecasting models are those with a Multilayer
Perceptron architecture, given its computational efficiency and efficacy and its ability to be
extended to deep learning (Figure 1) [1,35,36,38,41,43,44]. Mathematically, a basic artificial
neural network model (NNET) can be represented as follows:

xt+s = β0 + ∑D
j=1 β jg

(
γ0j + ∑m

i=1 γij xt−(i−1)d

)
(1)

in which there are two critical hyperparameters that need to be chosen, the embedding
dimension, m, which captures the autocorrelation structure of the time series, and the
number of hidden units, D [35,41,43]. For an artificial neural network model with a deep
architecture (D-NNET), the number of hidden layers also needs to be determined [38,45].

Sensors 2024, 24, x FOR PEER REVIEW 4 of 17

Figure 1. Basic artificial neural network architecture for time-series forecasting. The widely used
NNET model (left), given its versatility in modelling a wide range of time-series data, and its ability
to be extended to deep learning (right). The two critical hyperparameters that need to be chosen
correctly for NNET models are the embedding dimension, m, and the number of hidden units, D.
For NNET models with a deep architecture (D-NNET), the number of hidden layers also needs to
be determined.

3.2. Forecasting through Recurrent Topology
Forecasting through Recurrent Topology (FReT) is a time-series data prediction al-

gorithm method that is based on learning recurrent patterns in a series’ local topology
[38]. It is a versatile algorithm that reduces computational complexity and cost, with
demonstrated feasibility using a variety of dynamic systems [38]. Unlike highly parame-
terized models, there is no need for computationally costly hyperparameter optimization
and tuning procedures in high-dimensional parameter space.

FReT works by taking a data sequence where 𝑥⃑ represents a one-dimensional time-
series vector: 𝑥⃑ = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥௡) (2)

and generates a Euclidean distance matrix (𝐷), which is remapped to a local 3 × 3 neigh-
bourhood topological matrix (𝑇′): (𝑇௜௝ᇱ)଼ ∶ 𝐷 → 𝑇′ (3)

(𝑇௜௝ᇱ)଼ = ∑ 𝑠(𝑔௤ − 𝑔଴)2௤ିଵ௤଼ୀଵ ; 𝑠(𝑥) = ቄ 0, 𝑥 ൏ 01, 𝑥 ൒ 0 (4)

A binary code is then created by moving around the central point, g0, where a single
integer value is calculated based on the sum of the binary code elements (0 or 1) multiplied
by the eight positional weights (Figure 2a). This represents 8-bit binary coding, where
there are 2଼ (256) different possible integer values that are partitioned into sextiles (six
flattened layers) [38], generating a two-dimensional local topological matrix (𝑇′) com-
posed of a set of six integer values, ℤ = ሼ1,2,3,4,5,6ሽ (Figure 2b–d). Each point along the
two-dimensional matrix diagonal represents a point in the signal sequence and its associ-
ated row vector (Figure 2d).

From 𝑇′, element-wise differences in all prior row vectors are computed with respect
to the last row vector (an index of the system’s current state), generating a 1 (true) if their
difference equals zero, otherwise 0 (false). These binary elements are summed and di-
vided by the length of the row vector. This generates a similarity metric (Figure 3a) that
ranges from 0 to 1 that can be used to find the index (+3 to account for the padded local
topological matrix and beginning one step in the future) of the encoded training data top-
ological archetype(s). This similarity metric differentially weights the importance of each
part of the input training data. This produces a one-dimensional weight vector with re-
spect to the system’s current state. The higher the values, the more closely the topological
sequences align with the system’s current state based on topological patterning [38]. These

Figure 1. Basic artificial neural network architecture for time-series forecasting. The widely used
NNET model (left), given its versatility in modelling a wide range of time-series data, and its ability
to be extended to deep learning (right). The two critical hyperparameters that need to be chosen
correctly for NNET models are the embedding dimension, m, and the number of hidden units, D.
For NNET models with a deep architecture (D-NNET), the number of hidden layers also needs to
be determined.

Given that there is no general rule that can be followed to select the most appropriate
hyperparameters, training data are used to estimate the optimal hyperparameter values
and model architectures based on minimizing error-related terms during training. This step
is typically computationally expensive. Using this approach, pretrained hyperparameter-
optimized NNET models can be built. These models represent a simplified approach
adept at handling tasks with constrained data availability, owing to their streamlined
architecture and efficient training process. Yet, their simplicity can sometimes come at

Sensors 2024, 24, 2649 4 of 16

the expense of performance, as they are not able to extract deep features [46]. Conversely,
D-NNET architectures describe models that utilize multiple hidden layers to represent
features at higher and more abstract levels that are learned from the data [46]. D-NNET
architectures, characterized by their increased complexity and capacity for performance,
often demand substantial computational resources and extensive datasets for more effective
training and deployment. However, the greater the number of weight parameters relative
to the size of the training data, the greater the ability of the network to memorize the
idiosyncrasies of individual observations. As a result, model generalization can be lost,
leading to the development of a model that can be of little use in forecasting [39]. While the
flexibility of artificial neural network models provides a potentially powerful forecasting
tool, hyperparameter/parameter determination can complicate the design process [39].

3.2. Forecasting through Recurrent Topology

Forecasting through Recurrent Topology (FReT) is a time-series data prediction algo-
rithm method that is based on learning recurrent patterns in a series’ local topology [38].
It is a versatile algorithm that reduces computational complexity and cost, with demon-
strated feasibility using a variety of dynamic systems [38]. Unlike highly parameterized
models, there is no need for computationally costly hyperparameter optimization and
tuning procedures in high-dimensional parameter space.

FReT works by taking a data sequence where
⇀
x represents a one-dimensional time-

series vector:
⇀
x = (x1, x2, x3, . . . , xn) (2)

and generates a Euclidean distance matrix (D), which is remapped to a local 3 × 3 neigh-
bourhood topological matrix (T′): (

T′
ij

)
8

: D → T′ (3)

(
T′

ij

)
8
= ∑8

q=1 s
(

gq − g0
)
2q−1; s(x) =

{
0, x < 0
1, x ≥ 0

(4)

A binary code is then created by moving around the central point, g0, where a single
integer value is calculated based on the sum of the binary code elements (0 or 1) multiplied
by the eight positional weights (Figure 2a). This represents 8-bit binary coding, where there
are 28 (256) different possible integer values that are partitioned into sextiles (six flattened
layers) [38], generating a two-dimensional local topological matrix (T′) composed of a set of
six integer values, Z = {1, 2, 3, 4, 5, 6} (Figure 2b–d). Each point along the two-dimensional
matrix diagonal represents a point in the signal sequence and its associated row vector
(Figure 2d).

From T′, element-wise differences in all prior row vectors are computed with respect
to the last row vector (an index of the system’s current state), generating a 1 (true) if their
difference equals zero, otherwise 0 (false). These binary elements are summed and divided
by the length of the row vector. This generates a similarity metric (Figure 3a) that ranges
from 0 to 1 that can be used to find the index (+3 to account for the padded local topological
matrix and beginning one step in the future) of the encoded training data topological
archetype(s). This similarity metric differentially weights the importance of each part of
the input training data. This produces a one-dimensional weight vector with respect to the
system’s current state. The higher the values, the more closely the topological sequences
align with the system’s current state based on topological patterning [38]. These topological
archetypes ultimately reveal unique memory traces of past system behaviour(s) that can
be used to construct a single multi-step-ahead embodied model of a dynamic system’s
upcoming unseen dynamics [38] (Figure 3b,c). This approach has recently shown promise
for forecasting human gait kinematics [38].

Sensors 2024, 24, 2649 5 of 16

Sensors 2024, 24, x FOR PEER REVIEW 5 of 17

topological archetypes ultimately reveal unique memory traces of past system behav-
iour(s) that can be used to construct a single multi-step-ahead embodied model of a dy-
namic system’s upcoming unseen dynamics [38] (Figure 3b,c). This approach has recently
shown promise for forecasting human gait kinematics [38].

