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Abstract: Target detection technology based on unmanned aerial vehicle (UAV)-derived aerial
imagery has been widely applied in the field of forest fire patrol and rescue. However, due to the
specificity of UAV platforms, there are still significant issues to be resolved such as severe omission,
low detection accuracy, and poor early warning effectiveness. In light of these issues, this paper
proposes an improved YOLOX network for the rapid detection of forest fires in images captured by
UAVs. Firstly, to enhance the network’s feature-extraction capability in complex fire environments, a
multi-level-feature-extraction structure, CSP-ML, is designed to improve the algorithm’s detection
accuracy for small-target fire areas. Additionally, a CBAM attention mechanism is embedded in
the neck network to reduce interference caused by background noise and irrelevant information.
Secondly, an adaptive-feature-extraction module is introduced in the YOLOX network’s feature
fusion part to prevent the loss of important feature information during the fusion process, thus
enhancing the network’s feature-learning capability. Lastly, the CIoU loss function is used to replace
the original loss function, to address issues such as excessive optimization of negative samples
and poor gradient-descent direction, thereby strengthening the network’s effective recognition of
positive samples. Experimental results show that the improved YOLOX network has better detection
performance, with mAP@50 and mAP@50_95 increasing by 6.4% and 2.17%, respectively, compared
to the traditional YOLOX network. In multi-target flame and small-target flame scenarios, the
improved YOLO model achieved a mAP of 96.3%, outperforming deep learning algorithms such
as FasterRCNN, SSD, and YOLOv5 by 33.5%, 7.7%, and 7%, respectively. It has a lower omission
rate and higher detection accuracy, and it is capable of handling small-target detection tasks in
complex fire environments. This can provide support for UAV patrol and rescue applications from a
high-altitude perspective.

Keywords: wildfire detection; UAV; small-target detection; YOLOX; CSP-ML

1. Introduction

Forests are vital ecosystems on Earth, providing key support for biodiversity, carbon
cycling, and water resources. However, forest fires, as a frequent natural disaster, not
only devastate ecosystems and exacerbate climate change but also pose threats to human
life and property, causing severe harm to both the ecological environment and human
societal development. Protecting forests and preventing forest fires, especially by rapid
and effective detection and early warning at the onset of fires, are pressing issues that need
to be addressed.

The early stages of fire detection primarily relied on sensor-based methods, includ-
ing smoke sensors, temperature sensors, and infrared detectors. Smoke and temperature
sensors require the detection of changes in environmental smoke-particle concentration
and temperature, which are limited by detection conditions and are mainly used for in-
door alarms. Infrared detectors can focus on the infrared radiation of the optical unit of
refraction and convert it into electrical signals, thus achieving outdoor fire alarms. For
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example, Le et al. [1] proposed a false-alarm-reduction system to address the problems
of cumbersome traditional-manual-detection processes and high false-alarm rates. How-
ever, the above methods are affected by environmental and spatial scales, resulting in a
large number of device deployments, high deployment costs, long emergency-response
times, and low levels of monitoring coverage, which create certain limitations. With the
development of and progress in computer vision technology, flame-detection technology
has gradually evolved from sensor-based recognition to image detection and recognition,
with the latter having the advantages of fast detection speed, high accuracy, and precise
perception and positioning, and it has gradually become the mainstream means of fire
detection. In the initial stages of image-based-mountain-fire-detection technology, machine
learning algorithms were mainly used to extract and classify features such as flame color,
motion, and flicker frequency and then output the flame-detection results. Ko et al. [2]
proposed a fire-detection method based on visual sensors that sets the fire area by dividing
the fire-moving area and its color pixels, and that combines brightness and contrast to
create a brightness map, creating a time–fire model with wavelet coefficients, and that
uses an SVM classifier for fire image verification, among other methods, to achieve the
effective detection of continuous changes in smoke and flames. On this basis, Tom et al. [3]
introduced machine learning methods using logistic regression into fire-detection work,
comparing the performance of traditional fire-detection methods with machine learning-
based fire-image-pixel-detection methods, providing a new direction for the development
of fire-detection technology in unstructured environments. In addition, Alves et al. [4]
aimed to enable early identification of mountain fires in forest environments and proposed
an automated fire-detection system that uses deep convolutional neural networks (CNN) to
learn fire features from 882 labeled images, achieving efficient classification of fire images
with a detection accuracy of 94.1% for daytime-scene images and 94.8% for nighttime-scene
target recognition, effectively reducing the false-alarm rate and missed detection rate of
the model. Arul A et al. [5] proposed a machine learning-based-fire-detection system
that analyzes real-time images captured by closed-circuit television (CCTV) and combines
OpenCV algorithms for flame recognition, achieving early detection and warning for fires.
The system integrates alarm devices and automatic-fire-extinguishing equipment, enabling
rapid responses when signs of fire are detected, effectively improving the timeliness and
efficiency of fire prevention and control. In recent years, with the rapid development of
artificial intelligence, fire-image-detection technology based on deep learning has gradually
become the mainstream, especially with the proposal and introduction of the YOLO series
of models providing new ideas for mountain-fire detection. Sidhant Goyal et al. [6] fused
multi-sensor monitoring signals from visible light and infrared cameras and proposed an
automated early warning system based on the YOLO algorithm, using drone platforms
to achieve rapid detection of forest fires, with a fire-target-detection accuracy of 90%.
Li et al. [7] proposed fire-detection algorithms based on Faster-RCNN, R-FCN, SSD, and
YOLOv3, respectively, with the YOLOv3-based target algorithm achieving an average
precision of 83.7% and strong robustness. Wang et al. [8] proposed a lightweight forest
fire-detection model based on YOLOv4, using MobileNetV3 as the backbone network,
significantly reducing model parameters and improving model inference speed. Compared
with the original YOLOv4, the improved model reduced the number of parameters by
62.78% and increased the inference speed by 3.04 times, providing a reference for real-time
target detection of forest fires. Wu et al. [9] proposed a video fire-detection algorithm based
on an improved YOLOv5 to address the limitations of traditional fire-detection methods.
By introducing a dilated convolution module in the SPP module of YOLOv5, and by us-
ing GELU activation function and DIoU-NMS bounding box suppression techniques, the
model significantly improves feature extraction and small-scale target detection capabilities
while maintaining high detection speed. The algorithm achieves an accuracy and recall of
0.983 and 0.992, respectively, with an mAP@0.5 of 0.993 and a detection speed of 125 FPS,
effectively suppressing false detections and missed detections in complex lighting envi-
ronments and enhancing the robustness and reliability of the algorithm for fire detection.
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Zhuo et al. [10] proposed a lightweight small-target detection model, FL-YOLOv7, to
address the computational capacity limitations and the balance between accuracy and
computational cost of target detection models faced by unmanned aerial vehicles (UAVs)
in forest fire detection. By introducing the C3GhostV2 module, SimAm attention mecha-
nism, ASFF feature fusion module, and WIoU loss function, the algorithm improves the
detection accuracy and speed of small targets such as smoke and flames while reducing
model parameters and computational cost. Compared with YOLOv7, FL-YOLOv7 in-
creases mAP50small by 2.9% and detection speed by 24.4 frames per second (FPS) while
reducing the number of parameters by 27%. Talaat et al. [11] proposed an intelligent fire-
detection system based on YOLOV8 for urban environment fire detection, achieving effec-
tive identification and localization of urban fires. Compared with traditional fire-detection
techniques, this method can significantly improve the accuracy and speed of urban fire-
target detection and significantly reduce the false-alarm rate of the algorithm, giving an
accuracy and recall rate of 97.1%. In addition, YOLOX, as a lightweight model, has been
widely used in the field of target monitoring since its introduction [12–16]. For example,
Huang et al. [17] proposed a real-time forest fire-detection method called GXLD, which
combines the lightweight YOLOX-L model with the dark channel-prior-defogging algo-
rithm. By introducing GhostNet, depth-wise separable convolution, and an SE-attention
mechanism, the improved algorithm can significantly reduce network parameters while
improving the detection accuracy of forest fires. Experimental results show that GXLD
achieves an mAP of 87.47% on the test dataset and an average frame rate of 26.33 FPS with
an input image size of 1280 × 720, demonstrating its potential for the real-time and efficient
detection of forest fires in complex environments. The above detection algorithms have
shown significant effectiveness in fire-detection tasks and can provide effective support for
fire early warning, but there is still room for improvement, mainly in the following aspects.
Firstly, urban fire targets are relatively large in scale and have more distinct features than
those in forest environments, making early warning highly feasible. In contrast, forest
environments are more complex, including severe tree occlusion, making mountain-fire
target recognition more challenging. This is particularly true in high-altitude mountain-
ous areas, where frequent cloud and fog significantly increase the difficulty of detection.
Traditional models such as YOLOX struggle to meet the requirements for real fire-target
detection and early warning of mountain fires in these environments. Secondly, due to the
different distances between the image acquisition equipment and the target, the varying fire
intensities, and the different degrees of spread, the scale of the flames in the image varies
greatly and the accuracy of multi-scale target detection needs to be improved. Thirdly, there
are many types of edge-monitoring equipment with large performance differences, and the
model has high computational requirements, which places a heavy burden on hardware
support, which makes it difficult to effectively deploy on UAV equipment, resulting in
difficulties in real-time monitoring by edge devices.

