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Abstract: The global reliance on oil and gas pipelines for energy transportation is increasing. As
the pioneering review in the field of ultrasonic defect detection for oil and gas pipelines based on
bibliometric methods, this study employs visual analysis to identify the most influential countries,
academic institutions, and journals in this domain. Through cluster analysis, it determines the
primary trends, research hotspots, and future directions in this critical field. Starting from the current
global industrial ultrasonic in-line inspection (ILI) detection level, this paper provides a flowchart for
selecting detection methods and a table for defect comparison, detailing the comparative performance
limits of different detection devices. It offers a comprehensive perspective on the latest ultrasonic
pipeline detection technology from laboratory experiments to industrial practice.
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1. Introduction

Oil and natural gas account for 57.5% of the global primary energy consumption [1].
Pipelines, integral to the transportation of these resources, are distinguished by their
capacity for transporting large volumes over long distances with minimal energy loss [2–5].
They are crucial in connecting the upstream and downstream sectors of the oil and gas
industry and are essential in long-distance transportation. By the end of 2022, the total
operational mileage of global oil and gas pipelines was approximately 2 million km, with
an additional 26,708 km under construction, and it is projected to reach 2.2 million km by
2025 [6].

Data from the Pipeline and Hazardous Materials Safety Administration (PHMSA) of
the United States Department of Transportation reveal that between 2003 and 2022, there
were 12,785 significant pipeline incidents in the United States. These incidents resulted in
274 deaths and 1120 injuries. The average cost of each incident was around 541 million
USD, leading to a total loss of 10.8 billion USD [7]. This underscores the growing need for
enhanced inspection of oil and gas pipelines to prevent severe accidents, such as leaks and
explosions, which can lead to environmental pollution and human casualties.

Pipeline in-line inspection (ILI) commonly employs technologies such as magnetic
flux leakage (MFL), eddy current testing (EC), and ultrasonic testing (UT) [8–11]. As a
prevalent and reliable method, magneto-electric composite internal inspection combines
MFL and EC and dominates about 90% of the inspection market. Despite its widespread
use, this method faces challenges like structural complexity (with some sections weighing
up to 4 tons), limited effectiveness in detecting planar defects (particularly at girth welds),
and sensitivity to inspection speed and lift-off distance. In contrast, ultrasonic testing, a
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wave-based method, is notable for its strong directionality and penetration power, making
it more effective for identifying pipeline wall defects [12]. However, existing literature
reviews generally discuss UT as one of the non-destructive testing techniques for oil and
gas pipelines. For instance, Feng et al. integrate practical inspection data to elucidate
the application of both conventional ultrasonics and electromagnetic ultrasonics in the
detection of circumferential welds in oil and gas pipelines from the perspectives of mecha-
nism, quantitative methods, and inspection reliability [11,13,14]. Alternatively, focusing
on specific aspects of ultrasonics, researchers like Zang et al. delve into issues such as
dispersion, multimode propagation, and attenuation in ultrasonic-guided wave technology.
Methods to address these challenges from a theoretical standpoint are proposed, with a
comprehensive overview provided of guided wave excitation devices [15]. Andika, on
the other hand, outlines the application of machine learning signal processing methods
in handling the high-volume, high-velocity, and diverse data generated using ultrasonic
in-line inspection (ILI). This includes preprocessing, learning algorithms, outputs, and
evaluation metrics [16,17]. There is a lack of systematic discussion that spans from a macro
perspective (i.e., integrating practical industrial inspection scenarios with a vertical anal-
ysis of existing inspection technologies for oil and gas pipelines) to a meso perspective
(i.e., a horizontal comparative analysis of ultrasonic testing technologies and the internal
connections between detection methods and technologies) and down to a micro perspec-
tive (i.e., ultrasonic data analysis and signal processing). Bibliometric methods, based
on clustering algorithms, offer an effective means to avoid subjective biases in literature
selection [1,18–20]. Research indicates that there is currently no comprehensive review of
ultrasonic internal inspection for oil and gas pipelines based on bibliometric methods.

The remainder of this paper is structured as follows. Section 2 introduces the data
sources and research methods used in this study, detailing the primary process of literature
analysis. Section 3, utilizing visualization analysis techniques, provides an overview of
renowned research institutions and journals in the field of ultrasonic inspection of oil and
gas pipelines worldwide. In the Section 5, a systematic review of the current research
hotspots in the field of ultrasonic testing is conducted based on the results of literature
clustering analysis. Starting from the current global industrial level of ultrasonic in-line
inspection (ILI) detection, a flowchart for selecting detection methods and a table comparing
detectable defects are provided. Furthermore, a detailed comparison of the performance
limits of different detection devices is presented. The latest technologies in ultrasonic
pipeline inspection are discussed from a holistic perspective, spanning from laboratory
experimentation to industrial implementation. Finally, Section 6 summarizes and suggests
recommendations for future research directions.

2. Research Methodology and Data Analyses

To accurately, objectively, and comprehensively reveal the research achievements in
ultrasonic defect detection for oil and gas pipelines, this study employs data from the Web
of Science (WOS) Core Collection, specifically the Science Citation Index Expanded and
the Social Sciences Citation Index. The initial information retrieval was conducted using
the search strategy designed in the Web of Science Advanced Search: (((TS = (ultraso*
AND (test* OR inspect* OR detect*))) AND TS = (pipe* OR tube)) AND TS = (defect* OR
flaw* OR CRACK OR SCC OR discontinue)) AND TS = (medic* OR patient* OR child* OR
parent* OR women), resulting in the collection of 782 papers. The use of an asterisk “*” after
keywords indicates multiple similar words with the same prefix (e.g., “pipe*” represents
“pipe”, “pipeline”, etc.), expanding the search scope to encompass as many articles related
to the research topic as possible.

Due to potential algorithmic limitations of the WOS, the dataset may include literature
irrelevant to the central theme. To address that, a rigorous screening process was applied,
involving the review of titles and abstracts, and extending to full articles, when necessary,
to filter out duplicates and non-relevant papers. Additionally, a snowball search method
was employed to expand the dataset, which was then subjected to a second round of
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screening. Our research indicates that ultrasonic defect detection in oil and gas pipelines
emerged as a significant area of study since the 1990s. Consequently, this paper focuses on
papers, conference proceedings, and reviews published from 1992 onwards, totaling 350
documents for bibliometric analysis. The process of dataset creation and the structure of
this paper are depicted in Figure 1.
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Figure 1. Dataset Creation Process and Research Content.

After finalizing the data collection, the dataset underwent a bibliometric analysis using
scientific mapping tools, specifically VOSviewer 1.6.15 and CiteSpace 6.1.R2. The analysis
outcomes facilitated a detailed review of the critical research areas in ultrasonic testing for
oil and gas pipelines.

3. Visualization Analysis
3.1. Visualization Analysis of Institutions and Countries

In the macroscopic research system, scientific institutions represent the smallest unit
and the primary executors of research activities. To a certain extent, the number of such
institutions indicates the countries leading in the field. Table 1 displays a ranking of the
top ten countries globally in the ultrasonic field, sorted based on the quantity of their
research institutions.

Table 1. The Most Influential Countries in the Global Ultrasonic Field (Institutions).