Figure 2. Extracting local topological patterning. A schematic illustrating the basic premise behind
local topological pattern extraction (a). The process starts by creating a distance matrix from an input
time-series signal. A binary code is then created by moving around the central point, g0, where a
single integer value is calculated based on the sum of the binary code elements (0 or 1) multiplied
by the eight positional weights. This is carried out over the entire distance matrix. (b–d) present an
example of this process. A simulated time series (b), its traditional distance matrix (c), and the ex-
tracted local topological matrix (d). See text for additional details.

Figure 3. Topological patterning and archetype identification. A similarity metric related to the in-
dex of the training data that is used for topological archetype identification that effectively reduces
to a simple maximization problem ((a), red circle). Panels b-c present the forecasted local topology
of this identified archetype and the actual unseen signal topology of a simulated time-series signal
((b); very similar although not quite identical) that is used to construct an embodied model of the
system’s upcoming dynamics (c). The colors in panel b reflect the set of six integer values.

Figure 2. Extracting local topological patterning. A schematic illustrating the basic premise behind
local topological pattern extraction (a). The process starts by creating a distance matrix from an input
time-series signal. A binary code is then created by moving around the central point, g0, where a
single integer value is calculated based on the sum of the binary code elements (0 or 1) multiplied
by the eight positional weights. This is carried out over the entire distance matrix. (b–d) present
an example of this process. A simulated time series (b), its traditional distance matrix (c), and the
extracted local topological matrix (d). See text for additional details.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 17

topological archetypes ultimately reveal unique memory traces of past system behav-
iour(s) that can be used to construct a single multi-step-ahead embodied model of a dy-
namic system’s upcoming unseen dynamics [38] (Figure 3b,c). This approach has recently
shown promise for forecasting human gait kinematics [38].

Figure 2. Extracting local topological patterning. A schematic illustrating the basic premise behind
local topological pattern extraction (a). The process starts by creating a distance matrix from an input
time-series signal. A binary code is then created by moving around the central point, g0, where a
single integer value is calculated based on the sum of the binary code elements (0 or 1) multiplied
by the eight positional weights. This is carried out over the entire distance matrix. (b–d) present an
example of this process. A simulated time series (b), its traditional distance matrix (c), and the ex-
tracted local topological matrix (d). See text for additional details.

Figure 3. Topological patterning and archetype identification. A similarity metric related to the in-
dex of the training data that is used for topological archetype identification that effectively reduces
to a simple maximization problem ((a), red circle). Panels b-c present the forecasted local topology
of this identified archetype and the actual unseen signal topology of a simulated time-series signal
((b); very similar although not quite identical) that is used to construct an embodied model of the
system’s upcoming dynamics (c). The colors in panel b reflect the set of six integer values.

Figure 3. Topological patterning and archetype identification. A similarity metric related to the index
of the training data that is used for topological archetype identification that effectively reduces to a
simple maximization problem ((a), red circle). Panels b-c present the forecasted local topology of this
identified archetype and the actual unseen signal topology of a simulated time-series signal ((b); very
similar although not quite identical) that is used to construct an embodied model of the system’s
upcoming dynamics (c). The colors in panel b reflect the set of six integer values.

3.3. Kinematic Trajectory Forecasting

An advantage of FReT is that its forecasts are based on the original data and associated
scale [38]. Kinematic trajectory forecasts based on FReT can therefore be generated directly
from the input window data. For NNET and D-NNET models, the training dataset was first
used to estimate hyperparameters and model architectures before being deployed to the

Sensors 2024, 24, 2649 6 of 16

embedded system (Figure 4a,b). For testing, data were z-score-scaled to standardize model
training, and the data of each input window were first z-score-scaled before being fed into
the model (Figure 4c). The forecasted gait data, a z-score output, were then converted back
to the original sensor scale based on the attributes (mean and standard deviation) of the
z-scored input window data. This enabled comparison to the true sensor signal test data
(Figure 4c).

Sensors 2024, 24, x FOR PEER REVIEW 6 of 17

3.3. Kinematic Trajectory Forecasting
An advantage of FReT is that its forecasts are based on the original data and associ-

ated scale [38]. Kinematic trajectory forecasts based on FReT can therefore be generated
directly from the input window data. For NNET and D-NNET models, the training da-
taset was first used to estimate hyperparameters and model architectures before being
deployed to the embedded system (Figure 4a,b). For testing, data were z-score-scaled to
standardize model training, and the data of each input window were first z-score-scaled
before being fed into the model (Figure 4c). The forecasted gait data, a z-score output,
were then converted back to the original sensor scale based on the attributes (mean and
standard deviation) of the z-scored input window data. This enabled comparison to the
true sensor signal test data (Figure 4c).

Figure 4. A schematic of the data processing workflow. Gait data were collected by a wearable sen-
sor (illustrated in red in (a), left). The sensor is attached to the leg just above the patellofemoral joint
line for recording gait kinematics based on hip flexion/extension using the Ambulosono system ((a),
right). A subject’s training dataset was used to estimate hyperparameters and model architectures
specific to an individual (subject-specific model) for NNET and D-NNET models (b). This was done
on an external computer. For testing on the embedded system, the data for each subject’s input
window were first z-score-scaled before being fed into their subject-specific model (c). The fore-
casted gait data, with the output as a z-score, were then converted back to the original sensor scale
based on the attributes (mean and standard deviation) of the z-scored input window data. This al-
lowed comparison to the true sensor signal test data (c).

Figure 4. A schematic of the data processing workflow. Gait data were collected by a wearable sensor
(illustrated in red in (a), left). The sensor is attached to the leg just above the patellofemoral joint
line for recording gait kinematics based on hip flexion/extension using the Ambulosono system
((a), right). A subject’s training dataset was used to estimate hyperparameters and model architectures
specific to an individual (subject-specific model) for NNET and D-NNET models (b). This was done
on an external computer. For testing on the embedded system, the data for each subject’s input
window were first z-score-scaled before being fed into their subject-specific model (c). The forecasted
gait data, with the output as a z-score, were then converted back to the original sensor scale based
on the attributes (mean and standard deviation) of the z-scored input window data. This allowed
comparison to the true sensor signal test data (c).

3.4. Gait Sensor

Gait data were analyzed from a heterogeneous sample of fifteen (n = 15) adult partici-
pants without neurological abnormalities previously collected using the first-generation
Ambulosono wearable sensor system [47]. The sensor system is based on using motion
processor data consisting of a 3-axis Micro-Electro-Mechanical System (MEMS)-based gyro-
scope and a 3-axis accelerometer. The system and its firmware continuously record gait
cycle dynamics and gait metrics while controlling for angular excursion and drift [47–50].
The sensor is attached to the leg just above the patellofemoral joint line through the use

Sensors 2024, 24, 2649 7 of 16

of a high-performance thigh band. This is the optimal location for recording gait features
based on hip flexion/extension using this system [47–50].

3.5. Gait Data

The software application utilizes sensor data for step parameter calculations based on
its ability to automatically detect hip flexion/extension in real time. The algorithm works
by using a biomechanics model that uses circumference geometry and its concepts of radius
and radians with limb length to functionally relate gait parameters to hip flexion/extension
angle [47]. For this study, we used hip joint flexion/extension data, which are fundamental
to this biomechanical model of gait. Hip joint flexion/extension data are also important for
gait rehabilitation and human locomotion assistance [16]. While wearing the sensor, partic-
ipants were asked to complete a 30 m walk at a self-selected pace [47]. Each participants’
time-series data (600 data points) were partitioned (300 data points), with the partitions
being roughly split between training and testing sets.