In view of this, this paper proposes a lightweight multi-scale-fire-small-target detection
algorithm to provide technical support for detection and early warning in complex scenes
such as forest fires. The specific contributions to this proposal include the following:

1. Designing a multi-level-feature-extraction structure CSP-ML to improve the detection
accuracy of the algorithm for small-target-fire areas.

2. Optimizing the neck network structure by embedding the CBAM attention mechanism
to reduce the interference caused by background noise and irrelevant information.

3. Optimizing the YOLOX network-feature-fusion mechanism by introducing an
adaptive-feature-extraction module to avoid problems such as the loss of impor-
tant feature information during the feature-fusion process and enhance the feature-
learning ability of the network.

4. Adopting the CIoU loss function to replace the original loss function, improving the
problems of excessive optimization of negative samples and poor gradient-descent
direction in the original function, and strengthening the effective recognition of
positive samples by the network.
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The rest of this paper is organized as follows: Section 2 introduces the theoretical
background of this detection method; Section 3 details the improvements in network
and structure; Section 4 describes the organization and classification of the dataset and
experimental results; and Section 5 discusses the results and provides conclusions.

2. The YOLOX Network Architecture

Object detection is an indispensable component of computer vision, offering broad ap-
plication value in practical defect identification and protective early warning tasks. YOLOX,
proposed by Megvii Technology [18], is a high-performance-object-detection network de-
signed to adapt to the demands of real-time object detection effectively, balancing detection
speed and accuracy for outstanding performance in real-time applications. YOLOX in-
herits core concepts from the YOLO series while introducing new features and structural
improvements. Compared to models such as YOLOv3, YOLOv4, and YOLOv5, YOLOX
stands out in the YOLO series with its rich weight model, excellent real-time detection
speed, precise detection performance, and unique decoupled-head processing approach.
The YOLOX network structure is divided into four main parts: the input, the backbone
for feature extraction, the neck for feature fusion, and the prediction head, as shown in
Figure 1. Specifical details of this network struct are as follows:
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Input: Normalizes the input images, through processes such as resizing and pixel
value normalization, to prepare them for processing by the network. In some cases, it also
includes data-augmentation techniques like random cropping and color adjustment to
enhance the model’s generalization ability.

Backbone: Gradually compresses the image and extracts higher-level abstract features
through convolutions, activation functions, and pooling layers.
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Neck: Often employs structures like Feature Pyramid Networks (FPNs) or Path
Aggregation Networks (PANs) to fuse feature maps of different scales. This enables
the model to effectively detect targets of varying sizes, as small targets may be more
easily recognized in low-level feature maps, while larger targets may be more apparent in
high-level feature maps.

Head: Constructed with several convolutional layers, this structure includes classi-
fication and regression branches. The classification branch focuses on extracting features
relevant to identifying categories through training, such as distinguishing flames and
smoke from typical mountain background elements like trees and rocks, and on predicting
the class of each detection box. The localization branch primarily focuses on accurately
locating targets; optimizing the learning of flames and smoke in terms of size, shape, and
spread to better predict their positions and extents; and retrieving the coordinates for the
four points of the target boundary box. The decoupled head is shown in Figure 2. Based on
the decoupling concept (separating different tasks or phases of object detection to improve
model performance), this network structure design divides classification (identifying target
categories) and regression (locating and sizing targets) tasks. This approach not only opti-
mizes processing, reduces computational load, and minimizes interference between tasks,
but also enhances the model’s capability in feature extraction and operational efficiency
for classification. It also avoids the problems of task coupling found in traditional object-
detection models where targets’ categories and positions are predicted simultaneously,
potentially limiting the model’s effectiveness in complex detection scenarios. Each branch
is tailored to focus on specific tasks, such as small-scale detection and high-resolution
classification and localization, to enhance overall detection performance. The design of this
dual-branch structure maintains the independence of tasks while implementing precise
gradient adjustments and controlled backpropagation, ensuring the model’s high precision
and robustness along with efficiency.
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Although traditional YOLOX has demonstrated relatively superior performance in
detection tasks, its application in UAV-based wildfire detection in forest and mountainous
terrains faces challenges due to the complexity of fire scenes, including the following:

1. UAV aerial images cover wide areas with abundant miscellaneous information and
a high proportion of small, dense targets, which complicates feature extraction such
that critical fire-scene information may be overlooked by the model.
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2. The background information in fire scenes is complex. In UAV images, the distribu-
tion of positive sample information, such as flames and smoke, against background
elements like trees, mountains, and skies, is uneven. The original structure’s IoU loss
cannot balance positive and negative samples adequately, instead over-optimizing for
negative samples and neglecting positive sample recognition and severely impacting
detection accuracy.

3. Improvements and Optimization Network

In aerial images of mountain fires captured by drones, small-sized targets such as
flames and smoke are densely distributed but lack distinct features. Additionally, due to the
high proportion of miscellaneous information in the environmental background, extracting
effective features of critical information is challenging, resulting in low detection accuracy
and a high rate of missed detections. Therefore, this paper proposes a dense small-target-
wildfire-detection network based on the improved YOLOX network. The structure of this
network is shown in Figure 3 and primarily consists of four parts: the input, backbone, neck,
and head. To address the insufficient use of shallow-feature maps by the original network,
a multi-level-feature-extraction structure, CSP-ML, is designed in the feature-extraction
section to prevent the loss of semantic information contained in shallow-feature maps after
multiple convolutions. Moreover, the CBAM attention mechanism is embedded in the neck
of the network to precisely capture positional and channel information, which facilitates
the localization of small targets. Additionally, an Adaptive Spatial Feature Fusion Module
is introduced in the feature fusion section to obtain weight parameters for each feature
layer, ensuring that important information predominates within feature fusion. Finally, the
CIoU loss function is adopted to replace the binary IoU loss function to mitigate the impact
of the numerical imbalance between target and background classes.
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3.1. Multi-Level-Feature-Extraction Structure: CSP-ML

Multi-scale feature extraction constitutes a pivotal component within image recog-
nition algorithms that significantly influences the algorithm’s detection accuracy and
robustness. In complex wildfire scenarios, target objects frequently manifest characteristics
across multiple scales and forms, which is accompanied by random occlusions. Single-scale-
feature-representation methods are inadequate to fully encapsulate the intrinsic nature
of the targets, resulting in decreased detection performance, missed detection, and false
alarms. Therefore, the effective integration of features from multiple scales to construct
scale-invariant target representations is essential for enhancing the algorithm’s capability
to detect mountain fires.

