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Abstract: With the recent advances in autonomous vehicles, there is an increasing need for sensors
that can help monitor tire–road conditions and the forces that are applied to the tire. The footprint area
of a tire that makes direct contact with the road surface, known as the contact patch, is a key parameter
for determining a vehicle’s effectiveness in accelerating, braking, and steering at various velocities.
Road unevenness from features such as potholes and cracks results in large fluctuations in the contact
patch surface area. Such conditions can eventually require the driver to perform driving maneuvers
unorthodox to normal traffic patterns, such as excessive pedal depressions or large steering inputs,
which can escalate to hazards such as the loss of control or impact. The integration of sensors into
the inner liner of a tire has proven to be a promising method for extracting real-time tire-to-road
contact patch interface data. In this research, a tire model is developed using Abaqus/CAE and
analyzed using Abaqus/Explicit to study the nonlinear behavior of a rolling tire. Strain variations
are investigated at the contact patch in three major longitudinal slip driving scenarios, including
acceleration, braking, and free-rolling. Multiple vertical loading conditions on the tire are applied
and studied. An intelligent tire prototype called KU-iTire is developed and tested to validate the
strain results obtained from the simulations. Similar operating and loading conditions are applied
to the physical prototype and the simulation model such that valid comparisons can be made. The
experimental investigation focuses on the effectiveness of providing usable and reliable tire-to-road
contact patch strain variation data under several longitudinal slip operating conditions. In this
research, a correlation between FEA and experimental testing was observed between strain shape for
free-rolling, acceleration, and braking conditions. A relationship between peak longitudinal strain
and vertical load in free-rolling driving conditions was also observed and a correlation was observed
between FEA and physical testing.

Keywords: intelligent tires; strain measurement; finite element analysis; physical testing

1. Introduction

Understanding the dynamics at the tire contact patch is crucial for analyzing ground
vehicle performance. There have been many studies in the field of vehicle and tire dynamics
for understanding tire–road interactions, specifically to analyze the handling and ride
quality characteristics of vehicles in multibody dynamics software. In simulation and in
the physical world, there are limits to the longitudinal and lateral forces that can be applied
to the contact patch of each tire. These forces are governed by the coefficient of friction
at the tire–road interface and the vertical force acting on the tire. Real-time availability
of the governing parameters can largely help in estimating the fraction of Newtonian
forces expended. Thus, it is very desirable to estimate these forces to prevent unsafe
vehicle behavior.

For direct estimation of tire–road contact parameters, engineers are using sensor-based
tires called ‘smart tires’ or ‘intelligent tires’. This new generation of intelligent tires could
result in the development of novel vehicle control strategies based on direct information
from the tire–road contact patch. Many studies focused on the concept of intelligent tires
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have attempted to characterize the contact parameters based on the type of sensor used and
variables measured as features for estimation. In most cases, the idea is to acquire values
related to tire dynamics such as Newtonian forces, tire slips, and friction characteristics
from tire deformations. These deformations can be obtained by measuring quantities such
as displacement, strain, or acceleration from the tire of a moving vehicle.

1.1. Review of Published Work

Efforts from industrial programs such as the APOLLO and FRICTION projects [1]
have contributed to the understanding of strain energy extraction from the inner liner
of a tire and the creation of an intelligent tire designed around increased traffic safety.
Van Den Ende et al. [2] advanced the strain-based approach by harvesting and analyzing
tire strain energy using piezoelectric deformation transducers. Braghin et al. [3] presented
the idea of estimating several fundamental tire quantities such as longitudinal and lateral
tire slip. These dynamic conditions were described by means of an accelerometer fixed
inside the tire inner liner. Khaleghian et al. [4–6] employed a similar setup with a tri-axial
accelerometer supported by a soft computing algorithm. This arrangement enabled the
classification of terrain by identifying differences in the features of the experimental data.
Goos et al. [7] developed a flexible ring tire model-based state estimator to predict the
vertical load at the contact patch by employing a tri-axial accelerometer. An extended
Kalman filter was used to predict the longitudinal and lateral tire forces.