3.6. Embedded System

The embedded system that was prototyped was the Raspberry Pi 4 (https://www.
raspberrypi.com/) (Figure 5). The Raspberry Pi is a very popular system that is affordable,
well supported, and can run multiple code threads simultaneously. It is also suitable for
performing multifaceted tasks, such as running complex control systems, and can be easily
integrated with next-generation low-cost and low-power-consumption motion processors
for future development. The Raspberry Pi, therefore, represents a valid prototyping base
and highly versatile system that has the potential to be easily incorporated into lower-limb
assistive ambulatory devices. In fact, the Raspberry Pi 4 was recently used as an embedded
system to read sensor data and perform real-time exoskeleton control and optimization [26].
The Raspberry Pi 4 consists of a Broadcom BCM2711 Quad core Cortex-A72 (ARM v8)
64-bit SoC @1.5 GHz processor.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 17

3.4. Gait Sensor
Gait data were analyzed from a heterogeneous sample of fifteen (n = 15) adult partic-

ipants without neurological abnormalities previously collected using the first-generation
Ambulosono wearable sensor system [47]. The sensor system is based on using motion
processor data consisting of a 3-axis Micro-Electro-Mechanical System (MEMS)-based gy-
roscope and a 3-axis accelerometer. The system and its firmware continuously record gait
cycle dynamics and gait metrics while controlling for angular excursion and drift [47–50].
The sensor is attached to the leg just above the patellofemoral joint line through the use of
a high-performance thigh band. This is the optimal location for recording gait features
based on hip flexion/extension using this system [47–50].

3.5. Gait Data
The software application utilizes sensor data for step parameter calculations based

on its ability to automatically detect hip flexion/extension in real time. The algorithm
works by using a biomechanics model that uses circumference geometry and its concepts
of radius and radians with limb length to functionally relate gait parameters to hip flex-
ion/extension angle [47]. For this study, we used hip joint flexion/extension data, which
are fundamental to this biomechanical model of gait. Hip joint flexion/extension data are
also important for gait rehabilitation and human locomotion assistance [16]. While wear-
ing the sensor, participants were asked to complete a 30 m walk at a self-selected pace
[47]. Each participants’ time-series data (600 data points) were partitioned (300 data
points), with the partitions being roughly split between training and testing sets.

3.6. Embedded System
The embedded system that was prototyped was the Raspberry Pi 4

(https://www.raspberrypi.com/) (Figure 5). The Raspberry Pi is a very popular system that
is affordable, well supported, and can run multiple code threads simultaneously. It is also
suitable for performing multifaceted tasks, such as running complex control systems, and
can be easily integrated with next-generation low-cost and low-power-consumption mo-
tion processors for future development. The Raspberry Pi, therefore, represents a valid
prototyping base and highly versatile system that has the potential to be easily incorpo-
rated into lower-limb assistive ambulatory devices. In fact, the Raspberry Pi 4 was recently
used as an embedded system to read sensor data and perform real-time exoskeleton con-
trol and optimization [26]. The Raspberry Pi 4 consists of a Broadcom BCM2711 Quad core
Cortex-A72 (ARM v8) 64-bit SoC @1.5 GHz processor.

Figure 5. The embedded system that was prototyped. An illustration of the Raspberry Pi 4 and its
dimensions (inset).

Figure 5. The embedded system that was prototyped. An illustration of the Raspberry Pi 4 and its
dimensions (inset).

3.7. Model Deployment

Forecast model deployment was accomplished with R (https://www.R-project.org/)
(accessed on 24 October 2023) by first installing Visual Studio Code on the Raspberry Pi,
a popular source-code editor that can be used with a variety of programming languages,
followed by the R extension. For NNET model implementation, the tsDyn package [43]
was deployed. For D-NNET model implementation, the nnfor package [45] was deployed.
FReT does not require any R user library packages.

3.8. Data Analysis

The models were evaluated by feeding the gait test set data into the embedded system,
and the time to execute the forecast and the accuracy of the forecast were determined.

https://www.raspberrypi.com/
https://www.raspberrypi.com/
https://www.R-project.org/

Sensors 2024, 24, 2649 8 of 16

For accuracy, we used the normalized root-mean-square error (NRMSE) as it facilitates
comparisons between models by relating the error to the observed range of the data and
simplifies the understanding of error rates for cross-disciplinary research [37]. The NRMSE
is simply a standardized form of the commonly used root-mean-square error (RMSE)
evaluation metric:

RMSE =

√√√√∑n
i=1

(
xiforecast − xiobserved

)2

n
(5)

NRMSE =
RMSE

xmax − xmin
(6)

where xmax and xmin reflect the maximum and minimum values of the true sensor values
that are being forecasted.

Forecast accuracy and computational time per forecast for each individual were de-
termined across the entire test set using a single-point sliding window (Figure 6). This
approach uses new readings (input window) for each future gait trajectory forecast (output
window) to avoid the accumulation of errors [1]. Different size input and output windows
were also evaluated (Figure 6). For experiment 1, we tested a sliding input window of
50 data points and a forecast output window of 15 data points (approx. 400 ms) based on
our previous work [38]. For experiment 2, we increased the testing sliding input window
to 80 data points and used a prediction output window of 20 data points (approx. 550 ms).
These forecast horizons are at least double that often investigated [1,6,37]. As artificial
neural networks use random matrices, which can present problems as many perform well
but others do not, we therefore also iterated this process 10 times to estimate the mean
NRMSE and its dispersion (represented by the standard deviation of these 10 iterations).
All analyses were carried out with R (R Core Team (2023). R: A Language and Environ-
ment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/).

Sensors 2024, 24, x FOR PEER REVIEW 9 of 17

Figure 6. Different size input and output windows were evaluated (experiment 1 and experiment
2). Forecast accuracy and computational time per forecast (output window) for each individual were
determined using a single-point sliding window.

4. Results
4.1. Forecasting Models

The NNET and D-NNET model architectures were coded in R [43,45] and estimated
on an external computing source. The model hyperparameters were determined first via
grid search to estimate an optimal value of hidden units, embedding dimension, and num-
ber of hidden layers (for D-NNET), similar to that carried out previously [1,38]. Once the
model architectures were selected for each individual, these subject-specific hyperparam-
eter-optimized NNET and D-NNET model architectures were deployed to the embedded
system. FReT, which does not require hyperparameter optimization, was directly de-
ployed to the embedded system for comparison with these pretrained hyperparameter-
optimized NNET and D-NNET models.

The NNET and D-NNET models were each evaluated under two conditions. The first
condition represents a static model. Here, the model weights are fixed, and each sliding
input window was simply fed into the pretrained model for predicting the unseen output
window data (Figure 7a,c). For the second condition, the updated NNET and D-NNET
models (Figure 7b,d), the input window data were first used to retrain the model weights
before predicting the unseen output window data. This approach provides a mechanism
to update the model with real-time information embedded in the gait data signal that may
not be appropriately modelled using the fully pretrained static models. FReT, by design,
always updates based on the input window data, where the two-dimensional topological
image reflects recurrent patterning in the gait signal’s surface topology (Figure 7e). Illus-
trative examples of forecasted output window kinematic gait trajectories for all the pre-
diction approaches are also shown in Figure 7f–j.

Figure 6. Different size input and output windows were evaluated (experiment 1 and experiment 2).
Forecast accuracy and computational time per forecast (output window) for each individual were
determined using a single-point sliding window.

https://www.R-project.org/

Sensors 2024, 24, 2649 9 of 16

4. Results
4.1. Forecasting Models

The NNET and D-NNET model architectures were coded in R [43,45] and estimated on
an external computing source. The model hyperparameters were determined first via grid
search to estimate an optimal value of hidden units, embedding dimension, and number of
hidden layers (for D-NNET), similar to that carried out previously [1,38]. Once the model
architectures were selected for each individual, these subject-specific hyperparameter-
optimized NNET and D-NNET model architectures were deployed to the embedded
system. FReT, which does not require hyperparameter optimization, was directly deployed
to the embedded system for comparison with these pretrained hyperparameter-optimized
NNET and D-NNET models.