The fundamental principle of multi-scale feature extraction involves extracting features
characterized by complementarity and diversity from various levels and resolutions within
an image, utilizing information across multiple granularities—ranging from local details
to global semantics—to significantly enhance the algorithm’s adaptability to changes in
target scale. With the introduction of a multi-scale analysis mechanism, image recognition
algorithms are capable of capturing key features of the target across varying receptive fields.
These algorithms can extract fine-grained textures, edges, and other local information
while also grasping the overall structure and contextual semantics of the target, thereby
facilitating precise depiction and accurate recognition of the target.

In conventional image recognition algorithms, such as Faster R-CNN, SSD, and YOLO, a
multi-scale-feature-extraction strategy is extensively employed. Among these, the traditional
YOLOX algorithm facilitates the cross-stage connection and integration of feature maps at
differing levels through the embedding of Cross-Stage Partial (CSP) structures within various
stages of the backbone network, thus enabling the capture of multi-scale fire targets.

However, while the aforementioned methods facilitate the fusion of multi-scale fea-
tures through cross-stage connections, their approach to fusion is relatively simplistic and
overlooks the semantic interrelations between features, especially when confronted with
complex mountain-fire scenarios, which potentially compromises the efficacy of feature
fusion. To enhance the algorithm’s capability in recognizing and detecting multi-scale-
mountain-fire regions within complex scenarios, this study introduces the concept of
employing group convolution to augment feature cardinality from the ELAN model into
the CSP framework, resulting in the design of a multi-level-feature-extraction mechanism,
termed CSP-ML, as depicted in Figure 4.
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The feature-extraction component of this structure is composed of a 1 × 1 convolution
branch and three bottleneck branches. The 1 × 1 convolution branch primarily serves to
diminish the number of channels in the feature map, simultaneously extracting surface
location information pertaining to the fire scene such as the approximate locations of flames
and smoke distribution areas. In contrast, the bottleneck branches are designed to capture
deeper semantic information within the fire scene, like the extent of wildfire spread and
smoke concentration, through a more profound network structure. One branch sets the
number of bottleneck units to n, aiming to align the output features with the dimensions
of the convolution branch outputs for straightforward subsequent concatenation, while
the other two branches are equipped with only one bottleneck unit each. This asymmet-
rical design strategy facilitates the preservation of feature diversity and accentuates the
extraction of deep-semantic information. Concatenating the feature maps from different
branches along the channel dimension enables the CSP-ML structure to effectively fuse
shallow-positional and deep-semantic information, thus capturing more comprehensive
and accurate feature representations of complex mountain-fire scenes. The improved
CSP-ML-feature-extraction process is mathematically expressed as shown in Equation (1):

Mb(F) = f 3×3
(

f 1×1(F)
)
+ F (1)

Herein, F denotes the input feature map, and f 3×3 is composed of a convolution
layer, a Batch Normalization (BN) layer, and an activation function. According to the
formula for calculating the volume of convolutional parameters (Equation (2)), the volume
of parameters in a convolutional layer is proportional to the number of input and output
channels. By reducing the output channel number of the 3 × 3 convolution layer preceding
the CSP structure by half and compensating for the decreased channel number with
additional bottleneck branches in the CSP-ML feature-extraction structure, this approach
enables effective management of the model’s parameter volume and computational cost.
This balanced design ensures that, within an acceptable computational load, the model can
effectively extract key features of mountain-fire scenes. The optimized CSP-ML structure,
while enhancing feature-representation capabilities, also addresses the model’s need for
lightness and real-time performance.

Paramconv = (kw ∗ kh ∗ cin ) ∗ cout + cout (2)

In this context, kw, kh, cin, and cout represent the width, height, number of input
channels, and number of output channels of the convolution kernel, respectively.

Outputs from the CSP-ML feature extraction process are fed into Concat, thereby
facilitating multi-level feature concatenation. The optimized CSP-ML output features are
detailed in Equation (3)

F′ = f 3×3
([

Mb

(
f 1×1(F)

)
; Mb

(
f 1×1(F)

)
; n ∗ Mb

(
f 1×1(F)

)
; f 1×1(F)

])
(3)

where F and F′ are the input and output feature maps, respectively.

3.2. Attention Mechanism: CBAM

The backbone network, as a crucial component of the YOLOx model, is primarily used
to extract multi-scale feature representations from the input image and generate feature
maps with different spatial resolutions (including 80 × 80, 40 × 40, and 20 × 20). These
generated feature maps aggregate rich semantic information and spatial details, providing
key prior knowledge for subsequent object-detection tasks. However, these feature maps
also contain useless information, such as background noise. Directly concatenating and
fusing them may lead to the dilution of useful information and reduce the efficiency
of feature information utilization. To optimize the effect of feature fusion, researchers
typically employ attention mechanisms to select and strengthen target-relevant features
while suppressing background noise and irrelevant information, thereby improving the



Sensors 2024, 24, 2710 9 of 27

information purity of the feature maps and enhancing the model’s performance in object-
detection tasks.

The more traditional attention mechanisms comprise Squeeze-and-Excitation (SE)
attention, Self-Attention, Spatial Group-wise Enhance (SGE) attention, Coordination At-
tention (CA), ACmix attention, Spatial Attention, and Channel Attention. The Squeeze-
and-Excitation (SE) attention [19] boosts the network’s capacity to discern inter-channel
relations by initially compressing and then exciting the channels. This method employs
global average pooling and fully connected layers to ascertain the significance of channel
weights, facilitating adaptive focus on crucial features and thus enhancing the model’s
performance. However, global average pooling compresses spatial details, potentially
leading to a loss of essential local information. This issue might inhibit the complete
capture of vital spatial data in tasks like mountain-fire detection, where backgrounds
are complex and flames vary, possibly causing misses and false detections of wildfire
targets. Additionally, influenced by the selection of hyperparameters, it tends to lead to
overfitting and inadequate generalization capabilities of the model. Self-Attention [20], by
calculating relationships among elements within the input sequence and assigning varying
attention weights to each, captures long-range dependencies, making it appropriate for
NLP tasks and certain imaging tasks. However, in detecting mountain fires, given the
varying shapes of flames and smoke and the complex background, Self-Attention fails to
adequately discern the subtle distinctions between flames and background, particularly
in scenarios with small flames or dense smoke; hence, its effectiveness is limited. Spatial
Group-wise Enhance (SGE) attention [21] enhances sensitivity to spatial locations by group-
ing feature-map channels and applying spatial attention within each group, aiding the
model in better comprehending and articulating the spatial distribution among different se-
mantic details. However, given the complex and changing environments of mountain fires,
SGE’s operation with fixed group counts restricts its adaptability to various task demands,
potentially increasing the computational load. Coordination Attention (CA) [22] enhances
the model’s representation of local and global features through the analysis of features at
various positions and their interplay. While it emphasizes the consideration of long-range
dependencies across spatial and channel dimensions, its intricate coordination-relationship
modeling leads to significant computational expenses and high complexity, complicating its
effective deployment in edge devices for mountain-fire monitoring. The ACmix attention
mechanism [23] enhances feature representation by considering both spatial and channel
information, and it captures global dependencies across dimensions effectively; however,
this approach is computationally complex and incurs relatively high operational costs.
Spatial Attention [24] emphasizes crucial spatial areas for the current task by weighting
each position differently on the feature map, yet it often overlooks the interactions and data
across various channels. Channel Attention [25] concentrates on the channel dimension
of the input feature maps, highlighting the channels crucial to the current task, but it may
overlook the importance of spatial positions.