There have been numerous physical testing studies of tires embedded with sensors on
the sidewall as well as the inner liner. Pohl et al. [8] used Surface Acoustic Wave (SAW)
sensors to monitor tire strain and estimate the tire–road friction coefficient. Lee et al. [9]
also used machine learning for monitoring wheels for railway vehicles. Bastiaan [10] used
piezoelectric deformation sensors, in concert with an artificial neural network, to estimate
tire forces developed at the contact patch. Ergen et al. [11] and Savaresi et al. [12] used
accelerometers to estimate tire forces. Gupta et al. [13] used an accelerometer to identify
different road surface conditions. Kim et al. [14] developed a polynomial-based tire model
by using a strain measurement method for an intelligent tire system. The relationship
between tire strain data and vehicle driving conditions led to the development of a model
comprising polynomial equations.

Kubba et al. [15] and other researchers such as Hall et al. [16] and Matsuzaki et al. [17]
strongly support the use of Finite Element Analysis (FEA) to calculate tire deformation.
Eder et al. [18,19] created a validated tire FEA model that was used to calculate tire defor-
mation for a subsequent computational fluid dynamics analysis of an open-wheel race car
when performing vehicle dynamics maneuvers. Zou et al. [20] used a tire FEA model in com-
bination with a tire brush model to estimate the tire–road friction coefficient. The Abaqus
FEA package has been at the forefront when it comes to predicting the elastically nonlinear
material deformations of tire rubber in these studies. The feasibility of a tire physical
experiment can be deduced from the results obtained from a tire FEA simulation.

The usefulness of tire FEA models in intelligent tire development requires that physical
testing methods for the validation of these models exist. Some of the most practical methods
for the physical validation of tire FEA models involve comparisons of dynamic stiffness and
deformation behavior. For example, Patil et al. [21] performed a physical modal analysis
of a tire to investigate the effect of inflation pressures on tire natural frequencies and
mode shapes. This study found that tire natural frequencies are significantly influenced by
inflation pressures, with an approximately linear relationship between inflation pressure
and natural frequency. Such physically observed characteristics can be compared with
similar predictions from tire FEA simulations.

Mange et al. [22] measured tire operating deflection shapes using a Digital Image Cor-
relation (DIC) system. High-speed cameras were used to measure tire sidewall vibrations of
a rolling racing tire that was mounted on a vehicle in a chassis dynamometer environment.
Similar to traditional modal analysis, tire deformations obtained from DIC can be used to
confirm correct behavior in tire FEA models. Matsubara et al. [23] measured contact patch
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strain contours for a tire rotating at 50 KPH using a photographic method. Strain contours
measured from this physical testing method can provide valuable insight into the accuracy
of a tire FEA model. Mousavi and Sandu [24] conducted a physical testing study of tires
on ice with differing rubber stiffness. Tires with lower elastic moduli were found to have
higher traction in icy road conditions. Insights such as these can be used to confirm the
material models and coefficients used to represent rubber in tire FEA models.

Yunta et al. [25] used a strain-based method to identify tire tread deformation experi-
mentally with sensors, where tests were carried out under different working conditions
such as changing vertical loads and lateral tire slip angles. Both virtual and physical
prototypes were studied in an attempt to observe any correlation or contradiction between
the two methods. In general, understanding the similarities and differences in the results
from simulation and experimental methods can provide enlightenment to those working in
the Noise, Vibration, and Harshness (NVH) and tire dynamics fields.

1.2. Motivation for Current Work

The current work aims to identify critical features of tire strain signals that can be
used for tire state estimation. Modern vehicles employ real-time feedback control for the
implementation of safety systems such as electronic stability programs, anti-lock braking
systems, and torque vectoring strategies [26]. However, such systems use data obtained
from wheel speed sensors, accelerometers, and inertial measurement units to implement
their respective control algorithms, thus indirectly estimating the tire–road contact pa-
rameters for control applications. For example, longitudinal tire slip may be determined
according to wheel speed values, from which slip may be controlled. One concern with
this type of control system is in its vulnerability to sudden changes in road conditions.
The solution to this problem could be to find a direct means of estimating the tire–road
contact parameters (such as tire forces, tire slips, and friction) in real time. This could
ultimately result in new control algorithms that are designed to better contend with sudden
changes in the tire–road interface.