Country Institutions Burst Centrality

China 61 3.26 0.36
England 48 0 0.73
Germany 33 2.1 0.27

USA 32 1.78 0.9
Italy 27 0 0.63

Republic of Korea 23 0 0.34
Japan 17 2.08 0.16
Brazil 14 0 0.12
India 13 1.87 0.19

France 12 2.44 0.22

China, the UK, and Germany occupy the top three positions on the list. To ensure
objectivity in ranking, additional indicators such as ‘burst’ and ‘centrality’ were also con-
sidered. “Burst”, a feature in CiteSpace, detects sudden changes in information and, when
combined with the number of authors at the macro level of a country, effectively reveals
the regional development level in the field. This sudden change indicates the following:
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• During this period, institutions from the country experienced a sharp increase in
citation frequency.

• The institutions in the country have effectively addressed crucial issues in the field.

“Centrality”, on the other hand, represents the role of a node as a bridge within a
network. In social networks, centrality is used to identify “boundary spanners”. Nodes
with higher centrality values play a more significant bridging role between other nodes.
These institutions are highlighted with purple circles (nodes with centrality ≥ 0.1). Nodes
with high intermediation centrality often connect different clustering paths and are referred
to in CiteSpace as “Turning Points”.

In Table 2, countries in the field of ultrasonics are re-ranked from high to low based
on indicators such as “Institutions”, “Burst”, and “Centrality”. By integrating data from
Table 3 and Figures 2 and 3, it is observed that over time, the research focus in ultrasonic
testing for oil and gas pipelines has gradually shifted from Europe and America to Eurasia.
The primary reason is that Europe and America, being early adopters of pipelines for
oil and gas transport, have already completed the exploration phase of pipeline integrity
testing. They have established reliable and comprehensive detection systems and have
formally entered the phase of applying ultrasonics. In contrast, the Eurasian region is
still in the nascent stages. Particularly in China, with the gradual implementation of the
“High-Quality Development 2.0” and “Smart Pipeline Network” concepts, there has been a
surge in demand for ultrasonic testing in pipeline inspection, spurring significant research
in the field in recent years. However, from the perspective of “centrality”, the research
in ultrasonic testing in the Eurasian region still lags behind the established positions of
Europe and America.

Table 2. Global Influential Countries in the Ultrasonic Field Based on Different Criteria.

Standard Institutions Burst Centrality
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Table 3. The Most Influential Institutions in the Global Ultrasonic Field.

Institutions Total Link Strength Documents Citations Country

University of Warwick 12 7 334 UK

Federal Institute for Materials
Research and Testing 14 4 207 Germany

Seoul National University 4 3 185 Republic of Korea

Newcastle University 16 6 138 UK

University of Palermo 34 6 127 Italy

Kaunas University of Technology 6 9 119 Lithuania

Brunel University London 30 8 118 UK

University of Electronic Science and
Technology of China 9 6 108 China

Cranfield University 5 3 92 UK

City University of Hong Kong 16 6 90 China
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3.2. Visualization Analysis of Journals

As illustrated, publications were visualized and analyzed using VOSviewer. In con-
trast to traditional metrics based solely on the number of published documents, this analysis
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employs “total link strength” to represent a journal’s influence. This approach provides a
more comprehensive perspective for assessing journal impact, as it considers not only the
volume of publications but also their inter-citation relationships. The thickness of the lines
indicates the strength of the connections, while from a temporal perspective, it can signify
the influence of one journal on another.

Figure 4 reveals that ultrasonic testing has gradually shifted from theoretical research
to practical applications over time. This transition reflects the natural progression of scien-
tific research, moving from theoretical exploration to real-world applications. Identifying
specific application scenarios for ultrasonics is becoming a research trend, suggesting that
ultrasonic technology may find broader applications in the future. This is an exciting trend,
as it implies that our research findings are more likely to be transformed into practical
technologies and applications, bringing tangible benefits to society.
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According to the data, the top ten influential journals are displayed in Table 4, with
NDT & E International, Sensors and Ultrasonics occupying the top three positions. These
journals, recognized as leading publications in the field of ultrasonics, have made significant
theoretical contributions to the field of ultrasonics and influencing subsequent research.

Table 4. The Most Influential Journals in the Global Ultrasonic Field.

Journals Total Link Strength Documents Citations

NDT & E International 220 49 2055
Sensors 199 64 618

Ultrasonics 123 75 715
Insight 106 56 709

Measurement 94 37 680
Structural Health Monitoring 82 32 440

Applied Sciences-Basel 74 26 478
Journal of Nondestructive Evaluation 74 22 347

Optik 72 21 301
Applied Physics A-Materials

Science & Processing 58 16 365
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4. Types of Defects and Traditional ILI Methods in Oil and Gas Pipelines
4.1. Common Types of Defects in Oil and Gas Pipelines

As global energy demand grows, the significance of oil and gas pipeline systems be-
comes increasingly pronounced [21]. The health of pipelines directly impacts the reliability
and safety of the energy supply. Ultrasonic testing technology has been closely associated
with concepts such as “condition assessment”, “defect detection”, and “pipeline safety”
since the last century.

Defects, as the core of pipeline condition assessment, are crucial for ensuring the
safety and reliable operation of oil and gas pipeline systems. Pipeline defects can be
broadly categorized into three types based on their origins: manufacturing defects arising
during prefabrication, welding defects and geometric defects occurring during pipeline
construction, and corrosion defects formed during usage. However, the current pipeline
construction quality is high with rare manufacturing defects.

Based on the shape of defects, oil and gas pipeline defects can be classified into planar
defects and volumetric defects (details in Table 5).

Table 5. Common Defect Types and Causes.

Type Kind Cause Location

Planar defect

Crack

Fatigue Crack
Fatigue cracks are cracks formed in pipes under
the action of alternating or cyclical loads, such as

tension, compression, or bending.

Weld &
Body

Stress Corrosion
Cracking (SCC)

Stress corrosion cracks are formed in pipelines
under the simultaneous influence of stress and

environmental corrosion.

Hydrogen-Induced
Cracking (HIC)

Metals absorb hydrogen atoms. When subjected
to stress, hydrogen causes a change in the

material’s atomic structure, making it more
susceptible to fracture.

Infusion

During welding, incomplete fusion occurs when
the welding material fails to fully melt and fuse

with the base material. This can result in the
presence of cracks or unjoined areas in the weld,

thereby reducing the strength and reliability
of the weld.

Weld

Underpenetration

Incomplete penetration occurs when welding
material fails to fully penetrate through to the

base material during welding. This results in the
presence of gaps in the weld, which may create
weak points, especially under pressure loads.

Weld

Undercut

The arc melts the edge of the base material at the
weld seam, leaving a groove. Undercut weakens
the load-bearing cross-section of the joint, making

it susceptible to stress concentration.

Weld

Volumetric
defect

Porosity
During the welding process, gas does not escape
in time and forms voids inside or on the surface

of the weld metal.

Weld &
Body

Inclusion Inclusions or foreign substances present in the
interior of the weld metal or fusion line.

Weld &
Body

Corrosion
Pipeline damage caused by chemical

environmental corrosion or stray currents
affecting the material.