The NNET and D-NNET models were each evaluated under two conditions. The first
condition represents a static model. Here, the model weights are fixed, and each sliding
input window was simply fed into the pretrained model for predicting the unseen output
window data (Figure 7a,c). For the second condition, the updated NNET and D-NNET
models (Figure 7b,d), the input window data were first used to retrain the model weights
before predicting the unseen output window data. This approach provides a mechanism to
update the model with real-time information embedded in the gait data signal that may not
be appropriately modelled using the fully pretrained static models. FReT, by design, always
updates based on the input window data, where the two-dimensional topological image
reflects recurrent patterning in the gait signal’s surface topology (Figure 7e). Illustrative
examples of forecasted output window kinematic gait trajectories for all the prediction
approaches are also shown in Figure 7f–j.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 17

Figure 7. Comparison of models and their outputs. For all NNET and D-NNET models, hyperpa-
rameters were determined on an external computing source before being deployed to the Raspberry
Pi. NNET and D-NNET models were run under two conditions. The first represents a static model
where the model weights are fixed, and each sliding input window was simply fed into the fully
pretrained model for predicting the unseen output window data (a,c). For the second condition, the
model weights are updated by retaining with the input window data (b,d). Panel e illustrates topo-
logical archetype identification based on a simple maximization problem. (f–j) present example
forecasted data with an input window of 80 data points and an output (forecast) window of 20 data
points for each of the corresponding models shown above (a–e). Ground truth is shown in black,
while each model’s predicted trajectory is shown in red.

4.2. Model Accuracy, Intra-Individual Variability, and Computational Time
Using the models presented in Figure 7a–e, we summarized the accuracy results

across all the forecasting approaches for all fifteen participants (Table 1). The mean
NRMSE is presented along with a measure of the mean intra-individual dispersion gen-
erated from 10 iterations per participant (see Materials and Methods). There, we can see
that, unlike the network models, FReT exhibited greater precision (Table 1). Not only was
FReT more consistent than the network models, but it was also more accurate than all the
models tested (Table 1), with a NRMSE that was, on average, 46.2% lower across all the
models/experiments.

Table 1. Accuracy comparison between models.

 Experiment 1 Experiment 2
Model NRMSE Dispersion NRMSE Dispersion

NNET (static) 0.237 0.047 0.157 0.027
NNET (updated) 0.143 0.004 0.146 0.008
D-NNET (static) 0.203 0.055 0.188 0.054

D-NNET (updated) 0.535 0.023 0.221 0.014
FReT 0.115 0.000 0.097 0.000

Experiment 1: sliding input window of 50 data points and a prediction output window of 15 data
points (approx. 400 ms). Experiment 2: sliding input window of 80 data points and a prediction
output window of 20 data points (approx. 550 ms). NRMSE: normalized root-mean-square error.
Dispersion represents the standard deviation of the mean NRMSE across 10 iterations.

Next, to ensure that FReT’s accuracy was not at the expense of computational cost,
the computational time for each model was evaluated and is summarized in Table 2. While
the static NNET and D-NNET models offered the best performance in terms of computa-
tional time (Table 2), they were not the most accurate (Table 1). The most accurate network
model was the updated NNET model (Table 1). However, while the updated NNET model

Figure 7. Comparison of models and their outputs. For all NNET and D-NNET models, hyperpa-
rameters were determined on an external computing source before being deployed to the Raspberry
Pi. NNET and D-NNET models were run under two conditions. The first represents a static model
where the model weights are fixed, and each sliding input window was simply fed into the fully
pretrained model for predicting the unseen output window data (a,c). For the second condition,
the model weights are updated by retaining with the input window data (b,d). Panel e illustrates
topological archetype identification based on a simple maximization problem. (f–j) present example
forecasted data with an input window of 80 data points and an output (forecast) window of 20 data
points for each of the corresponding models shown above (a–e). Ground truth is shown in black,
while each model’s predicted trajectory is shown in red.

4.2. Model Accuracy, Intra-Individual Variability, and Computational Time

Using the models presented in Figure 7a–e, we summarized the accuracy results
across all the forecasting approaches for all fifteen participants (Table 1). The mean NRMSE

Sensors 2024, 24, 2649 10 of 16

is presented along with a measure of the mean intra-individual dispersion generated
from 10 iterations per participant (see Materials and Methods). There, we can see that,
unlike the network models, FReT exhibited greater precision (Table 1). Not only was
FReT more consistent than the network models, but it was also more accurate than all the
models tested (Table 1), with a NRMSE that was, on average, 46.2% lower across all the
models/experiments.

Table 1. Accuracy comparison between models.

Experiment 1 Experiment 2

Model NRMSE Dispersion NRMSE Dispersion

NNET (static) 0.237 0.047 0.157 0.027
NNET (updated) 0.143 0.004 0.146 0.008
D-NNET (static) 0.203 0.055 0.188 0.054

D-NNET
(updated) 0.535 0.023 0.221 0.014

FReT 0.115 0.000 0.097 0.000
Experiment 1: sliding input window of 50 data points and a prediction output window of 15 data points (approx.
400 ms). Experiment 2: sliding input window of 80 data points and a prediction output window of 20 data points
(approx. 550 ms). NRMSE: normalized root-mean-square error. Dispersion represents the standard deviation of
the mean NRMSE across 10 iterations.

Next, to ensure that FReT’s accuracy was not at the expense of computational cost, the
computational time for each model was evaluated and is summarized in Table 2. While the
static NNET and D-NNET models offered the best performance in terms of computational
time (Table 2), they were not the most accurate (Table 1). The most accurate network
model was the updated NNET model (Table 1). However, while the updated NNET model
exhibited the best performance of all the artificial neural network models tested in terms
of accuracy, FReT had less intra-individual variability, was more accurate, and was faster
than the best-performing artificial neural network model (Tables 1 and 2). Moreover, FReT
also provided the best balance with respect to accuracy, intra-individual variability, and
computational time when considering the combination of these performance variables.
This is easily seen when plotted in scaled multidimensional space (Figure 8). There, it is
evident that FReT tends to be located on the left, mid-to-lower side of the plot towards the
ideal situation (i.e., the left bottom corner, which represents the idealized condition of a
model’s performance variables approaching zero: zero error, zero computational time, and
zero dispersion) (Figure 8). In fact, of all the models, FReT was closest to this idealized
condition for both experiment 1 and experiment 2 (Figure 8 and Table 3).

Table 2. Comparison of computational time between models.

Experiment 1 Experiment 2

Model ms ms

NNET (static) 9.534 11.11
NNET (updated) 195.0 218.8
D-NNET (static) 17.83 19.99

D-NNET (updated) 186.6 395.3
FReT 80.02 200.4

Experiment 1: sliding input window of 50 data points and a prediction output window of 15 data points (approx.
400 ms). Experiment 2: sliding input window of 80 data points and a prediction output window of 20 data points
(approx. 550 ms).

Sensors 2024, 24, 2649 11 of 16

Sensors 2024, 24, x FOR PEER REVIEW 11 of 17

exhibited the best performance of all the artificial neural network models tested in terms
of accuracy, FReT had less intra-individual variability, was more accurate, and was faster
than the best-performing artificial neural network model (Tables 1 and 2). Moreover, FReT
also provided the best balance with respect to accuracy, intra-individual variability, and
computational time when considering the combination of these performance variables.
This is easily seen when plotted in scaled multidimensional space (Figure 8). There, it is
evident that FReT tends to be located on the left, mid-to-lower side of the plot towards the
ideal situation (i.e., the left bottom corner, which represents the idealized condition of a
model’s performance variables approaching zero: zero error, zero computational time,
and zero dispersion) (Figure 8). In fact, of all the models, FReT was closest to this idealized
condition for both experiment 1 and experiment 2 (Figure 8 and Table 3).

