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Abstract: Given the high relevance and impact of ransomware in companies, organizations, and
individuals around the world, coupled with the widespread adoption of mobile and IoT-related
devices for both personal and professional use, the development of effective and efficient ransomware
mitigation schemes is a necessity nowadays. Although a number of proposals are available in
the literature in this line, most of them rely on machine-learning schemes that usually involve
high computational cost and resource consumption. Since current personal devices are small and
limited in capacities and resources, the mentioned schemes are generally not feasible and usable
in practical environments. Based on a honeyfile detection solution previously introduced by the
authors for Linux and Window OSs, this paper presents a ransomware detection tool for Android
platforms where the use of trap files is combined with a reactive monitoring scheme, with three
main characteristics: (i) the trap files are properly deployed around the target file system, (ii) the
FileObserver service is used to early alert events that access the traps following certain suspicious
sequences, and (iii) the experimental results show high performance of the solution in terms of
detection accuracy and efficiency.
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1. Introduction

Security incidents impact ICT-related systems and services and, therefore, society in
general [1–4]. In particular, any kind of information and communication infrastructure,
such as those relying on 5/6G and IoT technologies, is continuously exposed to such
threats [5–11].

In that global context, and despite its years of existence, ransomware continues to be a
principal specific security threat [12–14]. As indicated in a number of works like [15–17],
ransomware is mainly focused on stealing user data (mainly by ciphering it) and affects
both individuals and organizations of any type (e.g., hospitals, banks, industry, energy, etc.)
all over the world. Moreover, the effects are diverse and range from economical and
reputational losses in companies and organizations to health-related and mental problems
in individuals [18–21].

Provided the relevance and impact of ransomware and the current generalized adop-
tion of mobile devices among users (e.g., smartphones, tablets, and IoT-related devices),
researchers have developed a number of ransomware mitigation proposals for these types
of environments, in particular for the Android platform since it is the most used OS
today [22–25].

Despite the good accuracy rates reached by current ransomware detection schemes,
they usually rely on machine-learning techniques [26–29], which involves high resource
consumption in terms of computation complexity and memory/CPU/battery usage. In fact,
works like [17,30,31] point out the need for early detection and low resource consumption,
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especially for limited devices like the IoT-related ones as, otherwise, the solutions may not
be feasible or usable.

Based on previous authors’ work [32,33], this paper presents a new ransomware
detection tool for Android platforms with three main contributions:

• It is a deception-based approach, where a set of decoy files are deployed around the
file system to capture the attacker’s attention. The proposal takes advantage of the
fact that any ransomware sample must access and manipulate files (either legitimate
or traps) to kidnap them.

• The detection process itself relies on a reactive file system monitoring solution that fires
alarms when trap files are accessed or changed following a certain suspicious sequence.

• Since the (reactive) solution does not run as long as the traps are not accessed, the
detection process itself does not consume significant resources in terms of memory,
computation, CPU usage, etc. In other words, a high detection accuracy as well as a
lightweight, low consumption detection solution is here provided.

The rest of the paper is organized as follows. Section 2 presents and discusses several
relevant and recent contributions on the topic of Android ransomware detection. Section 3
introduces the detection paradigm relying on the use of trap files to thwart malicious
activities by fooling the attacker. In particular, our specific previous work for Linux and
Windows platforms is here presented. Then, in Section 4 we discuss the limitations of
Android to adapt the previous solution to this particular OS, so that the use of decoy
files is complemented with a reactive file system monitoring detection scheme based
on the class FileObserver() (using inotify) to fire an alert after files are accessed or
changed. Section 5 presents a proof of concept experimentation to evaluate the validity of
our proposal, the results showing a good performance of it in terms of high accuracy and
low resource consumption as expected. Finally, Section 6 highlights the main contributions
and future work.

2. Background of Ransomware Detection for Android Platforms

Data kidnapping may be dramatic for both organizations and individuals, as the
affected information can be highly sensitive from several perspectives (e.g., health, sex,
religion, intimacy, etc.). This situation is especially relevant in new mobility environments
where user devices (smartphones, biosensors, etc.) are widely utilized for both work
and personal operations. As discussed in the previous section, this is the reason why
considerable efforts are made by the community to combat crypto-ransomware. In this
section, we comment on some of the most significant and current proposals in the literature
in this field.

Razgallah et al. surveyed in [34] the principal methods and mechanisms for general
malware detection in Android applications, which are also applicable to ransomware.
On the one hand, detection can be static or dynamic. In the first case, a target software/pro-
gram is analyzed prior to its execution in order to discern its malicious or benign behavior.
Instead, dynamic detection need to execute the software/program to analyze its behavior
and impact on the system. On the other hand, static schemes can be generally classified
into three categories: (i) related with application code (whether at source level or bytecode
level); (ii) related on permissions requested and different API calls embedded in the app
code; (iii) other methods combining multiple factors. For their part, dynamic detection
techniques can be organized into four categories: (i) relying on system calls; (ii) methods
based on other information at the system level like CPU consumption or network use;
(iii) schemes that depend on user space level information like API calls; (iv) techniques that
observe the dynamic behavior of the app user other than system calls or information at the
level of system or user.

In this general context, we present in the rest of the section specific detection proposals
developed in the literature, as described by the authors. Scalas et al. proposed in [35]
learning-based detection methods from information of the API used in ransomware attacks
when performing their actions. The authors tested three forms employing this information:
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packages, classes, and methods. The comparison of performance obtained with other
approaches showed that this method can detect not only ransomware but also general mal-
ware apps with high accuracy, as good as other methods, all in less than 0.2 s. Additionally,
this systems can detect novel samples and is resilient against static obfuscation attempts.