The Convolutional Block Attention Module (CBAM) [26], which is extensively applied
in computer vision tasks, functions by incorporating both Channel- and Spatial Atten-
tion sub-modules, adaptively modifying the significance of various channels and spatial
positions within the convolutional feature map. This approach effectively diminishes
disturbances from background noise and unrelated data, boosting the model’s accuracy in
detecting flames and smoke, thereby enabling the network to more effectively concentrate
on crucial features and their spatial details. Moreover, the implementation of CBAM incurs
a minimal computational load, rendering it appropriate for use in resource-limited settings,
and this provides distinct benefits for real-time or near-real-time monitoring and response
to mountain fires. The CBAM attention module’s structure is depicted in Figure 5. Given
the specific characteristics of mountain-fire environments and the requirements for target
recognition, along with the discussed pros and cons and applicability of the attention
mechanisms, the integration of the CBAM attention mechanism is considered to improve
the model’s perception of mountain-fire characteristics.
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The structure of the CBAM attention module is shown in Figure 4. When the feature
map is input into the Channel Attention module (CAM), CAM first obtains the global
information of the input feature map on each channel through global-average-pooling
and global-max-pooling operations. Then, these two global-feature vectors are fed into
a shared multi-layer perceptron (MLP) to generate a channel-weight vector. Finally, the
weight vector is normalized to the range of {0, 1} through the Sigmoid-activation function
and multiplied element-wise with the original feature map to achieve feature calibration
in the channel dimension. This process can automatically identify channels that are more
important and informative for the current task and assign them higher weights while
suppressing redundant or irrelevant channels. Subsequently, the feature map is passed
through the Spatial Attention Module (SAM), which performs average pooling and max
pooling on the input feature map in the channel dimension to obtain two two-dimensional-
spatial-feature maps. These two spatial-feature maps are then concatenated in the channel
dimension and fed into a convolutional-layer- and Sigmoid-activation function to generate
a spatial-weight map. Finally, the spatial-weight map is multiplied element-wise with the
original feature map to achieve feature calibration in the spatial dimension. This process
can automatically identify spatial regions that are more important and informative for
the current task and assign them higher weights while suppressing the interference of
background noise and irrelevant regions.

The specific working procedure is as follows:
Initially, the feature map F undergoes two parallel global pooling operations—Global

Max Pooling (MaxPool) and Global Average Pooling (AvgPool)—to reduce its spatial di-
mensions (i.e., height and width) and obtains the global information of the input feature
map on each channel. Subsequently, the output results of the pooling layer are fed into a
two-layer multi-layer perceptron (MLP) to generate a channel-weight vector, which further
compresses the number of channels in the feature map. Following this process, the results
from the MLP are summed element-wise to obtain preliminary channel weights, which
are then processed through a Sigmoid(σ) function to derive the final channel weights. Fi-
nally, the weight information is multiplied element-wise with the original feature map F
to achieve feature calibration in the channel dimension, obtaining the Channel Attention-
enhanced feature map F′. This process can automatically identify channels that are most
important and informative for the current task and assign them high weights while sup-
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pressing redundant or irrelevant channels. The process is mathematically represented as
shown in Equation (4).

F′ = F ⊗ σ(MLP(AvgPool(F) + MaxPool(F))) (4)

After being enhanced by the Channel Attention mechanism, the feature map F′ is
further processed through global maximum pooling (MaxPool) and global average pooling
(AvgPool) layers based on the channel, resulting in two channel-dimension-reduced feature
maps. These compressed feature maps are then concatenated to form a combined feature
map, which subsequently undergoes processing by a 7 × 7 convolution layer. Ultimately,
spatial attention weights are obtained through the Sigmoid(σ) activation function. The
spatial attention weight is multiplied with the Channel Attention-enhanced feature map
F′ to achieve feature calibration in the spatial dimension, yielding the spatial attention-
enhanced feature map F′′ . This process can automatically identify spatial regions that are
most important and informative for the current task and assign them high weights while
suppressing the interference of background noise and irrelevant regions. The entire process
is described by Equation (5) as follows:

F′′ = F′ ⊗ σ
(

f 7⊗7([AvgPool
(

F′) ; MaxPool
(

F′)])) (5)

By cascading the Channel Attention module and the Spatial Attention Module, CBAM
can adaptively adjust the feature map in both channel and spatial dimensions, achieving
more refined and effective feature extraction. This attention mechanism has been proven to
effectively enhance the representational capabilities of convolutional neural networks [27].

Considering that the background environment of mountain-fire images is intertwined
with high-density flame targets, which results in complex image information, the Convolu-
tional Block Attention Module (CBAM) is introduced after the performance of feature-layer
concatenation in the neck of the YOLOx model to improve the utilization efficiency of target
features and reduce the interference of irrelevant information. This deepens the network’s
attention to the features of the image target region, strengthens the representation of the
signature appearance features of flames and smoke in channels and spatial dimensions,
and effectively suppresses the influence of background and noise factors. As a result, the
improved YOLOX model can focus on the mountain-fire targets, significantly improving
its detection performance and achieving precise target capture.

3.3. Feature Fusion: ASFF

Feature fusion is a crucial step in the object-detection process of YOLO models. The
backbone network of the model extracts feature maps with different spatial resolutions
and receptive fields, and these multi-scale feature maps are combined to achieve feature
fusion. This process leverages the different levels of semantic information and spatial
details contained in these feature maps to improve the model’s ability to detect objects of
varying sizes.

Currently, the most commonly used feature-fusion modules are based on the Feature
Pyramid Network (FPN) and the Path Aggregation Feature Pyramid Network (PAFPN),
which enhance the model’s perception of objects at different scales through top-down and
bottom-up information flow. However, these methods lack dynamic adaptation to scale
variations and target size diversity in the detection task, especially in small-object detection.
This static fusion strategy may lead to the loss of detailed feature information and has
inherent limitations. In contrast, the Adaptive Spatial Feature Fusion (ASFF) technique
addresses these issues with improvements [28]. ASFF introduces a learning-driven weight
allocation mechanism that dynamically adjusts the fusion ratio of different feature maps
based on the scales and complexity of the targets, prioritizing the feature information that
is more beneficial to the current detection task. This fusion mechanism not only enhances
the sensitivity to small objects but also provides more precise feature responses suitable for
handling large-scale variations.
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The working process of ASFF is as follows:
First, a convolutional layer is used to adjust the number of channels in each feature

map, resizing the feature maps of different scales to a uniform scale and ensuring that
they have the same number of channels. This guarantees scale invariance during feature
fusion and achieves feature-map encoding. This process helps the ASFF module to better
understand the contents of the feature maps and provides assistance for the subsequent
weight-mapping learning.

Next, the encoded feature maps are fed into the Spatial Attention Module. The Spatial
Attention Module typically consists of one or more convolutional layers, and its purpose
is to learn the importance of each location in the feature map. Through convolutional
operations, the Spatial Attention Module can consider both local and global information
of the feature map, capture the saliency and relevance of different regions, and generate
attention-weight-mapping values with the same sizes as the feature map’s α, β and γ. This
weight mapping represents the importance of the corresponding location’s features. The
generated attention weight mapping needs to be normalized to ensure that the weight
values are within the range of 0 to 1. The normalized weight mapping represents the
relative importance of each location’s features, with higher weight values indicating more
important feature information at the corresponding location.

Finally, the normalized weight mapping is applied to the corresponding feature map.
Through element-wise multiplication, the features are weighted and summed, which
completes the adaptive fusion process. This ultimately achieves the goal of enhancing
the features of important regions and suppressing the features of less important regions,
resulting in the fused feature map.

In order to demonstrate the feature-fusion process more clearly, we take ASFF-1 as
an example to illustrate. As shown in Figure 6, X1, X2, and X3 represent feature vectors of
feature maps of three scales outputted by the YOLOX path aggregation network, and we
define X2→1 and X3→1 as feature vectors in the feature map that have been adjusted from
the 2nd/3rd level to the 1st level. The feature vectors X1→1, X2→1, and X3→1 are multiplied
by their corresponding weight parameters α1, β1 and γ1, respectively, and then summed
to output the new feature vector Y1 that represents the feature output at the 1st level. The
fusion calculation process is illustrated in Formula (6).