Table 2. Comparison of computational time between models.

 Experiment 1 Experiment 2
Model ms ms

NNET (static) 9.534 11.11
NNET (updated) 195.0 218.8
D-NNET (static) 17.83 19.99

D-NNET (updated) 186.6 395.3
FReT 80.02 200.4

Experiment 1: sliding input window of 50 data points and a prediction output window of 15 data
points (approx. 400 ms). Experiment 2: sliding input window of 80 data points and a prediction
output window of 20 data points (approx. 550 ms).

Table 3. Distance between models and the idealized condition of a perfect model.

 Experiment 1 Experiment 2
Model Euclidean Distance Euclidean Distance

NNET (static) 2.32 2.40
NNET (updated) 2.33 2.36
D-NNET (static) 2.52 3.55

D-NNET (updated) 3.74 3.83
FReT 1.10 1.77

Euclidean distance between the idealized condition of a perfect model (i.e., zero error, zero intra-
individual variability, and zero computational time) and the evaluated forecasting models.

Figure 8. Model performance variables in multidimensional space. Performance variables for each
model were z-score-scaled for plotting in multidimensional space. The bottom left corner (“Ideal”)
represents the ideal condition of a perfect model with performance variables approaching zero.

Table 3. Distance between models and the idealized condition of a perfect model.

Experiment 1 Experiment 2

Model Euclidean Distance Euclidean Distance

NNET (static) 2.32 2.40
NNET (updated) 2.33 2.36
D-NNET (static) 2.52 3.55

D-NNET (updated) 3.74 3.83
FReT 1.10 1.77

Euclidean distance between the idealized condition of a perfect model (i.e., zero error, zero intra-individual
variability, and zero computational time) and the evaluated forecasting models.

4.3. Model Inter-Individual Variability

Our previous analyses focused on intra-individual model dispersion, which would
tend to be more important for real-world applications as subject-specific training is prefer-
able if the gait trajectory is to be used within a wearable device framework [6]. However,
we also evaluated the dispersion of the average NRMSE per participant across all the
participants to further showcase the utility of FReT. Dispersion in this sense represents
inter-individual variability and can provide information regarding a model’s generaliz-
ability. The NRMSE distribution densities for all fifteen participants are shown for each
model in Figure 9. There, it can be seen that FReT exhibited the highest density of all
the models, with the peak of the light-tailed distribution density centered around the
average NRMSE per participant (Figure 9). Together, these data, in addition to the accuracy,
intra-individual variability, and computational time data, lend support to the idea that
patterns in local topological recurrences embedded in wearable sensor data can be used to
effectively forecast human gait kinematics.

Sensors 2024, 24, 2649 12 of 16

Sensors 2024, 24, x FOR PEER REVIEW 12 of 17

Figure 8. Model performance variables in multidimensional space. Performance variables for each
model were z-score-scaled for plotting in multidimensional space. The bottom left corner (“Ideal”)
represents the ideal condition of a perfect model with performance variables approaching zero.

4.3. Model Inter-Individual Variability
Our previous analyses focused on intra-individual model dispersion, which would

tend to be more important for real-world applications as subject-specific training is pref-
erable if the gait trajectory is to be used within a wearable device framework [6]. However,
we also evaluated the dispersion of the average NRMSE per participant across all the par-
ticipants to further showcase the utility of FReT. Dispersion in this sense represents inter-
individual variability and can provide information regarding a model’s generalizability.
The NRMSE distribution densities for all fifteen participants are shown for each model in
Figure 9. There, it can be seen that FReT exhibited the highest density of all the models,
with the peak of the light-tailed distribution density centered around the average NRMSE
per participant (Figure 9). Together, these data, in addition to the accuracy, intra-individ-
ual variability, and computational time data, lend support to the idea that patterns in local
topological recurrences embedded in wearable sensor data can be used to effectively fore-
cast human gait kinematics.

Figure 9. Distribution of NRMSE for FReT and the artificial neural network models. For each exper-
iment, the distribution density of the average NRMSE per participant for all fifteen participants is
shown for each model. The updated NNET model was the best-performing network model, while
FReT was the best-performing model overall.

5. Discussion
5.1. Complex Prediction Models

In recent years, artificial neural network models have attracted increasing attention
with respect to time-series forecasting. It is well established that these models represent a
versatile computational framework that can be used for modelling a broad range of time-
series data [35,36,38,41,43], including gait trajectory prediction within the context of ma-
chine learning-enabled assistive ambulatory device design [1]. For example, using weara-
ble sensor data, Su et al. proposed a gait trajectory prediction model that was based on a
long short-term memory (LSTM) network with a weighted discount loss function [6]. This
approach was, overall, able to predict the gait trajectory for multiple time frames, although
the model was designed to more accurately predict the gait trajectory of the immediate
future (e.g., 100 ms) [6]. Karakish et al. noted the limitations associated with

Figure 9. Distribution of NRMSE for FReT and the artificial neural network models. For each
experiment, the distribution density of the average NRMSE per participant for all fifteen participants
is shown for each model. The updated NNET model was the best-performing network model, while
FReT was the best-performing model overall.

5. Discussion
5.1. Complex Prediction Models

In recent years, artificial neural network models have attracted increasing attention
with respect to time-series forecasting. It is well established that these models represent
a versatile computational framework that can be used for modelling a broad range of
time-series data [35,36,38,41,43], including gait trajectory prediction within the context
of machine learning-enabled assistive ambulatory device design [1]. For example, using
wearable sensor data, Su et al. proposed a gait trajectory prediction model that was based
on a long short-term memory (LSTM) network with a weighted discount loss function [6].
This approach was, overall, able to predict the gait trajectory for multiple time frames,
although the model was designed to more accurately predict the gait trajectory of the
immediate future (e.g., 100 ms) [6]. Karakish et al. noted the limitations associated with
computational load and relative inference time with the use of more complex models such
as LSTM on embedded systems [1]. They decided to explore the use of simpler artificial
neural network models, including D-NNET and convolutional neural network (CNN)
models, on an embedded system to predict motion sensor data. Using these models, they
were able to achieve comparable results, even after reducing the size of the networks
and with forecast horizons of 200 ms [1]. However, it is important to point out that
unlike FReT, all of these models still rely on neural network-based architectures and model
hyperparameters that need to be chosen appropriately [1,6,35,36,38,41,43]. With these
and many other types of complex forecasting models, there is no general rule that can
be followed to select the most appropriate values. These values, therefore, need to be
estimated based on available training data [41,43]. In fact, it has already been pointed out in
the literature that this learning process, particularly for highly complex prediction models,
needs to be improved, as it can take extended periods of time which may be unacceptable
for time-series prediction in real-world applications [46]. Forecasting gait with FReT, on
the other hand, avoids the need for the selection of hyperparameters and the uncertainty
associated with their selection. In this study, we have also shown that FReT may offer
a simple approach to predict gait kinematic trajectory at horizons > 200 ms. This study
further highlights that more complex models are not always necessary for top predictive

Sensors 2024, 24, 2649 13 of 16

performance and can impose unnecessary computational load and power consumption
constraints [38].