Alzahrani et al. introduced in [36] RanDetector, a slight and automated detector for
Android ransomware apps according to their behavior. The detection system investigated
information like permissions, intents, and APIs before classify the app by integrating
different supervised machine-learning models. The system obtained a detection rate
superior to 97.62%, with almost zero false positive at a time cost of ∼45 s. Again making
use of permissions and APIs, the authors in [37] proposed a hybrid detection system with
high accuracy. In the static analysis, more than 70 widely accepted antivirus engines
were considered. In the dynamic analysis, a comparative study was conducted to find
the correct tool for integrated it into the ransomware detection. The experimentation
showed that static analysis have approximately a 40–55% detection accuracy regarding
100% of dynamic analyses. Also as a hybrid approach, Arora and Kumar combined static
with dynamic detection to introduce a ransomware detection toolkit in [38]. The static
features (permissions and APIs) were passed through an artificial neural network, while
the dynamic ones (network traffic) were passed through an LGBM classifier to detect
ransomware on the network.

The authors in [39] used the algorithms Random Forest, J48, and Naïve Bayes for
dynamic detection. More innovative, Chen et al. introduced RansomProber in [40], where
user interface widgets and the coordinates of user keystrokes were analyzed to derive
potential operations related to the encryption of files. The results showed great accuracy
and a good runtime performance (∼5 s time cost and 19 MB memory usage).

Faghihi and Zulkernine presented in [41] RansomCare, a proposal based on the struc-
ture of user data and their entropy for ransomware detection and mitigation. RansomCare
was able not only to detect but also to neutralize crypto-ransomware in real-time in just
1.4 s with dynamic and static analysis. The detection proposal was capable of recovering
lost files while maintaining privacy based on monitoring changes in user data.

Manzil and Naik proposed in [42] a technique of feature selection based on hamming
distance for the static analysis of ransomware detection. The approach involved four steps:
feature extraction (like permissions and intents), generation of a binary vector of features,
their selection, and finally its classification. The detection accuracy achieved was 99% using
Random Forest and Decision Tree classifiers, while the involved complexity was O(n2).

Sharma et al. proposed in [43] a detection method where new ransomware features
were used, the feature dimensionality was reduced, an ensemble learning model for de-
tection was employed, and a comparative analysis to identify the computational time of
detection was conducted. The results indicated that detection accuracy was 99.67% with
the Random Forest ensemble model. The feature dimensionality reduction through the
principal component analysis method ensured that the Logistic Regression model had a
lower execution time on GPU than on CPU.

The same authors performed in [44] a deep analysis of ransomware to extract static
features through reverse engineering and forensic analysis from the apk file and source
code, respectively. Additionally, a RansomDroid framework based on the Gaussian Mixture
Model was proposed. By using feature selection combined with dimensionality reduction,
the experimental accuracy on Android ransomware detection was 98.08%, taking 44 ms.

In [45], Almomani et al. proposed an efficient detection approach based on machine
learning. The approach focused on version 11 of Android and API Level 30, to obtain
the most recent set of features, like permissions and API calls, that ransomware could
potentially make use of. Afterwards, different predictive models for ransomware were
generated using different machine-learning techniques like Random Forest, Decision Tree,
Sequential Minimal Optimization, and Naive Bayes. Some of them presented an accuracy
of 98.3%, even after reducing the feature set by approximately 26%. Likewise, the authors
in [46] introduced a ransomware detection methodology that rested on an evolutionary
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machine-learning technique, where the tuning of hyper-parameters for the classification
algorithm was performed with a binary Particle Swarm Optimization (PSO) algorithm.
Classification was made with the Support Vector Machine (SVM) algorithm combined
with the Synthetic Minority Oversampling Technique (SMOTE). The performance of the
SMOTE–tBPSO–SVM method was better than traditional algorithms.

The authors in [47] described an Android ransomware detection method that used
PSO to select (84) traffic features. The data traffic was classified with the Decision Tree and
Random Forest classifiers. The latter achieved the greats performance in detection, whereas
the former was the best for detecting ransomware types.

Ahmed and Al-Dabbagh analyzed in [48] six machine-learning methods to defend
mobile devices from malware by monitoring network traffic: Random Forest, k-Nearest
Neighbors, Multi-Layer Perceptron, Decision Tree, Logistic Regression, and eXtreme Gra-
dient Boosting. A similar work is one by Bagui and Woods [28], where the algorithms
considered were Decision Tree, Naïve Bayes, and OneR. Again, Jose et al. analyzed in [49]
various machine-learning algorithms combining RansomDroid and concept drift in the
classification of raw data considering host, network, behavior, and files.

The authors in [50] proposed ARdetector, an architecture for Android ransomware
detection that allows the analysis of some related ransomware features, like behavioral
characteristics, to select the most representative ones. In addition, a deep neural net-
work using focal loss was designed. Again focusing on machine-learning techniques, the
authors in [51] combined static analysis and machine-learning techniques for predicting
ransomware applications. For classification, the Decision Tree, Extra Tree classifier, and
Light Gradient Boosting Machine methods in concurrence with the Random Forest Tree
scheme were employed.