Weld &
Body

Dent Body
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(1) Volumetric defects encompass porosity, inclusions and corrosion, posing relatively
low risks, with the primary failure mode being plastic failure.

(2) Planar defects include lack of penetration, lack of fusion, cracks, and undercutting.
The defects at the root weld are the main cause of pipeline cracking and are also a
focal point of research in non-destructive testing of circumferential weld defects.

(3) Structural discontinuity defects include irregular weld seam profiles, misalignment,
and poor formation, leading to stress concentration and reduced material performance,
further exacerbating defect propagation [22–24].

Corrosion in pipelines typically manifests as localized corrosion, primarily caused
by pitting in buried pipelines or coating defects or dissolution. The corrosion induced
by coating detachment and extensive corrosion can be precisely detected and quantified.
However, pitting, as a particular case of corrosion, remains challenging in oil and gas
pipeline inspection, as it can easily evolve into pinholes and lead to crack initiation, posing
a higher risk of failure for high-pressure natural gas pipelines.

Pitting is a chemical process involving four stages: passive film breakdown, pit
initiation, metastable pitting, and pit propagation and growth. Due to factors such as
temperature, acidity, environmental conditions, and biological factors, corrosion often
exhibits randomness, making it difficult to estimate corrosion rates. To address the challenge
of unpredictable corrosion rates, scholars have developed corrosion rate models based
on comprehensive coating information, the effectiveness of cathodic protection, specific
corrosion rates of certain soils, and other pipeline characteristics. These models predict
corrosion rates and depths using probability and statistical methods, including regression
models and Markov process models [25].

(1) Regression models can easily estimate future corrosion defect depths in pipelines
without requiring extensive mathematical knowledge for application. However, this
model relies on a large amount of data and cannot account for the randomness of
pitting phenomena.

(2) Markov process models consider the physical and chemical characteristics of the
environment and accurately reflect the randomness of localized corrosion defect
growth. However, their use requires specialized knowledge and programming skills,
which may limit their widespread application.

Moreover, continuous electromagnetic in-line inspection is considered an ideal method
to determine corrosion rates. However, it is challenging to determine corrosion rates
using this information due to the complex pipeline environment and variations in sensor
calibration methods before each inspection. Locating the same corrosion defect between
two consecutive inspections may be a daunting task. It is worth mentioning that while
accurate corrosion rate prediction through in-line inspection is challenging, it still provides
essential information on pipeline body and wall defects required for building more accurate
probabilistic and statistical models. At the same time, accurate corrosion rate models can
optimize in-line inspection tasks, greatly reducing costs for pipeline operators.

4.2. Conventional ILI Methods for Oil and Gas Pipelines

The predominant in-line inspection methodologies in the oil and gas pipeline industry
currently encompass MFL, EC and UT.

4.2.1. Electromagnetic Testing

(a) Magnetic flux leakage testing

The principle of MFL is depicted in Figure 5. Upon applying an external magnetic field
that induces magnetic saturation in the pipeline, defects within the pipe wall that disrupt
the magnetic flux lead to distortion and external leakage of this flux. This results in an MFL
field being formed on the pipe’s surface. Triaxial Hall sensors are employed to detect this
field, enabling the acquisition of detailed information regarding the defects’ distribution
and dimensions [10,26,27]. MFL technology stands as a highly regarded and reliable
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method for pipeline inspection within the sector [28], commanding approximately 90% of
the total market equipment share. Contrasting with ultrasonic testing, which is restricted
to liquid pipelines, MFL is capable of detecting volumetric defects in both the interior and
exterior of pipelines within a specified wall thickness limit (up to 30 mm). Furthermore, it
requires less stringent cleanliness conditions for pipelines than ultrasonic testing.
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Limitations: As depicted in Table 6, MFL exhibits a reduced efficacy in detecting
planar defects, particularly at girth welds. It is notably less effective, or even incapable, of
identifying narrow or closed cracks, such as those caused by stress corrosion or hydrogen-
induced cracking [29–31].

Table 6. Types of Internal Inspectors and Detection Capabilities.

Type Kind MFL UTWM a UTCD a EMAT Geometric
Inspection EC

Planar defect

Crack

Fatigue Crack × ×
√

+
√

+ ×
√
−

Stress Corrosion
Cracking (SCC) × ×

√
+

√
+ ×

√
−

Hydrogen-Induced
Cracking (HIC) × ×

√
+ × ×

√
−

Infusion

Straight Weld × ×
√

+
√

+ ×
√

Spiral Weld
√

+ × × × ×
√

Girth Weld
√

+ ×
√

+ × × ×
Underpenetration

√ √ √ √
×

√

Undercut ×
√ √

×
√

Volumetric
defect

Porosity
√

×
√

+ × × ×
Inclusion

√
−

√
+

√
−

√
− × ×

Corrosion
Internal

√
+

√
+ × ×

√
−

√
−

External
√

+
√

+ × × × ×

Geometry
Dent

√ √
× ×

√
+ ×

Distortion
√ √

× ×
√

+ ×
a: Only applied in liquid environment; ×: Undetectable;

√
: Detectable;

√
−: Detectable with Limitations;

√
+:

Detectable and Quantifiable.



Sensors 2024, 24, 2699 10 of 28

(b) Eddy current testing

Eddy current testing operates by generating an eddy current magnetic field using
an excitation coil, which interacts with the original magnetic field, thereby altering the
complex impedance of the testing coil. This impedance alteration is utilized to detect
and identify defects on the pipeline’s inner wall and is extensively applied in pipeline
crack detection.

Limitations: EC’s effectiveness is limited by the skin and lift-off effects, restricting its
use to the surface or near-surface inspection of conductive materials. Moreover, extracting
diagnostic signals poses significant challenges and makes it difficult to accurately determine
the type and size of defects [32–35]. Consequently, eddy current testing is often used in
conjunction with MFL, facilitating more accurate localization of defects.

(c) Advancements in electromagnetic inspection

(1) Advancements in Electromagnetic Inspection Equipment

In the realm of equipment, ROSEN and Baker Hughes have independently developed
triaxial ultra-high-definition magnetic flux leakage internal detectors. These smart PIGs,
integrated with the modules of geometric deformation and IMU, possess the capability to
navigate through a diameter of 1.5 times their own and can identify open cracks exceeding
0.5 mm and pinholes of at least 5 mm, achieving resolutions of 1.6 mm circumferentially and
1 mm axially. The China Oil and Gas Pipeline Network Corporation has made significant
strides in pipeline internal inspection technology, creating a triaxial ultra-high-definition
electromagnetic composite internal detector specifically for 1219 mm diameter pipelines.
This advanced PIG is equipped with MagEC ultra-high-definition electromagnetic com-
posite probes, sophisticated mechanical geometric deformation sensors, and differential
electromagnetic eddy current sensors. It has demonstrated a detection rate of up to 90%
for pinhole defects larger than 3 mm in diameter at girth welds and 80% for open cracks
that are wider than 0.5 mm, longer than 24 mm, and extend to a depth of 50% of the
wall thickness.