The current paper proposes using strain energy as a reliable parameter for tire state
estimators and providing an understating of change in strain energy for a tire during contact.
The work uses both simulation and physical testing to validate this theory. Considering
published work, there is not enough research in validating the findings from tire FEA
studies with those from experimental tests. There is room for more published work in this
area, and that is the primary contribution of this study. Here, a tire FEA model is used to
understand the variation in tire inner liner longitudinal strain under pure longitudinal slip
operating conditions, including acceleration, braking, and free-rolling. The vertical load
on the tire is varied to observe the behavior of strain data, for the purpose of extracting
features that can ultimately be used in vehicle control algorithms. Additionally, a tire
physical prototype called KU-iTire is developed and equipped with strain gauges on the
inner liner of the tire at the tread area, to support the findings of the FEA simulations.

This paper is organized as follows. The next section describes the tire FEA model.
Section 3 discusses the physical testing. Results are shown in Section 4, and the conclusions
are presented in Section 5.

2. Tire Finite Element Analysis Simulation

With the advancement of computational capabilities and the increased cost of de-
veloping physical prototypes for testing, researchers have increasingly been conducting
simulated tests in virtual environments. Numerical simulation methods such as FEA are
being used to investigate many practical structures, including tires [27–31]. FEA is a useful
tool that not only replicates testing scenarios in a virtual environment but also provides
the flexibility to perform design optimization at a low cost. FEA allows multiple design
iterations to be investigated before time and money are spent on the production of pro-
totype components. It can be used to calculate the stiffness, strength, and durability of
structures, along with a prediction of their failure modes. The ability to predict the location
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and nature of a durability failure is vital in components such as tires, which may not be
tested for failure in every conceivable service environment in advance of production.

2.1. Tire Representation

A tire is a complicated product made from diverse materials built around an elaborate
structure. The major components of a tire are a high-stiffness cord and low-stiffness rubber.
The cord generally consists of nylon and polyester yarns, especially at the sidewall location
in automobile tires, whereas the tread areas are typically reinforced with steel cords. Tire
cords are used as reinforcing materials. They aid in supporting the weight of a vehicle.
The variety of reinforcing cords used inside the tire contributes heavily to the overall
performance of the tire. Cords can vary in material, diameter, spacing, and orientation
with respect to the circumferential direction of the tire. The tire size, type, load carrying
requirements, and service inflation pressures are factors that determine cord material
and geometry.

The tire FEA model for this research was originally created by Behroozi et al. [32].
It includes representations of tire rubber and internal tire reinforcements. The bonding
of reinforcements with tire rubber is achieved using the rebar element function avail-
able in Abaqus. Rebar is the preferred method for defining reinforcements inside the
host—solid rubber elements in Abaqus. To create the tire model, Behroozi et al. [32] had to
physically cut a cross-section of the available tire and study and analyze every layer in the
tire geometry. Rubber is known to exhibit highly nonlinear behavior under varying loads,
including nonlinear elastic behaviors at very low deformation levels. Therefore, tire rubber
is modeled as a Yeoh hyperelastic material in Abaqus. The ultimate goal of the tire FEA
simulation is to produce usable strain data that will serve as a basis for determining the
feasibility of an intelligent tire and generate input data for a control algorithm. On the other
hand, the test represents an FSAE race car tire, not a passenger vehicle tire. The FSAE car
tire model was selected to be used in the current research since the goal was to determine
the feasibility of developing an intelligent tire and examine if the test and simulation could
provide similar trends.

Contact between the tire and the road is particularly challenging to analyze when the
traditional Lagrangian analysis approach is adopted for use with the finite element model.
In that case, the model iterates through large numbers of increments and often suffers from
convergence problems when the analysis is executed. One possible solution is to use a
fine mesh at the contact area. When using an Abaqus/CAE 2021 analysis, refining the
mesh in and around contact areas is recommended in order to increase the accuracy of the
solution and to reduce the likelihood of numerical problems. In this work, a five-step FEA
approach is adopted to make the model more accurate and computationally efficient, with a
reduction in time consumed for each analysis iteration. For formulating slip, finite sliding
was used between the tire contact patch and the road interface. Finite sliding was chosen
since relative sliding between surfaces in contact was not to be ignored. Furthermore,
slip conditions were integrated into the model for free-rolling application. Figure 1 is a
flowchart depicting the five FEA steps used to predict virtual strain data from the tire
FEA analysis.