Ngirande et al. proposed in [52] a hybrid analysis employing the Support Vector
Machine (SVM) algorithm for Android ransomware detection. Static features as well as
dynamic features were used. This model achieved a suitable performance: with static
features the accuracy was 81% and the precision was 90%; with dynamic ones, the accuracy
was 100%. Ahmed et al. also made use of different techniques in [53] to build efficient,
precise, and robust models, including Decision Tree, Support Vector Machine, k-Nearest
Neighbor, Ensemble of Decision Tree, Feedforward Neural Network, and tabular attention
network for binary classification.

As shown, most of the current Android ransomware detection solutions rely on
machine-learning methods. However, they usually focus on detection accuracy and avoid
providing computation cost and resource consumption figures, which is a principal concern
for user device, as pointed out in works like [17,30,31].

In what follows, we introduce a new crypto-ransomware detection solution for An-
droid platforms based on the use of the deployment of honeyfiles and the reactive mon-
itoring of them over time based on the class FileObserver(), which uses inotify() to
alarm events that access the file system. In addition to the detection efficiency and efficacy
demonstrated by our approach, its reactive nature involves low resource consumption
(almost zero) compared to the active detection schemes usually considered in current
detection solutions (either static, dynamic, or hybrid [54]).

3. Ransomware Detection Based on Honeyfiles

Deception technology is a category of cybersecurity solutions aimed at detecting
threats in a proactive way by the deployment of realistic decoys (e.g., domains, databases,
directories, servers, apps, etc.) in an environment alongside real assets to act as lures. The
importance of deception techniques in cybersecurity is clear [55–57], since they usually
present some main benefits:

• Attackers waste their time exploring worthless planted assets while you bait them
into a trap.

• The moment an attacker interacts with a decoy, the technology begins gathering
information that will be used to generate high-fidelity alerts that reduce dwell time
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and accelerate incident response. That is, an early detection process with low false
positive rates is achieved.

• This technology generates threat intelligence, stops lateral movement, and orchestrates
threat response and containment, all without human supervision.

Although there may be some nuances among them, terms like ‘decoy’, ‘trap’, and
‘honey’ are interchangeably used to indicate resources attractive to hackers whose goal is to
generate alerts when they are accessed.

Like honeypots and honeynets (See links like https://www.projecthoneypot.org (ac-
cessed on 1 April 2024), and https://www.honeynet.org (accessed on 1 April 2024)), honey-
files draw the attention of cybercriminals to distance them from their real targets. Honeyfiles
are easy to set up and maintain, but there is no guarantee that the attack will reach them.
The authors in [58] propose the creation of a large dummy file that will be monitored. The
encryption process of this file by ransomware will take time, which allows the detection
and protection of the rest of the files (changing the attributes of the remaining files and
a list of infected files and another of non-infected ones). Notification filters are used to
observe changes in some metadata of the files in the monitored folder (name, last access
date, last write date, security, and size). The system does not prevent some files from being
affected, since the trap file is generated when changes in other files are detected.

Moussaileb et al. use decoy files distributed throughout the file system (especially in
folders not in common use) that serve to count the number of times a thread of a program
passes through it [59]. By normalizing this counter by the total number of decoy folders
considered, a ransomware alert is launched if a fixed threshold is exceeded. This idea was
already presented in [60], where name changes and decoy files were simply monitored to
detect the presence of ransomware.

The UNVEIL system [61] generates a virtual environment with the aim of attracting
attackers and limiting damage before being detected through honeyfiles. Another work
in this line is [62], which investigates the creation and monitoring of the activities of a
ransomware using the technique of folders acting as honeypots. The work studies two meth-
ods for its implementation: the File Screening Service of Microsoft’s File Server Resource
Manager (FSRM), and the EventSentry solution to manipulate Windows security logs.

RWGuard [63] uses decoy files that should not be written for detection. They are
monitored along with tracking the behavior of processes regarding their I/O requests (IRP)
and file changes (creation, erase, and write operations) in search of malicious behaviors.
RansomWall [64] is a multi-layer defense that incorporates trap files as a form of protection
against crypto-ransomware. When a malicious process is suspected in the trap layer,
the modified files are copied until determining whether they are malign or benign in
other layers.

More recently, SentryFS [65] is a specialized file system that strategically distributes
trap files. These traps are generated using Natural Language Processing (NLP), and
both their content and metadata are constantly updated to appear more attractive to more
targeted ransomware samples. With this purpose, SentryFS connects to an anti-ransomware
web service to download the latest information on new ransomware strategies. Additionally,
files are cloned to avoid directly writing to them in case ransomware goes unnoticed. This
would encrypt the clones instead of the actual files.

One more approach in the field is the work by Wang et al. [66], where the authors
designed and implemented KRProtector as a solution to detect ransomware and protect
files based on decoys for IoT devices without ROOT.

3.1. R-Locker: A Particular Honeyfile-Based Ransomware Detection Solution for Linux
and Windows

Before addressing our specific detection proposal based on trap files for Android in
Section 4, we will now describe the architecture and methodology of our previous approach
for detecting crypto-ransomware in Linux and Windows systems: R-Locker.

https://www.projecthoneypot.org
https://www.honeynet.org
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3.1.1. R-Locker Architecture

We assume that a crypto-ransomware sample eventually scans the file system of the
infected machine, either randomly or selectively, looking for files to access and encrypt
their contents, as described in [67]. Based on this general characteristic, we propose an
anti-ransomware solution to create a honeyfile that serves as a trap to capture samples of
this typology of malware. This proposal has two main beneficial features, F = {F1, F2} , that
distinguish the proposal from others:

F1. The ransomware sample will be blocked when it accesses the honeyfile without
affecting the rest of the file system.