(2) Advancements in Electromagnetic Inspection Research

From a research perspective, the focus on electromagnetic composite detection has
predominantly revolved around interpreting detection data. Cheng et al. employed the
YOLOv5 and Vision Transformer (ViT) algorithms for pipeline defect inspection and classi-
fication, exploring the influence of different model architectures on defect identification
performance. Comparative analysis indicates that the composite algorithm surpasses the
standalone YOLOv5 algorithm in terms of accuracy in classifying pipeline defects, while
maintaining its capability for high-precision defect detection [36]. Y. Shen and colleagues
leveraged magnetic flux leakage (MFL) signals and convolutional neural network (CNN)
technology to forecast the dimensions and locations of corrosion defects in steel pipes. Their
research underscores the promising application of CNN models in enhancing pipeline
integrity management [29]. Bin Liu introduced a stress factor in developing a numerical
analytical model for the internal detection of complex MFL defects in pipelines. His re-
search delved into the variations in magnetic signals induced by different sizes of defect
end face segments, analyzed the patterns of MFL signal distribution under various geomet-
ric dimensions and stress conditions at the defect end faces, and evaluated their impact
on the characteristics of magnetic signals [31]. Additionally, Jianhua Pan and colleagues
implemented an advanced CLIQUE algorithm for marking defect regions in segmented
pipelines. They then utilized the SSA_BP neural network for extracting and classifying
three-dimensional MFL feature signals from these marked regions. The findings from their
study reveal that this approach enhances the efficiency of defect marking and provides a
more detailed analysis of the marked areas [37].
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4.2.2. Ultrasonic Testing

Ultrasonic testing is a technique that employs ultrasonic waves to detect macroscopic
defects, characterize changes in material structure and mechanical properties, and measure
the geometric features of a workpiece [38]. This method boasts advantages such as high
detection speed, precision, directivity, sound wave energy, and strong penetration capabil-
ity [39]. Ultrasonics, as a means of detecting metal defects, was first proposed by Sokolov of
the Soviet Union in 1929, evolving subsequently into transmission testing and pulse-echo
testing methods [40]. As shown in the Table 6, ultrasonic in-line testing primarily addresses
issues related to pipeline cracks and metal loss. Crack detection involves the recognition
and quantification of crack location and size by generating shear waves in the pipe wall
using ultrasonic probes arranged at a 45◦ angle [41].

Currently, companies worldwide with the capability to develop complete sets of
ultrasonic equipment, such as ROSEN, TDW, and China National Petroleum Corporation
(CNPC), possess electromagnetic ultrasonic crack detection capabilities, with roughly
equivalent detection capacities. Under speeds not exceeding 2.5 m/s, they can detect
cracks as small as 50 mm in length and 2 mm in depth, with an error margin of ±1 mm in
depth and ±20 mm in length. Compared to Baker Hughes and NDT Global’s UltraScan
CDP/DUO and EVO Eclipse UCx, traditional ultrasonic methods using coupling agents
have significant advantages in terms of detection depth and speed.

(a) Ultrasonic Phased Array

NDT Global’s PROTON, developed on the principle of ultrasonic phased array tech-
nology, employs a PAUT system to design phase delays for multiple probes. This design
allows for the editing of the direction and focus of the ultrasonic beam, enabling imaging
and detection at various depths and angles. It is capable of detecting not only metal corro-
sion and crack defects but also stress corrosion cracks, fatigue cracks, and welding crack
defects [42].

(b) Time-of-Flight Diffraction (TOFD)

Another commonly used method for crack detection is the Time of Flight Diffraction
(TOFD) method, first proposed by Silk in 1977 [43]. This method relies on the diffraction
of ultrasonic waves by “corners” and “ends” within the internal defects, differing fun-
damentally from the traditional pulse-echo method, which depends on direct reflection
signals [44–46]. As depicted in Figure 6, TOFD typically employs a dual probe arrangement
with one transmitter and one receiver on the same side. This method significantly reduces
the time required to scan a weld, as it does not necessitate raster scanning at each position.
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(c) Ultrasonic Pulse-Echo Technique

In addition to the abovementioned applications, another form of ultrasonic testing
in pipeline inspection involves emitting ultrasonic pulse waves perpendicular to the pipe
wall. This method calculates the pipeline’s wall thickness by measuring the pulses’ echo
times reflected off the inner and outer pipeline surfaces. This approach, introduced to the
market in the early to mid-1980s, is instrumental in identifying and quantifying volumetric
defects [47,48]. NDT Global’s EVO 1.0 UMp+ ultrasonic internal detector (NDT Global,
Houston, TX, USA), currently deployed in petroleum pipeline inspection services, exem-
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plifies this technology. It can quantify pipeline wall thickness and crack detection with an
accuracy of ±0.4 mm when the data reliability is at 90% [49].

Limitations: These ultrasonic testing methods still rely on a coupling agent to address
the significant impedance mismatch at the propagation interface. Oil, serving as an effective
coupling agent, has facilitated the widespread application of this technology in liquid
pipelines. In contrast, traditional ultrasonic testing faces challenges in natural gas pipelines,
limiting its application. It is often used only as a supplementary method, performing
external inspections of girth welds or spiral welds before commissioning or during the
excavation verification stage, rather than being applicable for internal pipeline inspections.

4.3. In-Line Inspection (ILI) Tool Selection and Calibration Methods
4.3.1. In-Line Inspection (ILI) Tool Selection Methods

To address the inspection of different types of defects and the varying applicability of
various inspection techniques, as shown in Figure 7, a pipeline risk assessment to determine
suitable internal inspection techniques is conducted initially. Industrial experimental
safety certification of internal inspection equipment, including but not limited to vibration,
pressure resistance, strength, and detection accuracy tests, is performed to verify whether
the selected detector’s performance meets the qualification requirements. Simultaneously,
issues such as dents caused by improper construction and pipeline deformations caused by
soil displacement significantly restrict conventional internal inspection tasks. Consequently,
pigging and diameter measurement tasks are conducted two or three times before internal
inspection to obtain constraint point information and carry out necessary modifications.
Next, the selection of technology is conducted by assessing its suitability and capability,
considering factors such as defect types, compatibility with other techniques, ease of
operation, etc. Finally, an evaluation is conducted to determine the technology to be
adopted, followed by data analysis. Field excavation verification is used to assess the
detection quality of in-line inspection (ILI) tools, specifically their accuracy.
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4.3.2. In-Line Inspection (ILI) Tool Calibration Methods

As is well known, both in-line inspection (ILI) tools and field measuring instruments
are subject to measurement errors, and calibration helps estimate the true magnitude of
these errors. The performance of ILI tools can be assessed by statistically comparing ILI
data with field excavation data to ensure the reliability of the data. It is crucial to conduct
reliability and risk assessments based on the probability distribution of pipeline defects or
the failure probability of individual defects. However, the calibration of ILI tools still faces
challenges in the following aspects [50]:

(1) Measurement Errors: Determining the measurement errors of ILI tools and field
instruments, including systematic errors (such as constant bias and non-constant bias)
and random errors.

(2) Calibration Experiment: Conducting calibration experiments to compare ILI readings
with field measurement depths and estimate the true size of corrosion metal loss and
its associated errors.

(3) Model Verification: Checking for the presence of non-linear regression, variance
heterogeneity, outliers, and non-normality of measurement errors in the model.