Y1 = α1 · X1→1 + β1 · X2→1 + γ1 · X3→1 (6)

In the equation, α1 + β1 + γ1 = 1, α1, β1, γ1 ∈ 0, 1.
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Considering the advantages of ASFF in feature fusion, we replace the original PAFPN
with ASFF in the YOLOx object-detection framework, optimizing the model’s feature fusion
mechanism. This effectively increases the model’s utilization of small-scale object features
and improves the accuracy of small-object detection. By incorporating ASFF, YOLOX is
endowed with better generalization capabilities, enabling the model to adapt to more
diverse object shapes and scales, making it suitable for mountain-fire-target-detection
applications requiring high precision.

3.4. Improved Loss Function

The YOLOx loss function is typically composed of three elements: bounding box
confidence loss (Lobj), classification prediction loss (Lcls), and bounding-box-regression loss
(Lreg). Specifically, components Lobj and Lcls utilize the binary cross-entropy loss function,
while component Lreg employs the Intersection over Union (IoU) loss (LIoU) to gauge the
accuracy of predicted box positioning. Nonetheless, if there is no intersection between the
predicted and true boxes, resulting in an LIoU value of 0, then the network may become
untrainable. Additionally, a fixed LIoU value does not guarantee a unique overlap scenario
between the predicted and true boxes. Consequently, the current bounding-box-regression-
loss function inadequately represents the spatial relationship and positioning accuracy
between the predicted and true boxes. The calculations for IoU and IoU loss (LIoU) are
defined as follows:

RIoU =
|A ∩ B|
|A ∪ B| (7)

LIoU = − ln RIoU (8)

To mitigate the issues impacting model robustness and enhance the localization pre-
cision of the model’s predicted bounding boxes, this study adopts CIoU loss (LCloU) as a
substitute for the traditional bounding-box-regression-loss function [29]. Differing from
LIoU, LCloU evaluates not only the overlap between the predicted and actual boxes but
also considers the discrepancies in the center points’ distance and aspect ratios. During
training, LCloU methodically reduces the distance between the center points of the predicted
and actual boxes, thereby increasing their resemblance. This approach not only expedites
network training but also refines the localization accuracy of the predicted boxes, ensuring
that the model’s predicted outputs can adapt to the variable forms of targets present in fire
scenarios. The CIoU calculation formula is as follows:

LCloU = 1 − RIoU +
d2

c2 + αv (9)

α =
v

(1 − RIoU) + v
(10)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(11)

In these equations, d denotes the Euclidean distance between the center points of the
predicted and true boxes, c refers to the diagonal length of the smallest enclosing rectangle,
v quantifies the disparity in aspect ratios between the predicted and true boxes, and α
serves as the weighting coefficient for v. Furthermore, w and h specify the width and height
of the predicted box, respectively, while wgt and hgt represent the width and height of the
true box, respectively.

4. Experimental Results and Analysis
4.1. Experimental Dataset

The Southwest Forest Region, China’s second-largest natural forest area, is located in
the southwestern part of the country. It primarily encompasses the areas where Sichuan,
Yunnan, and Tibet intersect, including the mountainous regions of the Hengduan Moun-
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tains, the Great Bend of the Yarlung Zangbo River, and the southern foothills of the
Himalayas. The area has complex terrain, high terrain, and a changeable climate. Mountain
fires occur from time to time, posing a great threat to the ecological environment and the
development of human society.

This study targets forest mountain fire by utilizing an image dataset composed of
three main parts: first, video images that were collected from on-site inspections and rescue
operations during real mountain-fire incidents in parts of Sichuan, Yunnan, and other
southwestern regions since 2018; second, video images from outdoor experiments simulat-
ing mountain-fire environments; and third, supplementary data from public datasets (such
as FLAME and Alert Wildfire). Figure 7 presents example of images captured on-site.
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Figure 7. Examples of captured images.

Due to the randomness of mountain-fire occurrences and the variability in the en-
vironmental backgrounds of the collected images, this dataset encompasses a variety of
conditions, including bright backgrounds and nighttime settings as well as scenes resem-
bling fires and smoke. The specific distribution is as illustrated in Table 1.

Table 1. The specific numbers of collected images.

Application Scenario Quantity

Daylight 9080
Darkness 7737
Fire-like 1500

Smoke-like 2500

In order to facilitate model training, all images in the data set are manually annotated
with rectangular box annotations using the open source image annotation tool LABLEIMG,
and corresponding JSON annotation files are generated. During the annotation process,
images were categorized based on the actual conditions of fires into multiple targets,
small targets, obstructed targets, and fire- or smoke-like images, with their display effects
shown in Figure 8. Additionally, this experiment employs various data-augmentation
techniques such as cropping, rotating, flipping, scaling, and mosaic stitching to enhance the
dataset’s diversity. On this basis, a series of preprocessing steps are implemented to reduce
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irrelevant image information, decrease the model training’s computational requirements,
and improve the trained model’s generalization performance.
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The specific preprocessing steps are as follows:

1. Convert the input RGB images into single-channel grayscale images and apply Gaus-
sian blur for filtering.

2. Randomly change the height and width of input images, allowing the dimensions of
a single image to vary in multiple ratios.

3. Rotate the input images to several different angles.

Ultimately, after comparison and screening, a total of 16,817 mountain-fire-related
scene images were obtained, covering 43,632 annotated points. The prepared dataset was
divided into a training set (11,772 images), a validation set (3363 images), and a test set
(1682 images) in a ratio of 7:2:1, which were used to train, test, and validate the effectiveness
of the improved YOLOX model.

4.2. Experimental Environment

The model training was conducted on a Windows 10 operating system, with an
NVIDIA GeForce GTX 3060 GPU (NVIDIA, Sanata Clara, CA, USA). The deep learning
framework used was PyTorch 1.7.0, with Python version 3.8 and CUDA version 10.2. The
experiments utilized YOLOX-s pre-trained weights, with an initial learning rate of 0.01 and
a batch size of 64.

4.3. Evaluation Metrics

To provide a comprehensive and intuitive assessment of the improved network’s
performance, this study employs metrics commonly used in object-detection tasks to
evaluate the quality of model performance, such as precision, recall, F1 score, etc. The
formulas and their meanings are as follows:

• Precision: This is a fundamental metric for measuring the performance of a model in
classification tasks. It represents the ratio of correctly identified positive samples to all
positive samples detected by the model. The calculation process is shown in Equation (12):

P =
TP

TP + FP
(12)
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• Recall: Recall refers to the ratio of true positive samples correctly detected by the model
to all positive samples in the dataset. The calculation process is illustrated as follows:

R =
TP

TP + FN
(13)

• F1-score: The F1-score is the harmonic mean of precision and recall, which serves as
a comprehensive indicator of the model’s accuracy and robustness. The calculation
process for the F1-score is as follows:

F1 − score =
2 × Precision × Recall

Precision + Recall
(14)

• AP (Average Precision): AP represents the average of precision values across all levels
of recall for a specific category, reflecting the overall accuracy of the model’s detection
performance on that category. The calculation process is outlined as follows:

AP =
∫

P(R)dR (15)

• mAP (mean Average Precision): mAP is the mean of the AP (Average Precision) values
across all categories, and it offers a comprehensive measure of the model’s performance
across all classes. If there are N classes, then mAP can be calculated as follows:

mAP =
1
N

N

∑
i=1

APi (16)

• FPS: Frame Per Second is one of the key indicators for evaluating the real-time perfor-
mance of an algorithm, and it represents the number of frames an algorithm can pro-
cess per second. In real-time video image processing applications, FPS directly relates
to the system’s response speed and processing capability for continuous video streams
or image sequences. Conventional UAV monitoring platforms or fire-monitoring
towers equipped with image acquisition devices typically have a video frame rate
of 30 fps. For autonomous driving or high-speed-moving-target-capture scenarios,
the video fps can reach 60 fps. In engineering applications, an FPS ≥ 5 is generally
sufficient to meet the recognition criteria requirements [30]. To meet the target mon-
itoring requirements in real mountain-fire scenarios, this paper selects the higher
value among the aforementioned metrics. Specifically, when the algorithm processes
images with a resolution of 1200 × 800 and achieves an FPS ≥ 60, it satisfies the
real-time-target-detection standard.