F2. In addition to blocking the sample, the malicious access is notified and a countermea-
sure automatically deployed to address the threat.

The methodology corresponds to the functional architecture shown in Figure 1. The
operational procedure is conceptual and, therefore, independent of the specific platform
where it is implemented (Linux, Windows, Android, etc.). In addition to the aforementioned
anti-ransomware properties, some requirements, R, should be satisfied by the solution in
order to be valid for real environments:

R1. Effectiveness: The harmful actions of the ransomware on the system must be null
or minimized.

R2. Low consumption: To be scalable, less resources in terms of CPU, memory, and storage
must be consumed.

R3. Clarity: To be usable by end users, no special privileges for the installation or execution
are required.

R4. Transparency: The rest of the applications and services on the system should not
be affected.

R5. Simplicity: No complex operations must be required to thwart the threat.

Developing an anti-ransomware solution that satisfies the core benefits, F, and require-
ments, R, seems like a non-trivial task. In the rest of the section we will briefly describe our
proposed implementation for Linux/Unix and Windows systems.

Figure 1. General architecture of the R-Locker proposal.
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3.1.2. R-Locker for Linux/Unix and Windows

A simple and elegant solution to achieve our objectives while satisfying all established
requirements is to use FIFOs (also known as named pipe) [32], which provides a unidi-
rectional interprocess communication channel. A FIFO is created as a permanent named
object in the file system and has two interesting and useful properties for our purpose due
to its dual nature [68]:

• As an object in the file system, it is manipulated like a conventional file accessible
through the File API (open, close, read, write, etc.). This makes a FIFO visible
to ransomware.

• A FIFO is also a finite-sized communication channel between two processes, the
synchronization between them being automatically managed by the operating system,
which simplifies the proposed solution.

From the above, our anti-ransomware solution firstly developed for Linux systems
operates as indicated in Figure 1, where the trap files are implemented as FIFOs. This way,
the detection procedure is as follows (see Figure 3 in [32]):

1. First, R-Locker creates a FIFO (mkfifo() system call) that will be the central honeyfile
or trap file.

2. Secondly, the process will open the channel in write-only mode (O_WRONLY) and write
to it the necessary bytes to fill it and block the writing process that will act as a monitor.
At this point, the trap is ready and waiting for prey.

3. From here on, when an external process (a supposed ransomware) starts reading the
trap, it will finally be blocked by the operating system.

4. Simultaneously, the writer process, which was stopped, is automatically woken up
by the kernel and continues its execution to launch the countermeasures as follows:
(i) the identifier of the application that accesses the honeyfile is determined; (ii) the
user is notified to kill, if necessary, the corresponding process.

Transferring the previous solution to Windows environments is relatively direct [33]
since both operating systems have similar abstractions. However, there are two funda-
mental differences in FIFO management on Windows compared to Unix systems: (a) files
and FIFOs belong to different namespaces in the case of Windows, (b) only one process is
allowed to simultaneously read from the FIFO on Windows.

To solve the first difference, we need to connect files and FIFO spaces. Windows
symbolic links can be used for that, which allow creating an object in the file system that
points to an object in the device or FIFO space. Regarding the second difference, we
can create several instances of a FIFO so that if several processes access the FIFO, each
of them connects to one of said instances. The instances can be created dynamically as
needed, which has the advantage of allowing one to handle ransomware families that use
multithreaded processes to optimize file encryption.

As shown in the experimentation carried out in [32,33], a high efficiency and low
resource consumption must be remarked for our FIFO-based ransomware detection ap-
proach, both for Linux and for Windows. Two additional relevant aspects have contributed
to the good performance shown by R-Locker:

• Dynamic management of honeyfiles. Beyond the general behavior of honeyfiles in
R-Locker, an important aspect to consider is their location, that is, how to select and
manage the folders in which to place the traps. From the results of the work [67] we
conclude that there is not a single order for the selection of folders: some samples
make an in-depth selection first, then alphabetically; others make a random selection.
Such very different behaviors lead to the conclusion that it is advisable to deploy
the traps in all folders in order to achieve complete protection. To do this, instead of
replicating the traps, which would force us to have to replicate the monitoring process,
we can create links to the central FIFO in each and every folder in the file system.
Regarding the selection of files within a folder, ransomware samples make selections
according to different criteria. In some cases (e.g., NTFS), entries are returned in
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alphabetical order. In other cases, files are first prioritized by extension and then
selected alphabetically. To address this situation we can create multiple links with
names “!..!” and extensions like ‘.doc’, ‘.pdf’, ‘.jpg’, etc. To enhance transparency
from the user’s perspective, honeyfiles can also be hidden so that they are invisible to
normal user operations.

• Integrated detection and (semi-)automatic response. As previously described, a coun-
termeasure is automatically launched when a honeyfile is accessed. In fact, when a
reader process accesses the trap the system resumes the detection process (writer) and
notifies the user to take corrective action. For a quicker and easier response, this task
has been semi-automatizated in R-Locker by making use of two lists:

1. A whitelist, which is created at installation time and contains all legal applica-
tions on the system. An application from this list that interacts with the trap is
automatically unlocked by the monitor.

2. A blacklist, which contains programs that the user has already identified as
malicious. This list is built as malicious processes are identified, such as when
tagged by the user in response to the notification system.

4. Lightweight Ransomware Detection in Android Based on inotify()

The Android security model is robust but has some problems that can be exploited by
attackers [69]: (i) malicious applications can surpass Google Market controls or are installed
from unknown sources; (ii) over-requesting the permissions (seen as vulnerabilities) of
many applications breaks the principle of least privilege and the associated functionality
is not well understood by users; (iii) native code can be executed outside of the Dalvik
machine, thus having less memory protection.