5.2. Embedded Systems

Within the framework of developing an embedded active assistive ambulatory system,
it has already been suggested that it makes more sense to develop a system that uses
wearable sensors for both the training and deployment stages rather than relying on a
fixed-image capture system to record gait motion [1]. While models have been built based
on fixed-motion capture systems (e.g., [37]), the uncertainty related to their transferability
outside a fixed-motion capture environment has been less well studied. Moreover, prob-
lems can arise in situations where the motion capture markers used for gait are obscured by
arm swinging or hand rails that may be needed for safety in certain clinical populations [51].
Unlike fixed-motion capture systems, embedded systems have numerous practical and
important applications in many areas of rehabilitation science and biomedical engineer-
ing [1,6,9,17–25,28,29]. For example, as previously noted [37], the accurate sensor-aided
prediction of gait kinematic trajectories can serve as a feedforward mechanism to powered
devices instead of predominantly relying on feedback sensors, effectively serving to im-
prove device performance by avoiding alterations in the user’s natural gait trajectories [37].
The implementation of FReT on embedded systems for sensor-aided gait kinematic tra-
jectory prediction may also have several important operational advantages. First, being
able to accurately predict gait time-series data while avoiding the drawbacks associated
with modern prediction models, including random matrices and sensitivity to input hyper-
parameter selection, may help facilitate the design of a control system that works stably
under a variety of conditions. Second, given that FReT does not require optimization and
tuning techniques, it can be easily adjusted based on natural variations in walking speed.
This is particularly important as it eliminates the need for pretraining data collection that is
needed for commonly used machine learning models for model building. The requirement
for collecting training data places an increased burden on both participants’ and clinicians’
time and is subject to several technical factors that may impact the quality of training
data generalization. Finally, FReT does not require the time-consuming grid searches that
are needed by other models during model building [1,6]. This can enable an adaptive,
user-centric forecasting approach within an embedded framework that utilizes the fast
arrival of new data for predicting upcoming gait dynamics.

5.3. Study Limitations

We acknowledge that there are several study limitations. First, the gait data for
this study were collected at an individual’s preferred, self-selected walking speed. Data
for variable walking speed were not evaluated, which is likely to reflect more dynamic,
naturalistic environments. However, this may pose much less of a problem for FReT
compared to many other types of complex forecasting models. In fact, several studies have
found that commonly used prediction models for measures of gait perform much poorer
when not trained on intra-subject data [1,6,34]. This can be problematic for traditional
models requiring model building as the training data would need to reflect all potential
environments, for all individuals, that may be encountered during deployment. FReT
effectively avoids this issue as it was initially designed to enable CL-based forecasting on
prior signal dynamics. Nevertheless, whether FReT can perform as well under dynamic
walking conditions needs further testing. Second, this study also did not focus on clinical
populations with variations in gait function, including individuals with walking disabilities
and/or a history of falls. These would need to be evaluated to determine the applicability
of this approach in a wider context and to understand its potential application to fall
prevention. Finally, we did not evaluate the integration of multi-source information for
motion intention [2,3]. However, FReT can be used for decoding multidimensional systems
and predicting multidimensional signal topology [38].

Sensors 2024, 24, 2649 14 of 16

6. Conclusions

The overall goal of this study was to deploy FReT on an embedded system to eval-
uate its ability to forecast wearable lower-limb motion sensor data. FReT was compared
with several different artificial neural network and deep artificial neural network model
architectures. This included models with both static model weight parameters and it-
eratively updated model weight parameters, with the latter serving as a mechanism to
update the models with real-time information embedded in the gait signal that may not
be appropriately modelled using fully pretrained static models. Our results indicate that
FReT provided the best balance with respect to performance, more closely matching the
idealized condition of a perfect model than all the other models evaluated. The proposed
FReT framework has the advantage of being more accurate with a lower computational
load and better consistency relative to the best-performing NNET model for predicting
gait kinematic trajectories. Taken together, this study suggests that FReT can be used on an
embedded system to effectively forecast gait cycle kinematics, supporting a new continuous
learning capability that may work stably across a variety of conditions.

Author Contributions: Conceptualization, T.C.; investigation, M.S.; methodology, T.C., M.S. and
L.A.M.; analysis, M.S. and T.C.; resources, L.A.M. and B.H.; supervision, T.C.; visualization, T.C. and
M.S.; data curation, B.H.; writing—original draft preparation, T.C. and M.S.; writing—review and
editing, T.C., M.S., L.A.M. and B.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The human data used in this study were previously collected
with informed consent and ethics approval by the ethics committee of the University of Calgary
University Ethics Board for Human Research (REB13-0009) [47].

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study
as noted above.

Data Availability Statement: The data presented in this study are available from the corresponding
author upon reasonable request.

Acknowledgments: The authors would like to thank the Hotchkiss Brain Institute and the CSM
Optogenetics Platform for their continued support.

Conflicts of Interest: B.H. is the founder of Ambulosono International Development Inc., a wearable
sensor startup consulting firm. All the other authors declare no competing interests.

References
1. Karakish, M.; Fouz, M.A.; ELsawaf, A. Gait Trajectory Prediction on an Embedded Microcontroller Using Deep Learning. Sensors

2022, 22, 8441. [CrossRef] [PubMed]
2. Mobarak, R.; Tigrini, A.; Verdini, F.; Al-Timemy, A.H.; Fioretti, S.; Burattini, L.; Mengarelli, A. A Minimal and Multi-Source

Recording Setup for Ankle Joint Kinematics Estimation During Walking Using Only Proximal Information from Lower Limb.
IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 812–821. [CrossRef] [PubMed]

3. Zhang, Y.-P.; Cao, G.-Z.; Li, L.-L.; Diao, D.-F. Interactive Control of Lower Limb Exoskeleton Robots: A Review. IEEE Sens. J. 2024,
24, 5759–5784. [CrossRef]

4. Rupal, B.S.; Rafique, S.; Singla, A.; Singla, E.; Isaksson, M.; Virk, G.S. Lower-Limb Exoskeletons: Research Trends and Regulatory
Guidelines in Medical and Non-Medical Applications. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417743554. [CrossRef]

5. Young, A.J.; Ferris, D.P. State of the Art and Future Directions for Lower Limb Robotic Exoskeletons. IEEE Trans. Neural Syst.
Rehabil. Eng. 2017, 25, 171–182. [CrossRef] [PubMed]

6. Su, B.; Gutierrez-Farewik, E.M. Gait Trajectory and Gait Phase Prediction Based on an LSTM Network. Sensors 2020, 20, 7127.
[CrossRef] [PubMed]

7. Tiboni, M.; Borboni, A.; Vérité, F.; Bregoli, C.; Amici, C. Sensors and Actuation Technologies in Exoskeletons: A Review. Sensors
2022, 22, 884. [CrossRef] [PubMed]

8. Murray, S.; Goldfarb, M. Towards the Use of a Lower Limb Exoskeleton for Locomotion Assistance in Individuals with
Neuromuscular Locomotor Deficits. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; Volume 2012, p. 1912. [CrossRef]

https://doi.org/10.3390/s22218441
https://www.ncbi.nlm.nih.gov/pubmed/36366139
https://doi.org/10.1109/TNSRE.2024.3364976
https://www.ncbi.nlm.nih.gov/pubmed/38335075
https://doi.org/10.1109/JSEN.2024.3352005
https://doi.org/10.1177/1729881417743554
https://doi.org/10.1109/TNSRE.2016.2521160
https://www.ncbi.nlm.nih.gov/pubmed/26829794
https://doi.org/10.3390/s20247127
https://www.ncbi.nlm.nih.gov/pubmed/33322673
https://doi.org/10.3390/s22030884
https://www.ncbi.nlm.nih.gov/pubmed/35161629
https://doi.org/10.1109/EMBC.2012.6346327

Sensors 2024, 24, 2649 15 of 16

9. Kim, M.; Hargrove, L.J. A Gait Phase Prediction Model Trained on Benchmark Datasets for Evaluating a Controller for Prosthetic
Legs. Front. Neurorobot. 2023, 16, 288. [CrossRef] [PubMed]

10. Anam, K.; Al-Jumaily, A.A. Active Exoskeleton Control Systems: State of the Art. Procedia Eng. 2012, 41, 988–994. [CrossRef]
11. Taborri, J.; Scalona, E.; Rossi, S.; Palermo, E.; Patane, F.; Cappa, P. Real-Time Gait Detection Based on Hidden Markov Model: Is It