1. Two-dimensional axisymmetric inflation pressure analysis. The first step involves the
creation and analysis of an axisymmetric two-dimensional (2D) cross-section model
of the tire with an inflation pressure of 0.2 MPa (29 psi) applied at the tire inner liner.
This *STATIC analysis, performed in Abaqus/CAE 2021, represents a typical tire
inflation pressure loading scenario for automobile tires. The 2D tire model contains
elements representing tire rubber, along with embedded ‘surface’ elements that carry
the rebar cord reinforcements.

2. Three-dimensional model creation and inflation pressure analysis. In the second
step, which is a *STATIC analysis performed in Abaqus/CAE 2021, the 2D cross-
section model is revolved and extruded to generate a three-dimensional (3D) model
of the tire. A 3D model of the tire is formed that includes hexahedral elements for
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representing the rubber parts of the tire, with embedded surfaces that stand for the tire
reinforcements. The 3D tire model is loaded with a 0.2 MPa (29 psi) inflation pressure
at the inner liner. Virtual sensors are created on the inner liner of the 3D tire model by
requesting outputs for displacement, strain, and stress at specific elements and node
sets, as shown in Figure 2. This approach helps in reducing the total computational
time and storage space required for the analysis, as the desired variables are output
only at defined nodes and elements, rather than everywhere in the model.

3. Three-dimensional vertical load analysis. The third step comprises a vertical load
application at the reference point of the tire, which is at its center. This is a *STATIC
analysis in Abaqus/CAE 2021 that puts the tire FEA model into contact with a rigid
road surface. The vertical load applied to the tire model varied from 2000 N (450 lb)
to 5000 N (1124 lb) in increments of 500 N (112 lb). Each vertical load was applied in a
separate analysis step.

4. Three-dimensional free-rolling analysis. The fourth step is a straight line free-rolling
analysis in Abaqus/CAE 2021. A *STEADY-STATE TRANSPORT analysis is per-
formed. In this analysis method, the overall tire geometry is seen by a moving
observer as defined by a set of points that are not moving. However, the material
is observed to be moving with respect to the points that define the geometry. Thus,
the global rigid body motion of the structure is not analyzed, but the local relative
material deformation of the structure during motion is calculated. The translational
velocity of the tire in the free-rolling analysis was 8 KPH (5 MPH). This translational
velocity was selected to initiate a baseline for comparison with physical tire testing
following the simulation work.

5. Three-dimensional braking analysis. The fifth step is a transient dynamic analysis of
longitudinal tire motion in Abaqus/Explicit. In this fully dynamic analysis of type
*DYNAMIC, EXPLICIT, the results from the fourth step for the steady-state rolling
analysis in Abaqus/CAE 2021 are imported into Abaqus/Explicit. The import occurs
at the start of the transient dynamic analysis. The rigid body rotating motion of the
tire is fully analyzed in the fifth step, which is computationally expensive compared
to the previous four analysis procedures.

Figure 1. Flowchart of tire FEA simulation steps in Abaqus.

Figure 2. A cutaway view of the 3D tire FEA model showing virtual sensors at the inner liner (circled).
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2.2. Virtual Strain Data Extraction

The focus here is to examine the variation in simulated longitudinal strain data during
different longitudinal slip tire operating conditions, including free-rolling and braking.
The longitudinal strain for one complete revolution of the tire FEA model is presented in
the plots. Figure 3 shows virtual strain data versus time in free-rolling for seven different
vertical loads. Generally, it can be seen from Figure 3 that the tire FEA model is predicting
longitudinal strain levels in the tire tread region that are probably too high. Peak positive
(i.e., tensile) strain levels, as predicted by the model, are around 6000 µϵ, or about 6%.
Typically, such high strain levels would be expected in the sidewall region of the tire, which
is less stiff than the tread region [33]. Therefore, the tire FEA model as developed should
be used to investigate trends in longitudinal strain data in the tire tread area, rather than
predict absolute values.

Figure 3. Free-rolling longitudinal strain versus time for seven vertical loads (from FEA simulation).