As we have previously discussed, the implementation of R-Locker requires that the
operating system supports the creation of FIFOs and some link-type object, either hard or
symbolic, in the file system. The first requirement is feasible on Android but, regretfully,
the second is not. Android allows the creation of FIFOs in the /data/user/0/. . . folder as long
as the internal storage is formatted with the type ext4. Unfortunately, not all devices have
the memory formatted in a file system of this type, regardless of whether they are created
through the Java interface or through a native application using JNI [70].

Although this would be quite restrictive due to the sandboxing and the specific mobile
device used, it could be enough to extend the R-Locker solution to some models as long as
we are able to create symbolic or hard links to the FIFO from the target file system to be
monitored. Regretfully, the link-building requirement is more problematic. It should be
noted that the file system in which external memory is usually formatted is a variant of
the FAT system, known as exFAT (‘Extensible File Allocation Table’) [71], which does not
support symbolic links or the creation of FIFO objects. Therefore, to build a solution based
on that of the R-Locker proposal is not feasible for this type of memory. While it would
potentially be possible to format external memory with a type of file system that allows
such mechanisms and is supported on Android, for example ext4, not all Android systems
allow that. Furthermore, this would break the transparency and simplicity required for
R-Locker (R4) when installing said solution, since the user would have to make a backup
of their external memory to be able to format it to the new type.

At this point, we need to look for an alternative to the base R-Locker mechanism. Two
different approaches appear: continuous dynamic monitoring, which we will call ‘active’,
in which information about the operation of the system and applications is collected for
subsequent analysis; and another approach in which the monitoring works in a ‘reactive’
way, that is, after instructing the operating system about the events that we want to observe,
the monitor waits without consuming resources for the kernel to notify it of the occurrence
of said events. Both approaches are analyzed below, but first it is interesting to briefly
highlight a common issue: the deployment of the trap files, as follows.
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The memory of an Android device is divided into two parts:

• Internal memory: Memory where private data are stored, that is, those application
data (directory /data/) whose access is under the control of the kernel and the data
system (directory /). This is a part of the memory included in the device.

• External memory: Public data are stored in this memory, that is, data that can be shared
by applications, such as personal data, photographs, documents, etc., and whose access
is controlled by the permissions granted to the applications. This memory is made up
of part of the memory included in the device (embedded flash memory) and external
SD cards.

Regarding the permissions that protect external storage, it is important to indicate
that they affect all the files contained. That is, it is not possible to grant permissions for a
single application to access a specific directory within this storage but, on the contrary, the
grant is for the entire external memory. Allowed permissions (READ_EXTERNAL_STORAGE,
WRITE_EXTERNAL_STORAGE, MANAGE_EXTERNAL_STORAGE) give access to (a) the table MediaS-
tore.Files that contains an index to all files in media storage, (b) the root directory, and (c) all
directories in internal storage except /Android/data and sdcardAndroid.

For all of the above, we propose carrying out the deployment of the trap files in the ex-
ternal memory that can be accessed by different applications installed on the Android device.

4.1. Active System Monitoring

As discussed in Section 2, ransomware detection generally involves collecting
environment-related parameters that are then processed to determine if the observed be-
havior is benign or malicious [22,24,27]. For such a gathering process in Android platforms,
an application like AMon (which stands for ‘Android Monitoring’) is needed [72,73]. Devel-
oped by the authors, AMon aims to collect dynamic information on numerous aspects of
the operation of the mobile device, such as communications, applications, security status,
and interface state. This tool does not require special privileges or root access to operate
and it collects a larger number of parameters than those usually found in other tools in the
literature. In addition, it is feasible to easily add new parameters.

This tool allows multiple applications (e.g., malware detection, access control) sup-
ported on the monitoring of dimensions like permissions of installed applications [74],
consumption of resources such as CPU usage [75], etc.

Despite the power and flexibility of active monitoring, it presents some limitations:

• Resources involved: Given the continuous monitoring of a number of features and
parameters of the target system, the consumption regime can be high. In the case of
AMon, the battery consumption in a normal use regime is 0.4%, which is not very high
on its own but is double compared to the consumption of an antivirus application
(both consumptions measured in a Samsung S9 phone with a 3000 mAh battery).

• Offline processing of features: Depending on the detection method used, we can
process the data collected inside or outside the phone. In most cases, using ML-based
techniques, the processing should be done outside the phone so as not to exhaust the
device’s resources, such as the battery.

• Data consumption: If we need to perform off-device processing, an increase in data
traffic and greater use of the communication service are expected, which means greater
battery consumption as well.

Due to the above, we finally opted for a reactive ransomware detection solution
for Android platforms, where the OS alerts us asynchronously when specific events of
interest occur.

4.2. Reactive System Monitoring

For our ransomware detection solution in Android, we are going to consider two
premises: (a) the necessary interaction of the sample with the file system, (b) noadministra-
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tor privileges are required for the tool. According to works like [76], the interface provided
by FileObserver() will be considered with this aim.

The FileObserver() class [77] on Android encapsulates the inotify() mechanism
of Linux [68]. This mechanism notifies the kernel which files/directories are targeted for
monitoring by calling inotify_add_watch(), which adds an entry to the watch list for
each instance.inotify. Each watch list entry contains the path of the file to monitor and a bit
mask representing the events to monitor, the function returning an observation descriptor
that will be used in subsequent operations such as read().