(4) Performance Evaluation: Evaluating the performance of ILI tools when significant
measurement errors exist in field instruments and determining the number of unsuc-
cessful field verifications.

To address these issues, scholars have proposed error assessment methods based on
probability and statistics. Among them, the traditional errors-in-variables (EIV) method
is used to handle cases where both measuring instruments have errors, but it requires
knowledge of the variance ratio of errors or one of the variances. The Grubbs and Jaech
estimators are used to estimate the variance of measurement errors, but they may produce
negative variances or unreasonable variance values in practical applications. Compared to
the former two, a variant method combining V-Wald and V-Jaech provides a more accurate
estimation of the true defect depth and the variance of measurement errors. It distinguishes
between the sampling distribution caused by non-constant bias and similar measurement
tool errors. Even in cases where measurement errors are similar, it can provide reliable
calibration results, which are difficult to achieve in traditional models.

5. Analysis of Research Hotspots

Keywords reflect the interrelationships among various themes explored in the liter-
ature, briefly summarizing the research content. Analyzing keywords is instrumental in
gaining insights into the research hotspots of a field. To mitigate potential errors from
using a single software, both VOSviewer 1.6.15 and CiteSpace 6.1.R2 were employed to
generate the keyword co-occurrence maps shown in Figure 8a,b. These maps exhibit good
consistency between the two software tools. In these maps, the size of each node or the
intensity of its color represents the frequency of the keyword’s occurrence. As the frequency
increases, the node’s circle enlarges, or the area’s color intensifies.

As demonstrated in Figure 9, cluster analysis conducted using CiteSpace 6.1.R2 iden-
tified four current research hotspots in the field of ultrasonic defect detection for long-
distance oil and gas pipelines: support vector machine, air-coupled ultrasound, guided
wave testing, and surface defects inspection.

Figure 10 reveals that since 1992, ultrasonic testing has emerged as a means of non-
destructive evaluation. During 2005–2015, ultrasonic technology saw widespread applica-
tion in the field of defect inspection in oil and gas pipelines. However, its use in natural gas
pipelines was mostly limited to external defect detection at welds during construction. In
response to the limitations of magnetic flux leakage detection, particularly in identifying
planar defects at girth welds, the existing methods and capabilities were found inadequate
for the practical needs of the oil and gas engineering sector. This led to increased research
focus on ultrasonic testing in pipelines, rapidly advancing the technology and theory of
ultrasonic defect detection.
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From 2015 to the present, there has been an explosive development of new acoustic
testing techniques. Current ultrasonic testing in oil and gas pipelines focuses on overcoming
challenges such as the inapplicability of coupling agents in natural gas pipelines (where
planar defects are more problematic than in oil pipelines) and the application of artificial
intelligence and data mining for the analysis and interpretation of existing ultrasonic data.
This explains why concepts like support vector machine, air-coupled ultrasound, and
guided waves have become hot topics in the field.

5.1. Surface Defect
5.1.1. Conventional Surface Inspection Methods

Surface defect detection has always been a core focus of pipeline inspection. Con-
ventional surface inspection methods include penetrant testing (PT), magnetic particle
testing (MPT), and eddy current testing (as shown in Table 7). Compared to ultrasonic
in-line inspection, PT and MPT offer higher sensitivity but require the removal of pipeline
coatings. They also demand high cleanliness of the test surface and are not suitable for
in-line inspection [3]. As mentioned in the previous section, EC has matured in internal
inspection applications. However, due to the skin and lift-off effects, this technology is
quite sensitive to speed and lift-off [51–53].

Table 7. Comparison of Nondestructive Testing Methods for Surface Defects.

Penetration Testing Magnetic Particle Testing Eddy Current Testing

Principle Capillary phenomenon Magnetic force Electromagnetic induction

Range Any non-porous material Ferromagnetic materials Conductive materials

Position surface opening defects surface or near-surface defects Surface

Sensitivity High High Low

Speed Slow Fast Fast, can be automated

Effect of Defect Orientation
on Detection Probability

Unaffected by defect
orientation

Affected by defect orientation,
easily detects defects

perpendicular to the direction
of magnetic lines

Affected by defect orientation,
easily detects defects

perpendicular to the direction of
eddy currents

Effect of Surface Roughness
on Detection Probability

Rougher the surface, lower
the probability of detection

Affected, but less than
penetration testing Greatly affected

5.1.2. Ultrasonic Surface Inspection Techniques

UT can effectively address the abovementioned issues. However, during the propaga-
tion of ultrasonic waves, interference can create a series of uneven sound pressure zones
near the wave source, known as the near-field zone. The presence of this area can lead to
inaccurate quantitative assessment of surface defects. Additionally, tiny cracks on the inner
surface of the pipeline wall can easily mask larger defects below, affecting the detection
of larger defects. To address this issue, scholars from around the world have conducted
extensive research. Considering the near-field zone’s impact on detection, J.M. Ha et al.
proposed an ultrasonic detection method based on autoencoders to inspect defects within
the dead zone of the probe. This method can identify subtle deviations caused by defects.
To validate the model’s effectiveness, aluminum blocks with near-surface defects were
subjected to B-scan testing. The results showed that the proposed method outperforms
traditional gate-based detection methods in identifying the size and location of near-surface
defects [54]. Jun He and colleagues presented a quantitative approach for detecting surface
anomalies using Rayleigh waves generated by lasers. Experimental results demonstrate
that this method outperforms standing wave energy or reflected wave energy techniques,
particularly in imaging vertical and inclined defects [55]. Similar challenges are also en-
countered in ultrasonic phased array testing. Tian and YK established a mathematical
model combining background subtraction with the square difference algorithm based
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on linear acoustic theory to extract the echo features of near-surface defects. Simulation
and experimental results show that this model can effectively extract the echo features of
near-surface defects, achieving positioning and quantitative accuracy values of 0.2 mm and
0.3 mm, respectively, for near-surface defects [56].

5.2. Guided Wave Inspection Technique

Guided wave ultrasonic testing (GWUT) is a non-destructive testing method that
utilizes the propagation characteristics of ultrasonic waves in solids to detect internal
structures, defects, or variations in materials [57]. Standard testing methods include
“pulse-echo” and “pitch–catch” modes. Unlike bulk ultrasonic waves propagating in
the direction of wall thickness, guided waves propagate axially along the pipeline, as
illustrated in Figure 11. With only a single or a few probes, it is possible to effectively
conduct long-distance screening of cross-sectional or axial damage in critical areas of the
pipeline [58,59]. Guided wave testing, emerging as an external inspection method for non-
piggable pipeline segments, began gaining prominence in the 1970s [60,61]. This technique
allows for screening pipeline defects over tens of meters by merely removing a portion of
the coating layer [62].
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5.2.1. Potential-Based Pipeline External Inspection Methods

Furthermore, there is another category of pipeline defect inspection methods based
on changes in electrical potential. As Table 8 illustrates, these methods generally require
manual patrolling, heavily relying on the operator’s subjective judgment. They are highly
susceptible to environmental disturbances and incapable of ascertaining the state of coating
delamination. Guided wave testing can detect coating delamination through changes in
the dispersion characteristics of torsional waves caused by local coating [63]. However, its
application in buried pipelines is severely constrained by the need for localized excavation
and coating removal, limiting the widespread adoption of this technology [64].
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The advent of novel non-contact ultrasonic testing technologies has expanded the 
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ics can be categorized into electromagnetic ultrasonics, laser ultrasonics, and air-coupled 

ultrasonics. Their principles, advantages, and limitations are shown in Table 9. 
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5.2.2. Non-Contact Ultrasonic-Guided Wave Testing 