A graph showing peak longitudinal strain in free-rolling versus vertical load is shown
in Figure 4. It can be observed from Figure 4 that with an increase in vertical load, there is
an increase in peak strain. In this case, the relationship between peak strain and vertical
load can be described as a second-degree polynomial relationship with an R2 value of
99.5%, indicating that the second-degree polynomial model is a good fit.
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Figure 4. Relationship between peak longitudinal strain and vertical load in free-rolling (from
FEA simulation).

Figure 5 depicts simulated longitudinal strain data in braking, with three different
levels of longitudinal slip analyzed. It can be observed that the slip variation contributes
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to deviations in the shape of the simulated strain curves. The free-rolling strain curves
resemble a ‘Mexican hat’ formation. In the case of braking, the shape is distorted, whereby
the trailing end of the ‘Mexican hat’ shape dips further into higher strain magnitudes. Note
also that strain peak (maximum) and strain valley (minimum) values differ, depending
on longitudinal slip level. Higher longitudinal slip levels result in higher maximum and
lower minimum strain values. Furthermore, the difference in longitudinal slip level can
be identified outside of the contact patch region. This can be seen at the start time of the
plot in Figure 5, where a vertical offset can be seen that is associated with longitudinal slip.
Higher longitudinal slip results in higher longitudinal strain, outside of the contact patch.

Figure 5. Braking longitudinal strain versus time for three longitudinal slip levels (from FEA simulation).

3. Intelligent Tire Physical Testing

The fabrication of the KU-iTire prototype began following the completion of the tire
FEA study, to further investigate the feasibility of an intelligent tire. The vehicle employed
during prototype tire testing was a 2003 Polaris Global Electric Motorcar (GEM), as shown
in Figure 6.

Figure 6. The 2003 Polaris GEM test vehicle.

3.1. Prototype Fabrication

A tire of size 185/80R13 was used to develop the KU-iTire prototype. The tire had
a load index of 82 and nylon plies. The tire was mounted on a steel wheel with five lug
holes. A strain gauge was installed at the inner liner of the tire, oriented parallel with
the tire tread, as shown in Figure 7. The strain gauge was attached to the tire inner liner
with a specialized resin from the strain gauge manufacturer. The strain gauge lead wires
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were soldered to connecting wires for data transmission. Wires from the strain gauge were
passed to the outside of the tire through a customized tire valve, as shown in Figure 8.

Strain 
Gauge

Figure 7. Strain gauge installed on the tire inner liner at the tread centerline.

Custom 
Tire Valve

Wireless 
Data 

Transmitter

Figure 8. Strain gauge wires, customized tire valve, and wireless data transmitter.

Selecting the strain gauges was challenging, since most strain gauges have low strain
measurement limits. For the KU-iTire application, HBM LY11 microstrain gauges capable
of measuring high strains, up to 200,000 µϵ, were used. For data acquisition, a LORD
MicroStrain Sensing System was used. This wireless data acquisition system consisted
of two units, a transmitter and a base unit. The base unit communicated with a research
computer to store strain data. Node Commander 2.14.0, the software suite proprietary to
LORD, was installed in the computer that served as the storage location for the strain data
from the base station.

The wireless data transmitter was mounted on a specially designed steel mounting
structure, which was itself attached using the original equipment wheel hub bolts. Damping
material was added between the steel mounting structure and the wireless data transmitter,
to reduce vibration experienced by the transmitter that could distort the strain signals.
A photograph of the finished KU-iTire prototype appears in Figure 9. This prototype was
installed at the left front corner of the GEM vehicle.
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Figure 9. KU-iTire prototype with wireless strain data transmitter at center.

3.2. Test Setup and Conditions

The physical test was designed to equip the GEM vehicle with the KU-iTire prototype
and drive the vehicle on paved roads to capture real-world data. However, since the
durability of the strain gauges and their attachment adhesive was a concern, the testing
was conducted in a controlled setting in a parking lot, as shown in Figure 10. Physical
testing was performed under dry and snowy weather conditions. Figure 11 is a plot of
free-rolling longitudinal strain acquired directly from the data acquisition system, where
two complete revolutions of the left front wheel are shown. In this study, the physically
measured data were post-processed using moving average filters in MATLAB to eliminate
the measurement noise and short-term fluctuations that can be seen in Figure 11.