The advantage of this mechanism over other types of monitoring is that the observation
descriptors can be read using an asynchronous I/O mechanism, or controlled by signals,
such as select(), poll(), or epoll(), where the kernel tells the watchdog process when
an event is ready to be read, freeing the watchdog process from constantly polling the
system to see if the event has occurred.

Going back to Android, FileObserver() is an abstract class so that an event handler
must be established with onEvent(). Each instance of the class can monitor a path and
uses an event mask to specify the changes or actions to report. The list of observable events
in Android are shown in Table 1, along with a description of their meaning.

Table 1. Monitorable events with FileObserver().

Event Description

ACCESS Data has been read from the file

ALL_EVENTS All valid event types combined

ATTRIB They have changed the metadata explicitly

CLOSE_NOWRITE Someone has file/directory open read-only and closed it

CLOSE_WRITE Someone has file/directory open for writing and closed it

CREATE A file/directory has been created in the monitored folder

DELETE A file has been deleted from the monitored directory

DELETE_SELF The file/directory in the monitored directory has been deleted; stop monitoring

MODIFY File data has been written

MOVED_FROM A file or directory was moved from the monitored folder

MOVED_TO A file or directory was moved to the monitored folder

MOVED_SELF The observed file or directory has been moved; monitoring continues

OPEN A file or directory has been opened

FileOberserver monitors files individually, so if we want to monitor the entire exter-
nal memory we must recursively traverse the directory tree and establish instances for each
file to be monitored. Using the function as stated in the documentation is quite simple, as
shown by the (recursive) code snippet in Listing 1. We can see that, after establishing the
function to manage the events on the files to be monitored, the calling process will wait for
said events to take place.
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Listing 1. File system monitoring whith FileObserver().

publ ic void r e c u r s i v e F i l e O b s e r v e r ( F i l e root , L i s t < F i l e > f i l e s ) {
F i l e [ ] = l i s t = root . l i s t F i l e s ( ) ;

i f ( l i s t != n u l l ) {
f o r ( F i l e f : l i s t ) {

i f ( f . i s D i r e c t o r y ( ) ) {
F i leObserver = new Fi leObserver ( f . getAbsolutePath ( ) ) {

@Override
publ ic void onEvent ( i n t event , @Nullable S t r i n g path ) ;
// Operations to manage the event on the path
Fi leObserver . s tartWatching ( ) ;
f i l e s . add ( f ) ;
r e c u r s i v e F i l e s L i s t ( f , f i l e s ) ;

}
}

}
}

}

4.2.1. FileObserver() Related Patterns Associated to Ransomware

At this point, we propose analyzing the patterns of FileObserver()-related events
associated with a typical crypto-ransomware sample in order to model its behavior and,
from this, to monitor the processes accessing the file system to conclude, if so, the occurrence
of a malicious activity.

The usual operation of ransomware is the encryption of the target files to subsequently
delete them to make their unencrypted version inaccessible. This process can be carried
out in different ways or stages. Works such as [25,61,78] address this issue and show the
file operations involved and the order in which they occur. Three manipulation patterns of
both the original and the encrypted files appear:

• Overwrite, where the original file is read and its content overwritten over the encrypted
one.

• Read–encrypt–delete, where the original file is first read, then the ransomware creates a
new file to store the ciphered content, and finally the file is deleted.

• Read–encrypt–overwrite, which is similar to the previous one but the victim file is
deleted and overwritten.

In the next section, we will see how our developed detection tool allows captur-
ing these input/output operation patterns on files using the mechanism provided by
FileObserver().

5. Experimentation
5.1. FileMonitor Tool

With the aim of testing the validity of FileObserver() as a reactive mechanism for
ransomware detection, a fully functional Android application named FileMonitor is devel-
oped, whose code is publicly Available online: Github (https://github.com/JA-Gomez-
Hernandez/FileMonitor (accessed on 1 April 2024)). This application has a simple user
interface, as can be seen in Figure 2: At the bottom are buttons to start/stop monitoring, to
check the operation, and to clear the monitoring list; at the top, the dangerous applications
installed on the device and a filter of events (as indicated in Table 1) will appear.

The following functional and non-functional requirements are defined for the app:

• FR1: The user can start/stop monitoring the files.
• FR2: The user can clear the list of monitored events.
• FR3: The app will show each type of event recorded and the associated path, it being

possible to filter the events by typology.

https://github.com/JA-Gomez-Hernandez/FileMonitor
https://github.com/JA-Gomez-Hernandez/FileMonitor
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• FR4: The app will show the list of dangerous applications with the correspond-
ing permissions.

• NFR1: Both the interface and the use of the application must be simple and easy
to understand.

• NFR2: The list of events must be displayed in an organized manner. A first level will
show a summary of the events on a given file; a second level includes a detailed list
of them.

• NFR3: The list of dangerous applications also has two levels: first, it is displayed in a
summary form; second, the details are displayed by clicking on each one.

• NFR4: File monitoring is possible, even if the application is running in the background.

Figure 2. Graphical interface of the FileMonitor app.

The operation of the application is simple once it is understood how the FileObserver()
class works, although it is necessary to implement it as an activity and a service to be run
in the background. The service will perform the monitoring itself, while the activity will
be responsible for receiving the data from the service and displaying them to the user.
Figure 3 shows the sequence diagram of the actions of both monitoring initialization and
event notification.