Possible to Avoid Training Procedure? In Proceedings of the 2015 IEEE International Symposium on Medical Measurements and
Applications (MeMeA) Proceedings, Turin, Italy, 7–9 May 2015; pp. 141–145. [CrossRef]

12. Zhou, J.; Yang, S.; Xue, Q. Lower Limb Rehabilitation Exoskeleton Robot: A Review. Adv. Mech. Eng. 2021, 13, 16878140211011862.
[CrossRef]

13. Androwis, G.J.; Sandroff, B.M.; Niewrzol, P.; Fakhoury, F.; Wylie, G.R.; Yue, G.; DeLuca, J. A Pilot Randomized Controlled Trial of
Robotic Exoskeleton-Assisted Exercise Rehabilitation in Multiple Sclerosis. Mult. Scler. Relat. Disord. 2021, 51, 102936. [CrossRef]
[PubMed]

14. van Nes, I.J.W.; van Dijsseldonk, R.B.; van Herpen, F.H.M.; Rijken, H.; Geurts, A.C.H.; Keijsers, N.L.W. Improvement of Quality
of Life after 2-Month Exoskeleton Training in Patients with Chronic Spinal Cord Injury. J. Spinal Cord Med. 2022. [CrossRef]

15. Asano, M.; Rushton, P.; Miller, W.C.; Deathe, B.A. Predictors of Quality of Life among Individuals Who Have a Lower Limb
Amputation. Prosthet. Orthot. Int. 2008, 32, 231–243. [CrossRef]

16. Chen, B.; Ma, H.; Qin, L.Y.; Gao, F.; Chan, K.M.; Law, S.W.; Qin, L.; Liao, W.H. Recent Developments and Challenges of Lower
Extremity Exoskeletons. J. Orthop. Transl. 2016, 5, 26–37. [CrossRef]

17. Vu, H.T.T.; Dong, D.; Cao, H.L.; Verstraten, T.; Lefeber, D.; Vanderborght, B.; Geeroms, J. A Review of Gait Phase Detection
Algorithms for Lower Limb Prostheses. Sensors 2020, 20, 3972. [CrossRef]

18. Clemens, S.; Kim, K.J.; Gailey, R.; Kirk-Sanchez, N.; Kristal, A.; Gaunaurd, I. Inertial Sensor-Based Measures of Gait Symmetry
and Repeatability in People with Unilateral Lower Limb Amputation. Clin. Biomech. 2020, 72, 102–107. [CrossRef]

19. Lai, D.T.H.; Begg, R.K.; Palaniswami, M. Computational Intelligence in Gait Research: A Perspective on Current Applications
and Future Challenges. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 687–702. [CrossRef] [PubMed]

20. Sawicki, G.S.; Beck, O.N.; Kang, I.; Young, A.J. The Exoskeleton Expansion: Improving Walking and Running Economy. J.
Neuroeng. Rehabil. 2020, 17, 25. [CrossRef] [PubMed]

21. Pan, C.T.; Chang, C.C.; Sun, P.Y.; Lee, C.L.; Lin, T.C.; Yen, C.K.; Yang, Y.S. Development of Multi-Axis Motor Control Systems for
Lower Limb Robotic Exoskeleton. J. Med. Biol. Eng. 2019, 39, 752–763. [CrossRef]

22. Tanghe, K.; De Groote, F.; Lefeber, D.; De Schutter, J.; Aertbelien, E. Gait Trajectory and Event Prediction from State Estimation for
Exoskeletons during Gait. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 211–220. [CrossRef]

23. Zaroug, A.; Proud, J.K.; Lai, D.T.H.; Mudie, K.; Billing, D.; Begg, R. Overview of Computational Intelligence (CI) Techniques for
Powered Exoskeletons. Stud. Comput. Intell. 2019, 776, 353–383. [CrossRef]

24. Torricelli, D.; Cortés, C.; Lete, N.; Bertelsen, Á.; Gonzalez-Vargas, J.E.; Del-Ama, A.J.; Dimbwadyo, I.; Moreno, J.C.; Florez, J.;
Pons, J.L. A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait. Front. Neurorobot. 2018, 12,
18. [CrossRef]

25. Wu, X.; Liu, D.X.; Liu, M.; Chen, C.; Guo, H. Individualized Gait Pattern Generation for Sharing Lower Limb Exoskeleton Robot.
IEEE Trans. Autom. Sci. Eng. 2018, 15, 1459–1470. [CrossRef]

26. Slade, P.; Kochenderfer, M.J.; Delp, S.L.; Collins, S.H. Personalizing Exoskeleton Assistance While Walking in the Real World.
Nature 2022, 610, 277–282. [CrossRef] [PubMed]

27. Dobson, A.; Murray, K.; Manolov, N.; Davanzo, J.E. Economic Value of Orthotic and Prosthetic Services among Medicare
Beneficiaries: A Claims-Based Retrospective Cohort Study, 2011–2014. J. Neuroeng. Rehabil. 2018, 15, 55. [CrossRef]

28. Parthasarathy, A.; Megharjun, V.N.; Talasila, V. Forecasting a Gait Cycle Parameter Region to Enable Optimal FES Triggering.
IFAC-PapersOnLine 2020, 53, 232–239. [CrossRef]

29. Rahman, H.; Kumbla, A.; Megharjun, V.N.; Talasila, V. Real-Time Heel Strike Parameter Estimation for FES Triggering. Lect. Notes
Electr. Eng. 2022, 903, 749–760. [CrossRef]

30. Zaroug, A.; Lai, D.T.H.; Mudie, K.; Begg, R. Lower Limb Kinematics Trajectory Prediction Using Long Short-Term Memory
Neural Networks. Front. Bioeng. Biotechnol. 2020, 8, 362. [CrossRef]

31. Kale, A.; Sundaresan, A.; Rajagopalan, A.N.; Cuntoor, N.P.; Roy-Chowdhury, A.K.; Krüger, V.; Chellappa, R. Identification of
Humans Using Gait. IEEE Trans. Image Process. 2004, 13, 1163–1173. [CrossRef]

32. Borovicka, T.; Jirina , M., Jr.; Kordik, P.; Jirina, M. Selecting Representative Data Sets. In Advances in Data Mining Knowledge
Discovery and Applications; BoD: Stafford, VA, USA, 2012; Volume 12, pp. 43–70. [CrossRef]

33. Finlayson, S.G.; Subbaswamy, A.; Singh, K.; Bowers, J.; Kupke, A.; Zittrain, J.; Kohane, I.S.; Saria, S. The Clinician and Dataset
Shift in Artificial Intelligence. N. Engl. J. Med. 2021, 385, 283–286. [CrossRef]

34. Pinto, B.; Correia, M.V.; Paredes, H.; Silva, I. Detection of Intermittent Claudication from Smartphone Inertial Data in Community
Walks Using Machine Learning Classifiers. Sensors 2023, 23, 1581. [CrossRef] [PubMed]

35. Crone, S.F.; Kourentzes, N. Naive Support Vector Regression and Multilayer Perceptron Benchmarks for the 2010 Neural Network
Grand Competition (NNGC) on Time Series Prediction. In Proceedings of the The 2010 International Joint Conference on Neural
Networks (IJCNN), Barcelona, Spain, 18–23 July 2010. [CrossRef]