• Model size: Model size refers to the amount of storage space occupied by the YOLO
model when stored and deployed, which is usually measured in megabytes (MB) or
gigabytes (GB). It includes the model’s parameters (such as weights and biases) as
well as the additional storage required for the model structure. The calculation process
for model size is as follows:

ModelSize =
N

∑
i=1

(Pi × Si) (17)

• N represents the total number of parameters in the model, Pi represents the number of
ith parameter, and Si represents the size of the ith parameter, usually in megabytes.
For example, for a YOLO model with M convolutional layers and K fully connected
layers, the number of parameters can be expressed as:

N =
M

∑
j=1

(Cinj × Coutj × Kj × Kj) +
K

∑
k=1

(Wk × Hk) (18)
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• Cinj and Coutj represent the input and output channel numbers of the jth convolutional
layer, respectively. Kj represents the convolution kernel size of the jth convolution
layer, and Wk and Hk represent the width and height of the weight matrix of the kth
fully connected layer, respectively.

Lightweight models are specifically designed and constructed as compact models that
take into account model size and computational efficiency from the very beginning. These
models typically have smaller numbers of parameters and simpler network structures to
adapt to resource-constrained environments and real-time application requirements. In
order to more precisely define the scope of lightweight models, this paper collects and
analyzes the model sizes and lightweight definitions of the YOLO series models, as shown
in Table 2. Through statistical analysis, it is found that most image recognition models with
a model size of less than 50 MB are defined as lightweight models. Although the improved
YOLOX model in this paper has a slightly larger model size and computational complex-
ity when compared to the traditional YOLOX model that does not achieve lightweight
improvement, given the early detection requirements of wildfire targets, this paper aims
to maintain the lightweight-model category while improving the detection accuracy and
real-time performance of the model to enable wildfire inspections using unmanned aerial
vehicles (UAVs).

Table 2. Model size comparisons.

Model Model
Size

Classified as
Lightweight

Model
Model Model

Size

Classified as
Lightweight

Model

YOLOv1 753 MB No YOLOv6-N [31] 4.3 MB Yes
YOLOv2 193 MB No YOLOv6-S [31] 15.0 MB Yes

Tiny YOLOv2 [32] 60 MB Yes YOLOv6-M [31] 34.9 MB Yes
YOLOv3 246 MB No YOLOv6-L 58.5 MB No

Tiny YOLOv3 [33,34] 34 MB Yes YOLOv6-L-ReLU 58.5 MB No
YOLOv4 245 MB No YOLOv7-Tiny [35] 6.2 MB Yes

YOLOv4-Tiny [36,37] 23 MB Yes YOLOv7 [35] 36.9 MB Yes
YOLOv5s [38,39] 14 MB Yes YOLOv7-X 71.3 MB No
YOLOv5m [38,39] 42 MB Yes YOLOv7-W6 70.8 MB No

YOLOv5l 90 MB No YOLOv7-E6 97.2 MB No
YOLOv5x 168 MB No YOLOv7-D6 133.4 MB No

YOLOX-Nano [40,41] 0.91 MB Yes YOLOv7-E6E 151.7 MB No
YOLOX-Tiny [40–42] 5.06 MB Yes YOLOv8n [43,44] 6.1 MB Yes
YOLOX-S [40–42,45] 9.0 MB Yes YOLOv8s [43,44,46] 21.6 MB Yes

YOLOX-M [40–42,45,47] 25.3 MB Yes YOLOv8m 50.7 MB No
YOLOX-L 54.2 MB No YOLOv8l 104.0 MB No
YOLOX-X 99.1 MB No YOLOv8x 218.0 MB No

4.4. Results Analysis
4.4.1. Comparison of Models’ Loss Curves

To verify the effectiveness of the improved YOLOX model for mountain-fire detec-
tion, an analysis and comparison of the YOLOX network’s loss curves before and after
improvement were conducted, with the results depicted in Figure 9. By comparing the
overall loss-curve changes, it can be observed that the improved network surpasses the
original network in overall convergence speed. Particularly during the unfreezing training
phase, the rate of loss reduction accelerates, tending towards a lower stable value with
smaller fluctuations in the later stages. This indicates that the training of the improved
YOLOX model is more effective, achieving lower error levels more quickly and with better
generalization capabilities and stability. These findings validate the effectiveness of the
proposed improvements.
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Figure 9. Comparison of models’ loss curves.

Figure 10 illustrates the PR curve for the enhanced YOLOX model in fire-smoke-
detection tasks, intuitively presenting the accuracy trends at various recall levels. For the
Fire category, the model demonstrates outstanding performance throughout the entire
recall spectrum. Notably, even at elevated recall levels (e.g., above 0.8), the model sustains
high accuracy (approximately 0.95), indicating that it maintains effective control over false
positives while detecting most real fire events, thus significantly reducing false alarms.
This feature is imperative for fire early warning systems as it enables accurate detection
of fire incidents promptly to secure valuable time for emergency responses. In the Smoke
category, while the model’s detection efficacy marginally trails that of the Fire category,
the accuracy remains approximately 0.8 at higher recall rates (e.g., above 0.7), signaling
robust smoke-detection capabilities. However, with further increased recall, the Smoke
category’s accuracy experiences a decline, likely due to complex environmental factors and
the inherent visual diversity and ambiguity of smoke mixed with fog, which complicates
detection efforts. Nonetheless, the model showcases superior performance in smoke-
detection tasks, affirming the efficacy of the enhancement method.
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Notably, at lower recall rates (e.g., below 0.5), the precision curves of both the Fire
and Smoke categories closely align, despite minor fluctuations, and yet they remain at an
exceptionally high level (nearly 1.0). This suggests that at elevated confidence thresholds
the model exhibits robust discriminative capabilities for identifying fire and smoke targets,
yielding highly dependable detection outcomes. However, this also suggests the potential
for overlooking certain fire-smoke targets that are hard to detect. Consequently, in practical
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applications, detection thresholds can be dynamically adjusted based on specific requirements,
striking a balance between precision and recall to optimize the model’s overall performance.

4.4.2. Ablation Study

In order to more clearly analyze the impacts of each improvement module on the
model’s detection performance, this paper firstly designs comparative experiments to vali-
date the effectiveness of the CSP-ML multi-level-feature-extraction structure in enhancing
the feature-extraction efforts in complex fire environments, and secondly creates four sets
of ablation experiments and conducts validation experiments for 200 rounds of iterations
with the same parameter settings. The results obtained are shown below:

Validation of the CSP-ML Multi-Level-Feature-Extraction Structure

Since the CSP-ML module focuses on extracting deep-level feature information, which
hinders direct comparison, this study evaluates three distinct backbone network configu-
rations of the YOLOX model to infer the CSP-ML module’s efficacy indirectly. Evaluated
models include the original YOLOX model based on DarkNet-53, the YOLOX model utilizing
ShuffleNetv2, and the YOLOX model enhanced by the CSP-ML on DarkNet-53. Comparison
results, depicted in Table 3, demonstrate that the CSP-ML enhanced model outperforms the
other two in terms of accuracy and recall. Notably, the CSP-ML enhanced model’s precision
reaches 94.21%, surpassing the original DarkNet-53 model by 0.32 percentage points and
exceeding the ShuffleNetv2 model by a substantial 6.56 percentage points. This indicates
the CSP-ML-enhanced YOLOX model’s superior ability to accurately identify fire targets in
images, minimizing background misclassifications. Furthermore, the model’s recall rate of
93.97%, which is 0.28% greater than that of the traditional model and 8.63 percentage points
greater than that of ShuffleNetv2, underscores CSP-ML’s role in enhancing detection accuracy
while maintaining comprehensive detection.

Table 3. Comparison results for multi-level-feature-extraction structures.