For the development of the detection system, Java with Android Studio is used as it is
the official IDE that offers stability, and it allows developing the graphical interface and
the emulation on different devices. The implementation of the service is conventional, as
shown in Listing 2, where the use of the START_STICKY indicator must be highlighted so
that said service does not stop when it is running in the background.

The service must be declared in the manifest with the corresponding permission
(android.permission.FOREGROUND_SERVICE), as it appears in Listing 3. You can also see
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how the app requests permissions to read/write to the external storage, consults on the
existing packages on the platform, and activates the device screen.

Figure 3. Sequence diagram of the monitoring initialization and event notification.

Listing 2. Service creation by FileMonitor.

@Override
publ ic i n t onStartCommand ( I n t e n t i n t e n t , i n t f l a g s , i n t s t a r t I d ) {

i f ( Build . VERSION . SDK_INT >= Build . VERSION_CODES .O) {
c r e a t e N o t i f i c a t i o n C h a n n e l ( ) ;

} e l s e {
CHANNEL_ID= " " ;

N o t i f i c a t i o n n o t i f i c a t i o n = new Notif icationCompat . Bui lder ( t h i s ,
CHANNEL_ID ) . bui ld ( ) ;

s tartForeground ( 1 , n o t i f i c a t i o n ) ;

f o r ( F i l e f : o b s e r v e d _ f i l e s ) {
Log . i ( " S e r v i c e : " , f . getAbsolutePath ( ) ) ;
observers . add (new s i n g l e F i l e O b s e r v e r ( f ) ) ;

}
Toast . makeText ( t h i s , " I n i t i a t i n g F i l e o b s e r v e r ( ) in the f o l d e r " +
root . getAbsolutePath ( ) + " / " , Toast .LENGTH_SHORT ) . show ( ) ;
re turn S e r v i c e . START_STICKY ; // S e r v i c e " s t i c k y " type to avoid

been stopped by the system
}

Listing 3. Service declaration in background by FileMonitor.

<\\a ppl i ca t ion >
. . .
< s e r v i c e android : name="com . f i l e m o n i t o r . t e s t . f i l e o b s e r v e r .
F i l e O b s e r v e r S e r v i c e " android : enabled =" t rue "></ serv ice >

</ a p l i c a t i o n >

<uses −permission . . . " android . permission .WRITE_EXTERNAL_STORAGE"/>
<uses −permission . . . " android . permission .WAKE_LOCK"/>
<uses −permission . . . " android . permission .READ_EXTERNAL_STORAGE"/>
<uses −permission . . . " android . permission .FOREGROUND_SERVICE"/>
<uses −permission . . . " android . permission .QUERY_ALL_PACKAGES"/>
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The communication between the two components of the application, the service,
and the activity is carried out through a LocalBroadManager. Moreover, the Android’s
API provides functionality to collect information about the running apps through the
PackageManager functions getPackageManager() and getInstalledPackages(). This
package returns the installed apps and their permissions, those declared in the manifest as
well as those granted. All of this is used to choose the apps with dangerous permissions.

The deployment of the detection tool on a real target scenario is similar to the case of
R-Locker for Linux and Windows:

• First of all, we need to deploy the honeyfiles throughout all the folders in the external
memory directory tree. To make them transparent to the user, they will have a name
of the form ‘.<name.extension>’, where ‘.’ is the conventional way to hide files. Both
the name and the extension of the file should be attractive to ransomware.

• When access to some of the monitored files is detected by FileObserver(), we must
deploy the necessary countermeasures intended to allow, on the one hand, to deter-
mine which application presents the observed malicious behavior and, on the other,
to stop said process by notifying the user as we already did in R-Locker.

For that, a whitelist is used, where the applications installed at the time FileMoni-
tor application is installed are stored in the whitelist as benign applications. This is
done by using the QUERY_ALL_PACKAGES permission to collect the list of applications
installed on the device before starting the monitoring process. When the ransomware
detection occurs, we collect this information again and locate the app (or apps) in-
stalled after the monitoring app and that is (or are) the candidate for a malicious
behavior. Following the R-Locker scheme, we can kill said process by giving our ap-
plication the KILL_BACKGROUND_PROCESSES permission. Unlike the detection proposal
for Linux and Windows, the one for Android is capable of building a more selective
whitelist, since we can select only applications that have the necessary permissions to
cause damage to external memory.

In addition to the whitelist, we can use, as we already did in R-Locker, the blacklist
solution with the objective of detecting and (semi-)automatically stopping different
occurring threads of an already known ransomware sample.

5.2. Test Scenario and Results

To carry out experimentation with our Android ransomware detection proposal
through the FileMonitor app, the following execution environment is deployed:

• A virtual machine with VirtualBox, as a sandbox.
• An Android virtual machine inside the previous VM. This second level of virtualiza-

tion is made with GenyMotion [79].

In addition, the malware samples shown in Table 2, which were obtained from the
AndroidMalware repository [80], are also considered for experimentation. It is important
to mention that there are not only ransomware samples but also other types of malware.

Table 2. Malware samples used for experimentation, from [80].