36. Zhang, G.P. Neural Networks for Time-Series Forecasting. Handb. Nat. Comput. 2012, 1, 461–477. [CrossRef]

https://doi.org/10.3389/fnbot.2022.1064313
https://www.ncbi.nlm.nih.gov/pubmed/36687207
https://doi.org/10.1016/j.proeng.2012.07.273
https://doi.org/10.1109/MEMEA.2015.7145188
https://doi.org/10.1177/16878140211011862
https://doi.org/10.1016/j.msard.2021.102936
https://www.ncbi.nlm.nih.gov/pubmed/33878619
https://doi.org/10.1080/10790268.2022.2052502
https://doi.org/10.1080/03093640802024955
https://doi.org/10.1016/j.jot.2015.09.007
https://doi.org/10.3390/s20143972
https://doi.org/10.1016/j.clinbiomech.2019.12.007
https://doi.org/10.1109/TITB.2009.2022913
https://www.ncbi.nlm.nih.gov/pubmed/19447724
https://doi.org/10.1186/s12984-020-00663-9
https://www.ncbi.nlm.nih.gov/pubmed/32075669
https://doi.org/10.1007/s40846-018-0449-z
https://doi.org/10.1109/TNSRE.2019.2950309
https://doi.org/10.1007/978-3-662-57277-1_15
https://doi.org/10.3389/fnbot.2018.00018
https://doi.org/10.1109/TASE.2018.2841358
https://doi.org/10.1038/s41586-022-05191-1
https://www.ncbi.nlm.nih.gov/pubmed/36224415
https://doi.org/10.1186/s12984-018-0406-7
https://doi.org/10.1016/j.ifacol.2020.06.040
https://doi.org/10.1007/978-981-19-2281-7_69
https://doi.org/10.3389/fbioe.2020.00362
https://doi.org/10.1109/TIP.2004.832865
https://doi.org/10.5772/50787
https://doi.org/10.1056/NEJMc2104626
https://doi.org/10.3390/s23031581
https://www.ncbi.nlm.nih.gov/pubmed/36772621
https://doi.org/10.1109/IJCNN.2010.5596636
https://doi.org/10.1007/978-3-540-92910-9_14

Sensors 2024, 24, 2649 16 of 16

37. Zaroug, A.; Garofolini, A.; Lai, D.T.H.; Mudie, K.; Begg, R. Prediction of Gait Trajectories Based on the Long Short Term Memory
Neural Networks. PLoS ONE 2021, 16, e0255597. [CrossRef] [PubMed]

38. Chomiak, T.; Hu, B. Time-Series Forecasting through Recurrent Topology. Commun. Eng. 2024, 3, 9. [CrossRef]
39. Kaastra, I.; Boyd, M. Designing a Neural Network for Forecasting Financial and Economic Time Series. Neurocomputing 1996, 10,

215–236. [CrossRef]
40. Chomiak, T.; Rasiah, N.P.; Molina, L.A.; Hu, B.; Bains, J.S.; Füzesi, T. A Versatile Computational Algorithm for Time-Series Data

Analysis and Machine-Learning Models. npj Park. Dis. 2021, 7, 97. [CrossRef] [PubMed]
41. Mallikarjuna, M.; Rao, R.P. Evaluation of Forecasting Methods from Selected Stock Market Returns. Financ. Innov. 2019, 5, 40.

[CrossRef]
42. Moreira, F.R.D.S.; Verri, F.A.N.; Yoneyama, T. Maximum Visibility: A Novel Approach for Time Series Forecasting Based on

Complex Network Theory. IEEE Access 2022, 10, 8960–8973. [CrossRef]
43. Di Narzo, A.F.; Aznarte, J.L.; Stigler, M. TsDyn: Nonlinear Time Series Models with Regime Switching, R package version 11.0.4.1;

2022. Available online: https://cran.r-project.org/web/packages/tsDyn/tsDyn.pdf (accessed on 16 April 2024).
44. Gers, F.; Eck, D.; Schmidhuber, J. Applying LSTM to Time Series Predictable through Time-Window Approaches. In Artificial

Neural Networks—ICANN 2001; Dorffner, G., Bischof, H., Hornik, K., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2001; Volume 2130, pp. 669–676.

45. Kourentzes, N. Time Series Forecasting with Neural Networks 2022, R Package “nnfor” version 0.9.9. Available online: https:
//cran.r-project.org/web/packages/nnfor/nnfor.pdf (accessed on 16 April 2024).

46. Han, Z.; Zhao, J.; Leung, K.F.; Ma, F.; Wang, W. A Review of Deep Learning Models for Time Series Prediction. IEEE Sens. J. 2021,
21, 7833–7848. [CrossRef]

47. Chomiak, T.; Sidhu, A.; Watts, A.; Su, L.; Graham, B.; Wu, J.; Classen, S.; Falter, B.; Hu, B. Development and Validation of
Ambulosono: A Wearable Sensor for Bio-Feedback Rehabilitation Training. Sensors 2019, 19, 686. [CrossRef]

48. Chomiak, T.; Pereira, F.V.; Meyer, N.; de Bruin, N.; Derwent, L.; Luan, K.; Cihal, A.; Brown, L.A.; Hu, B. A New Quantitative
Method for Evaluating Freezing of Gait and Dual-Attention Task Deficits in Parkinson’s Disease. J. Neural Transm. 2015, 122,
1523–1531. [CrossRef] [PubMed]

49. Chomiak, T.; Xian, W.; Pei, Z.; Hu, B. A Novel Single-Sensor-Based Method for the Detection of Gait-Cycle Breakdown and
Freezing of Gait in Parkinson’s Disease. J. Neural Transm. 2019, 126, 1029–1036. [CrossRef] [PubMed]

50. Tahmazian, I.; Watts, A.; Chen, O.; Ferrara, H.J.; McCrimmon, A.; Hu, B.; Chomiak, T. A Wearable Device-Enabled Therapeutic
Approach to Improve Joint Attention in Autism Spectrum Disorder: A Prospective Pilot Study. J. Neural Transm. 2023, 130,
1601–1607. [CrossRef] [PubMed]

51. Stolze, H.; Kuhtz-Buschbeck, J.P.; Drucke, H.; Johnk, K.; Illert, M.; Deuschl, G. Comparative Analysis of the Gait Disorder of
Normal Pressure Hydrocephalus and Parkinson’s Disease. J. Neurol. Neurosurg. Psychiatry 2001, 70, 289–297. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1371/journal.pone.0255597
https://www.ncbi.nlm.nih.gov/pubmed/34351994
https://doi.org/10.1038/s44172-023-00142-8
https://doi.org/10.1016/0925-2312(95)00039-9
https://doi.org/10.1038/s41531-021-00240-4
https://www.ncbi.nlm.nih.gov/pubmed/34753948
https://doi.org/10.1186/s40854-019-0157-x
https://doi.org/10.1109/ACCESS.2022.3143106
https://cran.r-project.org/web/packages/tsDyn/tsDyn.pdf
https://cran.r-project.org/web/packages/nnfor/nnfor.pdf
https://cran.r-project.org/web/packages/nnfor/nnfor.pdf
https://doi.org/10.1109/JSEN.2019.2923982
https://doi.org/10.3390/s19030686
https://doi.org/10.1007/s00702-015-1423-3
https://www.ncbi.nlm.nih.gov/pubmed/26206604
https://doi.org/10.1007/s00702-019-02020-0
https://www.ncbi.nlm.nih.gov/pubmed/31154512
https://doi.org/10.1007/s00702-023-02683-w
https://www.ncbi.nlm.nih.gov/pubmed/37648903
https://doi.org/10.1136/jnnp.70.3.289

	Introduction
	Related Work
	Materials and Methods
	Artificial Neural Network Models
	Forecasting through Recurrent Topology
	Kinematic Trajectory Forecasting
	Gait Sensor
	Gait Data
	Embedded System
	Model Deployment
	Data Analysis

	Results
	Forecasting Models
	Model Accuracy, Intra-Individual Variability, and Computational Time
	Model Inter-Individual Variability

	Discussion
	Complex Prediction Models
	Embedded Systems
	Study Limitations

	Conclusions
	References