Model Backbone Precision (%) Recall (%) mAP0.5 (%) F1 Score (%) FPS/Hz

YOLOX DarkNet-53 93.89 93.69 89.9 93.97 117
YOLOX ShuffleNetv2 87.65 85.34 76.58 78.96 224

YOLOX Improved CSP-ML in
DarkNet-53 94.21 93.97 91.1 94.51 189

An analysis of the model’s mAP0.5 values reveals that the CSP-ML-enhanced model
reached an mAP0.5 of 91.1%, marking an increase of 1.2 percentage points over the con-
ventional model and a substantial 14.52 percentage points over the model utilizing the
ShuffleNetv2 backbone network. This mAP enhancement is attributed to the multi-level
structure and grouped convolutions incorporated by CSP-ML into the feature-extraction
process, enabling the model to more effectively capture scale variations and detailed in-
formation of fire targets, thus achieving enhanced precision across various recall levels.
This further validates the significant impact of CSP-ML in enhancing the model’s overall
detection performance.

Furthermore, the F1 score—acting as the harmonic mean of precision and recall—
encompasses both accuracy and comprehensiveness. The F1 score of the CSP-ML enhanced
model achieved 94.51%, marking an increase of 0.54 percentage points over DarkNet-53
and a significant 15.55 percentage points over ShuffleNetv2, further substantiating the
superiority of the enhancement method in striking a balance between precision and recall.
This improvement in F1 score indicates that CSP-ML facilitates a more balanced strategy
in managing false alarms and missed detections, which is pivotal for fire early warning
systems as it enables a minimization of false positives and negatives and thereby enhances
system reliability.
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Finally, regarding inference speed, the CSP-ML-enhanced model achieved second
place with an inference speed of 189 FPS; although it is 35 FPS behind ShuffleNetv2, it
significantly outpaces the original DarkNet-53 model by 72 FPS. This demonstrates that
CSP-ML, while substantially enhancing detection performance, does not introduce undue
computational overhead, realizing an optimal balance between performance and efficiency.
This efficient inference rate guarantees applicability in scenarios demanding high real-time
performance, which underpins timely responses to fire emergencies.

In conclusion, evaluating the performance of various backbone network architectures
indirectly illustrates the improved CSP-ML module’s prowess in processing deep-level
feature information. While improvements at the data level are modest, they underscore the
benefits of integrating the enhanced CSP-ML multi-level-feature-extraction network into
the YOLOX model for mountain-fire-image-detection tasks. Future enhancements at the
data level, combined with other improvements, have the potential to significantly elevate
overall performance, affirming the effectiveness of comprehensive model optimization [48].

Analysis of Ablation Test Results

The curve shown in Figure 11 shows the trend of the mAP values after each added
module is added, including mAP@50 and mAP@50_95. It is observable that the mAP
values experience varying degrees of improvement with the successive addition of different
modules, with the mAP values continuing to rise in the final unfreezing phase. From the
close-up view, compared to the original YOLOX model, the improved network proposed in
this study demonstrates more pronounced values for both mAP@50 and mAP@50_95, and
the curves exhibit better convergence within the iterative cycles.
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integration of each module.

Additionally, Table 4 offers an insightful view into how the model’s performance
evolves with the integration of different modules. With the original YOLOX model serving
as a benchmark—featuring an mAP@50 of 89.3%, mAP@50_95 of 81.64%, FPS at 117 Hz, and
parameter count at 8.94 M—the integration of the CSP-ML Multi-Level-Feature-Extraction
Module into the model’s backbone network led to increases in mAP@50 and mAP@50_95 by
1.2 and 0.11 percentage points, respectively. This demonstrates CSP-ML’s enhanced capabil-
ity to capture multi-scale features within fire images, thus improving the model’s detection
accuracy for fire targets of diverse sizes. While the inclusion of CSP-ML raised the model’s
parameter volume to 14.38 M, it notably enhanced overall performance, underscoring the
significance of multi-level features in fire-detection tasks.
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Table 4. Ablation study results.

Network mAP@50 (%) mAP@50_95 (%) FPS/Hz Parameters/M

Original YOLOX 89.9 81.64 117 8.94
CSP-ML 91.1 81.75 189 14.38

CSP-ML + CBAM 91.2 82.37 176 14.40
CSP-ML + CBAM + ASFF 93.7 82.45 155 14.48

Improved YOLOX 96.3 83.81 155 14.48

Upon this foundation, further integrating the CBAM attention mechanism led to
increments of 0.1 and 0.62 percentage points in mAP@50 and mAP@50_95, respectively.
These findings illustrate that CBAM, through adaptive adjustment of feature weights across
spatial and channel dimensions, empowers the model to concentrate more intensely on
significant regions and critical features of fire targets, mitigating background interference
and enhancing detection precision. Remarkably, the CBAM module markedly enhances
performance without a substantial increase in parameter count, highlighting its strengths
in feature optimization. Although the incorporation of CBAM led to a minor reduction in
FPS (to 176 Hz), it remains significantly above the original model, satisfying the model’s
real-time performance criteria (exceeding 60 Hz).

Furthermore, the incorporation of the ASFF adaptive-feature-fusion module led to
additional increases of 2.5 and 0.08 percentage points in the improved YOLOX model’s
mAP@50 and mAP@50_95, respectively. This suggests that ASFF has the capability to
adaptively modulate fusion weights in response to the significance of features across
different scales, enabling a heightened focus on pertinent features within images, thereby
augmenting detection precision. While the integration of ASFF marginally elevated the
model’s complexity to 14.48 M, the significant performance gains achieved, along with
the maintenance of a high FPS rate at 155 Hz, illustrate a harmonious balance between
accuracy and speed.

Ultimately, substituting the loss function with the CIoU loss function led to fur-
ther increments in the improved YOLOX model’s mAP@50 and mAP@50_95 by 2.6 and
1.36 percentage points, respectively, achieving an outstanding level of 96.3% and 83.81%.
These findings demonstrate that the CIoU loss function, through its consideration of
overlapping areas, center distances, and aspect ratios, offers more nuanced and detailed
guidance for bounding box optimization, effectively hastening model convergence and
augmenting detection accuracy. Furthermore, switching to the CIoU loss function did not
augment the model’s parameter count or computational burden, thereby preserving the
inference speed. This unequivocally underscores the CIoU loss function’s advantages in
fine-grained bounding box optimization.

In conclusion, the integration of efficient feature-extraction and fusion mechanisms,
including ASFF, CBAM, and CSP-ML, as well as the optimization of the loss function, has
led to significant enhancements in the YOLOX model’s performance for mountain-fire-
image-detection tasks. Although these enhancements marginally increased the model’s size
and computational complexity, they preserved its status as a lightweight model. The find-
ings demonstrate that the enhanced YOLOX model has struck an optimal balance among
accuracy, efficiency, and embeddability, satisfying the requirements for high precision,
rapid response, and deployment ease in initial wildfire-detection efforts. This underscores
its potential for real-world application in mountain-fire surveillance, such as facilitating
UAV-based wildfire patrols.

4.4.3. Comparative Experiment

To further validate the enhanced performance of the improved YOLOX network in
detecting mountain fires, representative single-stage-object-detection models (SSD and
YOLOv5) and a two-stage-object-detection model (Faster R-CNN) were selected for com-
parative experiments. The results are presented in Table 5.
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Table 5. Comparative experiment results.