The advent of novel non-contact ultrasonic testing technologies has expanded the 

possibilities of using guided waves for internal pipeline inspection. Non-contact ultrason-

ics can be categorized into electromagnetic ultrasonics, laser ultrasonics, and air-coupled 

ultrasonics. Their principles, advantages, and limitations are shown in Table 9. 
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5.2.2. Non-Contact Ultrasonic-Guided Wave Testing

The advent of novel non-contact ultrasonic testing technologies has expanded the
possibilities of using guided waves for internal pipeline inspection. Non-contact ultrasonics
can be categorized into electromagnetic ultrasonics, laser ultrasonics, and air-coupled
ultrasonics. Their principles, advantages, and limitations are shown in Table 9.

Table 9. Comparison of Non-Contact Ultrasound-Guided Wave Techniques.

Technology Type Principle of Detection Advantages Limitations

Laser Ultrasonic-Guided
Wave Testing

Utilizes laser pulses to induce
stress pulses in the test piece
through thermoelastic or
ablation effects, generating
ultrasonic wave signals.

Non-contact detection suitable
for high-temperature,
high-pressure, toxic
environments;
high sensitivity allows for
inspection on complex
structures.

Efficiency of laser conversion to
ultrasonic signals may be low;
Sigh-power lasers may damage
the surface of the specimen;
sensitivity of detection may be
suboptimal.

Electromagnetic
Ultrasonic-Guided Wave

Testing

Employs a probe to emit
ultrasonic-guided waves, using
the time difference of
reflections from the inner and
outer walls of the pipeline to
determine wall thickness and
corrosion.

Capable of long-distance
detection, convenient
operation, and minimally
affected by external factors,
such as temperature, pressure,
and internal flow media.

Direct measurement of wall
thickness is not possible;
sensitive to defects in wall
depth and circumferential
width, only axial length of
defects can be measured within
a certain range.

Air Coupled
Ultrasonic-Guided Wave

Testing

Uses air as the coupling
medium, transmitting and
receiving ultrasonic waves
through air-coupled
transducers to detect material
defects.

Non-contact detection without
the need for a coupling agent,
suitable for high-temperature
or inaccessible environments;
capable of inspecting very thin
workpieces.

Due to the attenuation of
ultrasound by air and
impedance differences at the
air–solid interface, there is
significant reflection and low
conversion efficiency of
ultrasonic waves, resulting in a
potentially low SNR.

(a) Laser Ultrasonic-Guided Waves Testing

Owing to high maintenance costs and factors like surface roughness, speed, and
environmental vibrations, LUGWT is predominantly used in precision industries, such
as aerospace for defect detection, and remains largely experimental in pipeline applica-
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tions [65]. For instance, JH et al. [55] utilized laser-generated guided waves to assess
pipeline corrosion and successfully evaluated the location and size of defects in two-
dimensional scan images.

(b) Electromagnetic Ultrasonic-Guided Waves Testing

In industrial in-line inspections, the applications of non-contact ultrasonic-guided
waves are presently limited to EmatScan CD and ROCDeMAT-c developed by ROSEN
and P II, as well as NDT Global’s ARTscan intelligent PIG as shown in Table 10. Electro-
magnetic ultrasonic guided waves operate through a process where alternating electric
currents induce high-frequency eddy currents on the surface of a pipeline. When sub-
jected to an external magnetic field, these eddy currents stimulate the generation of guided
waves [66,67].

Table 10. Types of Internal Inspectors and Inspection Capabilities.

Corporation Product Crack
(Length × Depth)

Operation
Speed

Wall
Thickness

(mm)
Depth
Sizing

Length
Sizing

Medium
Type

Orientation
to Pipe Axis

Min. Bend
Radius

P II

UltraScan
CD EDGE 15 × 1 ≤2.5 m/s 5~10 ±0.7 ±7.5 liquid 0◦ 1.5 D

UltraScan
CDP/DUO 25 × 1 ≤5 m/s 5~13 ±0.7 ±7.5 liquid 0◦ 1.5 D

EmatScan
CD 50 × 2 ≤2.5 m/s 7~13 ±1.1 ±10 G/L 0◦ 1.5 D

ROSEN ROCDeMAT-
c 40 × 2 ≤2.5 m/s 0~20 mm ±0.15 t ±20 G/L ±18◦ 1.5 D

TDW SpirALL 30 × 2 ≤2.5 m/s 0~13 mm ±1 ±10 G/L ±10◦ 1.5 D

CNPC / 50 × 2 ≤2.5 m/s 7~13 ±1.1 ±10 liquid 0◦ 1.5 D

NDT
Global

PROTON 20 × 1 ≤1.4 m/s 7~13 ±1 ±10 liquid ±10◦ 3 D

EVO
Eclipse

UCx
20 × 1 ≤4 m/s 0~13 mm ±1 ±10 liquid ±10◦ 1.5 D

To deepen understanding of these technologies, scholars worldwide have conducted
extensive research [68–70]. Nurmalia proposed an EMAT pipeline inspection technology
based on high-order torsional-guided waves T(0,2), finding that phase measurement as a
quantitative detection method holds considerable potential [71]. Liu introduced a novel
flexible EMAT transducer for generating L(0,2)-guided waves in pipelines, demonstrating
its effectiveness in corrosion detection in this mode [72]. Masahiko also developed an
EMAT technique to detect corrosion defects on steel pipes’ external surface, basing axial
defects’ location and depth assessment on the amplitude and phase shift responses of the
round-trip signals in SH0 and SH1 modes. The results indicated that the SH1 mode is more
sensitive to defects than the SH0 mode [73].

Limitations: In summary, non-contact ultrasonic-guided wave testing primarily uti-
lizes Lamb and surface waves. The circumferential propagation characteristic of Lamb
waves makes this technology particularly effective in detecting stress corrosion cracks in
natural gas pipelines and is sensitive to crack defects at straight weld seams. However, it
faces challenges in detecting minute cracks at girth welds [74,75]. Due to the multimodal
nature, dispersion, and long-distance attenuation properties of ultrasonic-guided waves,
the testing typically involves using broadband low-frequency modulated pulses as the
excitation signal. This approach, while effective, also leads to limitations in terms of defect
resolution and the accuracy of defect localization in ultrasonic-guided wave testing.

5.3. Air-Coupled Ultrasound

Air-coupled ultrasonics represents a novel non-contact ultrasonic testing technology,
utilizing air as the coupling medium. Air-coupled ultrasonics boasts distinct features such
as non-contact operation, large stand-off distance, and low power consumption. This
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technology is suitable for ferromagnetic materials and applies to natural gas pipelines and
medium- to low-pressure pipelines where traditional ultrasonics and magnetic flux leakage
methods are ineffective. Thus, it offers a broader range of applicability [76–78].