Figure 10. Parking lot physical testing of KU-iTire prototype.

Data Point Number

Figure 11. Free-rolling longitudinal strain versus data point number (raw strain data from
physical test).
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Test operating conditions. A sample size of six test runs for each operating condition
was recorded. The operating conditions considered for the test were as follows:

1. Free-rolling at 8 KPH (5 MPH) constant speed with two passengers on dry pavement.
2. Free-rolling at 8 KPH (5 MPH) constant speed with three passengers on dry pavement.

• Representing an approximately 10% increase in front axle load compared to the
first condition.

3. Free-rolling at 8 KPH (5 MPH) constant speed with four passengers on dry pavement.
• Representing an approximately 20% increase in front axle load compared to the

first condition.
4. Braking from 19 KPH (12 MPH) to stop on dry pavement.
5. Braking from 19 KPH (12 MPH) to stop on snow-covered pavement.
6. Acceleration from 5 KPH (3 MPH) to 29 KPH (18 MPH) on snow-covered pavement.

An 8 KPH (5 MPH) constant vehicle speed was used in conditions one to three to match
the tire FEA simulation, where this same translational velocity was studied. Otherwise,
conditions one to three were selected to investigate how differing vertical loads can alter the
physically measured strain data, as a way of confirming the virtual strain data. The virtual
strain data were altered when the tire was subjected to different vertical loads. For the
braking and acceleration tests of conditions four through six, the mechanical limits of the
GEM test vehicle were the limiting factors for determining vehicle test velocities.

4. Strain Data Comparison between Simulation and Physical Testing

To engender confidence in the tire FEA simulation results, physical prototype testing
was executed, focusing on the observation of features that were identified in the simulation
data. The shapes of the strain curves were of particular interest.

4.1. Free-Rolling

Figures 12 and 13 illustrate the shape comparison between simulation data and physi-
cal test data for free-rolling conditions on dry tarmac with two passengers (first operating
condition). The simulation strain data have a ‘Mexican hat’ shape, with a positive (tensile)
strain peak near the center of the contact patch and two strain valleys. This curve is approx-
imately symmetrical about the center of the contact patch. The shape of strain data from
the physical test corroborates the simulation data, where the physically measured strain
curve has a similar hat shape compared to the simulation strain curve.

Time (s)

Figure 12. Free-rolling longitudinal strain versus time (from FEA simulation).
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Time (s)

Figure 13. Free -rolling longitudinal strain versus time (from physical test).

Interestingly, the physically measured strain curve is not as symmetrical about the
contact patch center, in comparison with the simulated curve. Also, note that the strain
levels, as predicted by the simulation, are much higher than the physically measured strain
levels, up to five times higher at some points in the tire rotation cycle. Based on previous
work, it is likely that the strain levels from the physical test are reasonable, with around
1% peak longitudinal strain at the center of the contact patch in the free-rolling condition.
As the tire FEA model represents a different tire than the one that was physically tested,
however, a comparison of the strain levels is less important than a comparison of the strain
curve shapes.

4.2. Braking

Plots of strain data from simulation and physical testing from braking (fourth operating
condition) appear in Figures 14 and 15. From these plots, it can be seen that the characteristic
shape associated with braking, as opposed to free-rolling, is asymmetric in the longitudinal
strain curve. The magnitude of the second strain valley at the rear of the contact patch
is greater than that of the first strain valley at the front of the contact patch. Both the
simulation data and the physical test data exhibit this behavior. From Figure 15, it can be
seen that the physically measured longitudinal strain at the bottom of the second valley
is negative (i.e., compressive) strain. This is in contrast with the bottom of the first valley,
where the strain is positive (i.e., tensile). In general, the physical test data confirm the
simulation data with respect to the trends in braking. However, there is an interesting
difference in the strain curve shapes, where the second valley is extended in time in the
physical test data. This feature is not observed in the simulation data.

Time (s)

Figure 14. Braking longitudinal strain versus time (from FEA simulation).
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Time (s)

Figure 15. Braking longitudinal strain versus time (from physical test).