Name Hash MD5 Type

CookierStealer 65a92baefd41eb8c1a9df6c266992730 Spyware
Covid_SpyPhone 3288a6cb81bc3e928e438fa280fec847 Riskware
Covid_Cerberus 66c4513025128719dda018820cc0987e Spy/Dropper
Crydroid 381134ea0f0be535b9d2ce8a94093576 Ransomware
Cyberpunk cbd92757051490316de527a02ac17947 Ransomware
Joker 44faa3de0f17491557a3a775c88e7e33 Spy/Dropper
Shopaholic 0a421b0857cfe4d0066246cb87d8768c Dropper
ThiefBot e88867956017bbe5b633811885c87018 Spyware
Trickbot 05c0c1bb23cc06474c3fd3ba51e4e4c6 Spy/Dropper
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Figure 4 depicts the operation captured for the Cyberpunk ransomware sample (an app
posing as a fashion game of the same name, allowing the user to grant it write permissions),
where the behavior ‘read–encrypt–delete’ previously mentioned in Section 4.2.1 is observed.
A similar situation occurs for the sample named Crydroid. As the mentioned figure shows,
the files undergo three operations:

1. A DELETE event, which indicates a file erase operation. Here, file erase (unlink())
means that the information on disk is not really deleted: the file directory entry is
deleted but data remains intact since there is an active reference to the file in the kernel
(while the file is open). This way, ransomware can access the file but the user cannot.
In Figure 4, this is the first operation (see timestamp) on the file ‘Picture98.png’.

2. Second, the creation of the encrypted version of the file, which usually has the same
name and a specific extension (CREATE event). In our case, this operation will generate
the encrypted version of the target file: ‘Picture98.png.CoderCrypt’.

3. A MODIFY event, which reflects that the content of the file is modified, including a
potential change in its extension. Finally, the ciphered version of file is written.

The abovementioned behavior fits into the type of pattern described in Section 4.2.1,
due to the order in which the ransomware performs actions on the victim file. Therefore, the
detection application would allow detection of ransomware samples running on devices
by characterizing the behavior of said processes during the encryption procedure.

Figure 4. Monitoring the file encryption process by the CyberPunk ransomware sample with FileMonitor.

Beyond the correct detection of the analyzed ransomware samples, some measure-
ments were taken to determine the response time of the notification mechanism imple-
mented in FileMonitor: monitoring 200 events for a target file requires 1–200 ms if only
one application is running, 1–450 ms if four apps are executed, and 1–700 when nine apps
are running. Moreover, the cost of encrypting a file has also been measured: 10 ms for
an 8 KB file; 70 ms for a 60 KB file. Therefore, a ransomware sample could encrypt about
ten files if we distribute 60 KB decoys, so we can consider that it behaves as an early
detection mechanism.

Additional Malware Detection Capabilities

An advantage of our tool FileMonitor is that it can detect other malicious behaviors
affecting filesystems besides those specific to crypto-ransomware. For example, the spyware
ThiefBot, which appeared in September 2020, is intended to obtain banking credentials,
although it collects all types of credentials and personal information. This app impersonates
the Google Play app and requests permissions to access storage, SMS, phone, contacts, and
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camera. When installing the app, it displays an error message, indicating that it is not able
to work on older versions of Android, and that newer versions of the app are needed. Then
it seems to close, when it really starts working (spying) in the background.

If we use FileMonitor after installing this spyware, we obtain the results shown in
Figure 5, where we can see a very high number of accesses of type ACCESS and OPEN to a
folder created by the malicious app, named downloads. As shown, the folder is accessed in
a short period of time with a very high number of events (in the order of 5000 events per
minute). This makes us suspicious of its malicious behavior.

Figure 5. Monitoring results obtained by FileMonitor for the sample ThiefBot.

5.3. Discussion

After testing our detection solution for Android platforms, we can conclude that it
behaves similarly to R-Locker for Linux/Windows platforms from the perspective of the
desired features, F, and requirements, R, as well as the figures of accuracy and efficiency
achieved. In addition, it presents capacities to detect other malware typologies that rely on
file access.

It is important to mention that only a few similar works in the literature show specific
figures on the efficiency of the solution (e.g., see [35,41,44] in Section 2). Despite the good
performance achieved by ours, further investigation needs to be expanded with additional
ransomware/malware samples. Regretfully, it is a difficult task that would require more
time and dataset resources.

A relevant issue to be further investigated is the one regarding the specific file access
sequences to conclude actual harmful file accesses. Otherwise, false alerts will be generated.
Fortunately, the number of access patterns to manipulate files using the functions offered
by the operating system is limited and, therefore, well characterized.

6. Conclusions

This work discusses Android ransomware detection and introduces a new lightweight
detection approach for that platform. Unlike most current detection proposals, which
rely on usually complex and heavy ML-based detection schemes, our solution relies on a
reactive file system monitoring methodology based on the deployment of honeyfiles, which
is expected to involve low resource consumption in terms of memory, CPU, and battery.

Implemented through a specific app named FileMonitor to experimentally evaluate
the efficacy and efficiency of the proposed methodology, the results obtained show the
progress that our solution provides is state-of-the-art, making it a good candidate to be
adopted to effectively combat ransomware on small and resource-limited platforms.

As shown, our proposal is not only capable of detecting ransomware samples but is
also able to detect potential harmful actions against files by simply analyzing and detecting
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the sequence of certain operations on specified targets files. This way, the solution will
depend on the good characterization of the sequences and frequency of the operations
carried out by ransomware.

Despite the quality of the proposal and its promising use in mobile environments
(e.g., BYOD security policies), it should be experimentally evaluated in a more exhaus-
tive way by using more crypto-ransomware and other malware-targeting file samples.
Moreover, in the present form, the developed app has the file access patterns considered
for detection embedded in the code. Therefore, a quick improvement would consist of
allowing the inclusion of new patterns through a configuration file or a similar scheme.

Finally, the solution introduced is designed to be deployed as an autonomous, sepa-
rate tool. However, its integration with other security frameworks and solutions should
be analyzed.
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