Air-coupled ultrasonics, compared to contact or immersion ultrasonics, experience a
significant reduction in sensitivity, approximately 80 dB lower [79,80]. This energy atten-
uation primarily arises from three factors: ultrasonic wave attenuation in air, substantial
reflection at the air–solid interface, and the efficiency of ultrasonic transducer conversion.
The inherent acoustic attenuation in air and surface reflection remains an unavoidable
natural phenomenon in ultrasonics, leading to low transducer efficiency and prolonged
pulse reverberation due to the significant impedance mismatch.

To enhance signal quality, current research in the industry is focused on two main areas:

• Optimization of air-coupled ultrasonic probe structures and materials.

Air-coupled probes can be categorized into piezoelectric and capacitive types. Ca-
pacitive transducers operate by applying an excitation voltage between a metallized film
and a conductive substrate, causing the film to vibrate under electrostatic action, thereby
generating ultrasonics at specific frequencies. D.W. Schindel and others, through compara-
tive studies, found that capacitive ultrasonic probes offer a broad frequency response and
good damping, effectively addressing the issue of high central frequency present during
ultrasonic wave excitation in piezoelectric ultrasonics [81]. However, due to their high cost
and strong environmental dependency, capacitive probes remain largely experimental and
have not yet seen widespread industrial application [82]. In 1995, Hutchins et al. achieved
the fabrication of regular air layers on the conductive substrate of electrostatic transducers
through etching, demonstrating these probes’ excellent bandwidth performance [83].

Advances in piezoelectric ultrasonic transducers have also been achieved, especially
in their structural design. To improve resonance effects, one to three connected composite
sensors have been developed, reducing the impedance of sensor materials and enhancing
efficiency and coupling performance [84]. Selecting superior matching layer materials to
allow more energy transmission through the air into the test object is a key factor in realizing
these improvements. Alvarez-Arenas and others at the Spanish CSIC Institute of Acoustics,
after researching various material characteristics, identified nylon as ideal materials (with
mixed cellulose ester and polyvinylidene fluoride being suitable for frequencies above
2 MHz). This research largely resolved the issue of selecting matching materials and was
the first to study the variation of material attenuation coefficients with frequency [65].

Piezoelectric probes, owing to their higher power output, have long dominated the
commercial ultrasonic probe market. Systems developed by companies like Probe Cor-
poration in Japan, and Ultran, PAC, and SONOTEC in Germany, which are based on
piezoelectric transducers, are examples. Research in areas such as focused air-coupled
transducers and defect detection in composite materials and lithium-ion batteries has been
conducted by institutions like Beihang University, Nanjing University, and the Chinese
Academy of Sciences’ Institute of Acoustics. However, there remains a lack of development
in equipment specifically for internal inspection of oil and gas pipelines.

• Signal encoding

Hutchins et al. [85] utilized pulse compression technology to encode excitation signals,
using capacitive sensors to generate broadband chirp signals in air for measuring solid
samples. Their results demonstrated that this signal processing technique significantly
enhances the signal-to-noise ratio (SNR) and detection precision of air-coupled testing,
validating the feasibility of pulse compression technology in improving air-coupled ul-
trasonic performance. The team also conducted a comparative study of existing signal
encoding techniques, concluding that the optimal choice of modulated signals depends on
the available bandwidth and type of measurement [86]. Garcia and colleagues proposed
using Golay sequences to encode Lamb waves excited by air-coupled ultrasonics, finding
that the SNR of ultrasonic signals under Golay encoding improved by 21 dB compared to
non-encoded excitation [87]. Additionally, Tang et al. introduced phase-encoded excitation
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and pulse compression techniques, effectively raising the SNR of received signals by over
10 dB [88]. Li and colleagues suggested using P4 polyphase sequences to encode excitation
in air-coupled piezoelectric transducer-based non-destructive testing systems. Their mixed
signal processing method increased the SNR by 12.11 dB and improved the time-domain
resolution by approximately 35% [89].

Despite these advancements in probe design and signal encoding, the effectiveness of
air-coupled ultrasonics in metal detection remains limited, particularly with high-speed
operation and vibration impacts of internal detectors. Air-coupled ultrasonics was first
proven in 1973 for generating Lamb waves in metal plates. Since then, Lamb waves have
been extensively used in various materials, including fiber-reinforced polymer compos-
ites [90,91]. In the industrial sector, NDT GLOBAL is currently the only company applying
air-coupled ultrasonic testing in the internal inspection of metal pipelines. Their developed
ARTscan system (typically 400 kHz–1.2 MHz, with pressure above 7 MPa) merges low-
frequency broadband signals with resonant and guided wave technologies. This not only
allows for highly precise measurements of metal loss in pipelines (±0.4 mm) and the detec-
tion and classification of thick-walled defects but also facilitates comprehensive geometric
measurements. This advancement represents a significant step in applying air-coupled
ultrasonics in metal pipeline inspection. Compared to immersion ultrasonic, which requires
coupling agents and high cleanliness, ART has a 50% deformation pass-through capability
(compared to 10% for magnetic flux leakage) and 1.5D high pass-through ability, allowing
for pipeline inspection without pigging. It means that when inspecting these mainline
oil and gas pipelines, oil and gas suppliers can avoid reducing the internal pressure and
flow velocity of the pipelines, thereby avoiding a significant decrease in the transportation
volume of oil and gas during pipeline internal inspection operations. Taking Central Asia–
China and China–Myanmar natural gas pipelines as examples, the direct losses caused
by the reduction in throughput during a single pipeline internal inspection operation can
amount to hundreds of millions of dollars.

5.4. Support Vector Machine

As the technology of ultrasonic internal inspection for pipelines continues to advance,
the influx of a large amount of data imposes higher demands on signal processing methods.
Signal processing of ultrasonic internal inspection signals can help reduce signal complexity
and extract useful information [92,93]. Some common ultrasonic signal processing methods
and data process flow are shown in Figure 12.

The support vector machine (SVM) is a supervised learning model used for classifi-
cation and regression analysis. It has shown excellent performance in data mining and
pattern recognition tasks in inspecting oil and gas pipelines. SVM can accurately handle
linear problems; for complex nonlinear issues, data can be mapped to a high-dimensional
space through nonlinear transformation functions [94–96]. To reduce computational costs,
kernel functions can be used instead of nonlinear transformation functions [97]. Like SVM,
other machine learning (ML) methods, such as decision trees, random forests, and naive
Bayes have been used. These ML methods can extract useful features from acoustic signals
and perform accurate classification and defect detection based on these features [98–100].
However, the class of traditional machine learning algorithms represented by support
vector machines may not perform as well as deep learning when dealing with complex or
large data models. They require manual feature engineering and may also rely on domain-
specific expert knowledge. They are generally less suitable for handling high-dimensional
data and nonlinear relationships. They are more suitable for small samples and nonlinear
tasks but less suitable for large-scale datasets and multi-classification tasks [101–103].
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Deep learning methods have gained significant attention with the increasing volume
of data and the growing complexity of ultrasonic signals. Common deep learning networks
include convolutional neural networks (CNN) [104], graph neural networks (GNNs) [98],
recurrent neural networks (RNN) [105], long short-term memory (LSTM) [106], and Au-
toEncoder [107]. It is evident that data-driven techniques dominated by machine learning
(ML) methods have demonstrated significant advantages in ultrasonic in-line inspection
compared to physical models [108]. Their primary applications fall into the following
three categories:
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• Defect Classification:

Using deep learning algorithms to classify defects in the pipe body and weld area
has been a prominent research topic in the ultrasonic inspection of oil and gas pipelines.
Traditional defect classification methods struggle to differentiate between different types of
defects accurately. Deep learning methods like CNN and LSTM often excel in handling
complex signals, extracting temporal features, and improving detection accuracy. For
example, Bettayeb et al. used wavelet transformation to extract feature vectors related to
defects on the pipe body and weld, such as cracks, porosity, or inclusions. These feature
vectors contain two-dimensional information about defects, and an artificial neural network
(ANN) trained with a backpropagation algorithm was used to classify these feature vectors.
The results showed that combining wavelet transformation and ANN could significantly
suppress noise levels and improve defect classification accuracy [109]. Building on this,
Sambath et al. analyzed 1084 samples using similar principles and achieved a reasonable
classification rate of 94% [110]. Guo et al. proposed an image-based deep learning defect
classification method. They used a gated recurrent unit fully convolutional network (GRU-
FCN) to extract temporal features from A-scan ultrasound signals. The training, validation,
and test datasets comprised 3600 ultrasound waveforms collected in experiments. The
results were compared with LSTM, GRU, and ResNet, revealing that GRU-FCN achieved
higher accuracy [111].

• Defect Characterization:

Defect characterization has been a critical basis for transitioning from non-destructive
testing (NDT) to non-destructive evaluation (NDE). The accuracy of quantifying defects
directly influences the effectiveness of non-destructive evaluation. C. Guo et al. proposed a
novel residual vision transformer (Res-ViT) architecture based on deep residual networks
(ResNet) and visual transformers (ViT). They conducted experiments on elliptical defects
with inclination angles of 60◦ at different noise levels. Compared to the principal component
analysis and nearest neighbor method, the root mean square error (RMSE) of the defect
size was reduced by 61% [112]. Miorelli et al. introduced a CNN model for automatically
locating and sizing defects from guided ultrasonic wave data. The deep learning model was
trained using both simulated and experimental data, and the experiments demonstrated
the model’s adaptability to real-world environments, achieving an accuracy of up to
90% [113]. Bai et al. compared the classical Bayesian inversion method proposed by
Miorelli and a CNN regression model. In this study, the classical Bayesian method exhibited
higher accuracy and lower uncertainty in defect characterization, but it introduced more
discreteness due to the model’s inherent uncertainty [114].

• Data Preprocessing:

In practical experiments or industrial applications, data often come with noise due
to environmental factors or equipment characteristics, which can affect subsequent signal
analysis. Data preprocessing aims to improve the quality of ultrasonic detection data. Data
preprocessing techniques include but are not limited to image denoising, feature recognition
and extraction, and data compression. Noise reduction primarily aims to improve the
signal-to-noise ratio (SNR). Yang et al. designed a lightweight denoising network called
the global interactive attention lightweight denoising network (GIALDN) for analyzing
vibration signals and locating internal defects in CFRP laminates. In GIALDN, a threshold-
based denoising method was used to eliminate noise-related features and enhance feature
discriminability. The results showed that GIALDN achieved a location accuracy of 98.68%,
which was more than 15% higher than VGGnet11 and FaultNet, and outperformed LSTM,
RNN, Rsenet18, SEresnet18, and Densenet121 [115]. For ultrasonic defect detection, which
typically involves a larger volume of data compared to conventional eddy current testing,
compressing input data into latent features can replace the indiscriminate retention of raw
data. Kesharaju proposed a feature selection method based on the genetic algorithm (GA)
and fully convolutional neural network (FCNN). This method used a subset of preselected
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features as input to the FCNN model. The results showed that the performance improved
by 94% compared to the model based on principal component analysis (PCA) [116].

Limitations: Currently, most machine learning methods are primarily in the theoretical
validation stage, with only a few models being applied in industrial practices, and their
performance is not ideal. The main challenge lies in the difficulty of obtaining a sufficient
amount of high-quality data due to the confidentiality and sensitivity of oil and gas pipeline
data. Therefore, most research based on machine learning methods is conducted using
simulated data or laboratory data for defect or anomaly detection analysis, making it
challenging to adapt to real-world pipeline inspection data.

6. Potential Challenges and Opportunities

Considering the current testing technology, it is evident that we are still in the early
stages of ultrasonic non-destructive evaluation. Therefore, in the foreseeable future, internal
ultrasonic inspection of oil and gas pipelines will continue to face the following challenges
and opportunities:

(1) Exploration of novel sensor designs and materials for enhanced sensitivity and reso-
lution in UT inspections.

(2) Research into multi-modal sensor arrays combining UT with other NDT techniques
(e.g., electromagnetic acoustic transducers or distributed fiber optic sensors) for com-
plementary defect characterization.

(3) Miniaturization of sensors for improved accessibility to challenging pipeline geome-
tries and locations.

(4) Addressing the impact of velocity and vibration on the accuracy and precision of detec-
tion from both theoretical and sensor optimization perspectives to achieve ultrasonic
inspection at the velocity of the conveying medium.

(5) Development of novel encoding algorithms to mitigate artifacts and enhance the
sensitivity of ultrasound imaging.

(6) Air-coupled testing holds promising applications in the inspection of oil and gas
pipelines because of its ability to detect cracks and metal loss defects in thick-walled
pipelines that magnetic flux leakage testing may not detect.

(7) Integration of machine learning algorithms for optimized encoding parameter selec-
tion, real-time adaptive imaging and corrosion quantification [117].

(8) Exploration of novel materials with tailored acoustic properties for matching layers to
optimize acoustic impedance matching and minimize signal loss at transducer interfaces.

(9) The enhancement of generalization and transfer learning capabilities of ultrasonic
data analysis models established based on simulation and laboratory in industrial
application environments.

7. Conclusions

In this study, we conducted a bibliometric analysis based on 350 ultrasonic testing-
related publications from the Web of Science (WOS) database since 1992. Utilizing data
visualization techniques, we identified the most influential countries, institutions, and
publications in the field globally. Our analysis of the data level elucidates the potential
developmental reasons behind these trends. We observed that Western developed countries,
represented primarily by the UK and the USA, continue to maintain a central position in
the realm of ultrasonic testing. Due to industrial development needs, China has shown
rapid progress in ultrasonics in recent years, and the focal point of ultrasonic testing is
progressively shifting from theoretical aspects to practical scene applications.

To mitigate the impact of personal biases on this research, we relied on cluster analysis
and timeline methods to pinpoint the current research hotspots in ultrasonic testing for
oil and gas pipelines. This approach enabled us to delineate the research tasks in various
stages of oil and gas pipeline ultrasonic testing. Building on the hotspot analysis, we also
presented the ongoing opportunities and challenges in this field.
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Like ultrasonic testing technology itself, which possesses unique advantages and
limitations, our study is not without its constraints. For instance, due to the limitations
of the database, not all relevant literature in the field may be covered. However, the
data sourced from WOS ensures a comprehensive collection and analysis of core research
findings in the ultrasonic testing domain.
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