4.3. Vertical Load Variations

The strain data from simulation and physical testing for free-rolling on dry pavement
(first to third operating conditions) are shown in Figures 16 and 17. Three different vertical
loads were applied to the KU-iTire prototype in the physical test, all in concert with the
free-rolling operating condition. The tire FEA simulation was solved for the free-rolling
case at three different vertical loads of 3000 N, 3300 N, and 3600 N, as these force levels were
similar to the three different vehicle corner loads in the physical tests. Figures 16 and 17
illustrate the strain curves for free-rolling with varying corner loads from both simulation
and physical testing. As shown in the magnified insets, the difference in vertical load can be
most clearly identified by the peak longitudinal strain level, with higher loads producing
higher peak strain levels. This same behavior was observed in both the simulation strain
data and the physical test strain data. In the case of the physical test data, a 10% increase in
vertical load resulted in a 3% increase in peak strain level.

Figure 16. Free-rolling longitudinal strain versus time for three vertical loads (from FEA simulation).
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Figure 17. Free-rolling longitudinal strain versus time for three vertical loads (from physical test).

4.4. Differing Operating Conditions

A plot showing longitudinal strain for four different operating conditions appears in
Figure 18. In this plot, the strain levels outside the contact patch have been moved to the
zero line, so the curves can be easily compared. In practice, the strain offset in the vertical
axis of the plot (outside the contact patch) is associated with inflation pressure [34]. Here,
the offsets have been subtracted to make up for minor differences in pressure. From the
plot, it can be seen that the longitudinal strain curves are modified significantly by the
different operating conditions.

Figure 18. Longitudinal strain versus time for four different operating conditions (from physical test).

For example, the snow braking curve (fifth operating condition) is significantly differ-
ent than the dry braking curve (fourth operating condition). The strain peak is higher in the
snow braking case, and the central peak is much wider. Additionally, the snow acceleration
curve (sixth operating condition) is not exactly the mirror image of the snow braking curve
(fifth operating condition), even though it could be assumed that this is the case in the
absence of measured data. While some features are mirrored about the center of the contact
patch, such as the deeper valley (at the front in the case of acceleration, at the rear in the
case of braking), there are important differences such as the width of the peak, which is
wider for braking. These results suggest that longitudinal strain measurements are a means
of identifying both the vehicle dynamics maneuver being performed and the condition of
the road being traversed.
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5. Conclusions and Future Scope

The tire FEA model was able to predict the longitudinal strain of the tire over one
wheel revolution for both free-rolling and braking. The shapes of the strain curves as
predicted by the model were generally correct. However, the simulated strain curves
were more symmetrical about the center of the contact patch compared to the physically
measured curves. This discrepancy in the model should be investigated further. Moreover,
the unreasonably large strain levels that were predicted by the model should be studied,
with the goal of improving the accuracy of its predicted strain magnitudes. Once the
model is improved, it will be a useful tool for predicting tire strain and developing the
KU-iTire prototype.

Results from the tire FEA model show that there is a second-degree polynomial rela-
tionship between peak longitudinal strain and vertical load in free-rolling. This relationship
can be used in a system that estimates tire vertical load from longitudinal strain mea-
surements. Physical testing of longitudinal strain also showed a relationship between
longitudinal strain and vertical load in free-rolling, with increasing vertical loads resulting
in increasing peak strain levels. Not enough data points were collected to confirm the
polynomial relationship of the tire FEA simulation, however. More physical testing should
be performed to confirm the relationship.

This work concentrated on observing longitudinal strain variation in certain pure
longitudinal slip operating conditions and post-processing the strain to identify features
that can act as input parameters to a vehicle control algorithm. For example, it may be
possible to use peak longitudinal strain at the tire inner liner to estimate tire vertical load.
Additional strain features can be identified through further study of the KU-iTire prototype
in other vehicle events, including pure lateral slip and combined slip maneuvers. A wide
range of tire inflation pressures, vehicle velocities, and road friction conditions should be
studied to identify tire strain characteristics that can be associated with tire and vehicle
states, with the goal of enhancing ground vehicle performance and safety.

One of the limitations of the current study is the cost associated with strain gauges that
can last for the life of a tire. Most conventional strain gauges cannot resist the deformations
that tires experience.
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