Network mAP (%) Precision (%) Recall (%) F1 Score FPS/Hz Parameters/M Gflops/G

Original YOLOX 89.9 93.89 93.69 93.97 117 8.94 26.8
Faster R-CNN 62.8 46.2 72.47 56.33 65 137 185.1

SSD 88.6 78.38 93.75 85.33 72 26.29 140.9
YOLOv5 89.3 84.91 91.33 81 109 7.1 16.5

Improved YOLOX 96.3 95.33 94.94 94.13 155 14.4 35.2

In conclusion, Table 5 reveals that the enhanced YOLOX model achieved an mAP of
96.3%, marking a 6.4% increase over the original YOLOX model (89.9%). This indicates that
the improved model possesses stronger capabilities for detecting mountain-fire images and
accurately identifying fire regions. Furthermore, the refined YOLOX model also demon-
strates significant improvements in precision and recall rates. This underscores the model’s
enhanced accuracy in predicting positive classes (fire regions) with a lower probability of
false positives. This significantly reduces the likelihood of missed detections. Additionally,
the detection speed of the enhanced YOLOX model significantly increased by 32.5% com-
pared to the traditional YOLOX model, achieving 155 Hz. Compared to the Faster R-CNN
model, the enhanced YOLOX exhibits significant enhancements across all performance
metrics. Although Faster R-CNN shows better performance in recall rates, its precision
and mAP are considerably lower than those of the enhanced YOLOX. Furthermore, Faster
R-CNN has a relatively larger parameter count, lower real-time detection efficiency, and sig-
nificantly higher computational complexity than other models. This renders it less practical
in resource-constrained environments. Although the SSD model surpasses Faster R-CNN in
terms of model size and computational complexity, its performance in mAP, precision, and
recall rates falls below that of the enhanced YOLOX. YOLOv5 and the traditional YOLOX
are closely matched in mAP, yet YOLOv5 falls short of the enhanced YOLOX in precision,
recall rates, F1 scores, and real-time detection capabilities. However, YOLOv5 maintains a
relatively lower parameter count and computational complexity, indicating higher detection
efficiency at the expense of some detection performance. Although the computational com-
plexity of the enhanced YOLOX model is slightly higher than that of the original YOLOX
and YOLOv5 models, it remains significantly lower than that of Faster R-CNN and SSD
models, making it well-suited for real-time mountain-fire-detection scenarios.

In summary, the enhanced YOLOX model exhibits exceptional performance in
mountain-fire-image-detection tasks, outperforming comparative models in metrics such
as mAP, precision, recall rates, F1 scores, and FPS. Although its model parameters and com-
putational complexity are slightly higher than those of the original YOLOX and YOLOv5,
it remains within the lightweight category, and the significant performance improvements
attest to the efficacy of the modifications. While Faster R-CNN boasts a higher recall rate,
its lower precision and substantial resource consumption limit its feasibility in practical
applications. SSD and YOLOv5 perform well in terms of efficiency but fall short of the
improved YOLOX model in precision and recall rates. Overall, the enhanced YOLOX model
provides a well-balanced solution for mountain-fire detection, achieving high-precision
target detection at a reasonable computational cost. This is crucial for the rapid and effective
response and management of mountain fires. Future research could further explore how
to reduce the model’s parameters and computational complexity while maintaining or
even enhancing detection performance, to better adapt to resource-constrained practical
application scenarios.

4.4.4. Comparison of Scene Applications

To more effectively illustrate the superiority of the enhanced YOLOX algorithm in
mountain-fire detection, four sets of images from diverse scenarios were selected, including
multiple-object scenes, complex dim scenes, complex bright scenes, and faint small-object
scenes. Using five models, namely traditional YOLOX, Faster R-CNN, SSD, YOLOv5, and the
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enhanced YOLOX for the detection of mountain-fire targets in images, as demonstrated in
Figure 12, the detection results of each algorithm include identification of flames and smoke,
along with corresponding confidence scores, presented in the form of bounding boxes.
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Initially, regarding multi-object mountain-fire-detection scenarios, the enhanced
YOLOX model accurately detected all fire targets, including faint targets partially obscured
by smoke, with high locational precision and a low rate of false alarms, demonstrating
superior detection performance. In contrast, while the original YOLOX and YOLOv5
models could also detect most targets, they exhibited certain instances of missed detections.
Faster R-CNN and SSD, however, significantly missed several targets, and showed broader
target marking ranges, indicating poor detection performance. This suggests that the
enhanced YOLOX model has stronger feature-extraction and target-association capabilities
when handling multi-object complex scenes. Secondly, in the context of complex, dim fire
backgrounds, all five models were able to effectively identify small fire points. Compared
to the enhanced YOLOX model, the traditional YOLOX, Faster R-CNN, and SSD had larger
recognition ranges with unclear boundaries. Although YOLOv5 could accurately locate
targets, it had relatively lower confidence scores, and only the enhanced YOLOX model
effectively captured tiny fire points on the image’s left side. Thirdly, for complex, bright
fire scenes, the traditional YOLOX model lacked the ability to discern light smoke accom-
panying wildfires, which is failed to detect. In complex backgrounds with small fire points
(including jungle coverage and light smoke), only the enhanced YOLOX model achieved
effective recognition, while other models failed to capture them. Lastly, in scenarios of
faint small-object mountain fires, all five models achieved effective detection of fire-smoke
areas, with the enhanced YOLOX model maintaining relatively high confidence levels.
For small fire areas, the traditional YOLOX, Faster R-CNN, and SSD models performed
poorly not effectively marking small fires. YOLOv5 identified some small fire points, but
compared to the enhanced YOLOX model it still had broader marking boundaries and
reduced precision.

The comparative analysis demonstrates that the bounding boxes of the enhanced
YOLOX model align more precisely with flames and smoke regions, thereby reducing the
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incorrect identification of non-fire areas. In contrast, other models, such as Faster R-CNN
and SSD, produced broader or misaligned bounding boxes under complex conditions,
which could lead to delayed or inaccurate responses to fires. Moreover, the enhanced
YOLOX model consistently exhibited higher confidence scores than did the other models,
indicating its superior reliability and an effective reduction in numbers of false-positive
and false-negative results in practical applications. It is particularly noteworthy that the
enhanced YOLOX model demonstrated superior performance in detecting faint small-object
fire regions, which was exemplified in complex, dim backgrounds where only the enhanced
YOLOX successfully marked small fire points that would facilitate early detection, which is
crucial for preventing the spread of fires, while other models failed to detect such incidents.
Overall, the enhanced YOLOX model surpasses the other four models in the accuracy of
bounding box placement, consistency of confidence scores, and sensitivity to small-scale
fires, showcasing a more pronounced improvement in comprehensive performance than is
seen for the other models.

5. Discussion

1. Discussion of results

The autumn and winter seasons are periods of high frequency for mountain fires.
Early warning and real-time detection of mountain fires are among the most crucial aspects
of forest-protection efforts. This study introduces a lightweight, small-target-detection
algorithm for mountain fires based on the improved YOLOX network and utilizing drone
platforms to achieve rapid identification of wildfires. Ablation experiments reveal that
optimizations to various modules significantly enhanced algorithm performance, affirming
the effectiveness of these improvements. Through horizontal comparisons with models,
including the original YOLOX, Faster R-CNN, SSD, and YOLOv5 models, the superior-
ity of the improved YOLOX model in terms of accuracy and real-time performance in
mountain-fire detection is validated. Comparisons of application-detection results in com-
plex scenes demonstrate the advantages of the improved YOLOX in feature extraction,
target classification, and background noise suppression.

2. Limitation analysis

Although the improved YOLOX model exhibits outstanding detection performance in
the mountain-fire-detection task, it still has certain limitations and room for improvement.
Firstly, the model utilizes a specific mountain-fire-image dataset during the training and
testing process, and its generalization ability and adaptability need further validation. In
the future, more mountain-fire-image data from different scenes and environments will be
collected and tested to comprehensively evaluate the robustness of the improved model.
Secondly, for complex mountain-fire recognition in areas with cloud and fog coverage
in highlands or in dense forests with severe tree occlusion, the improved model still has
some room for enhancement. Lastly, the mountain-fire-detection task not only requires
the accurate localization of mountain-fire targets but it also necessitates the analysis and
prediction of the severity and spreading trends of mountain fires. In the future, we will
consider combining the improved YOLOX model with other techniques (such as semantic
segmentation and trajectory prediction) to achieve more comprehensive and intelligent
mountain-fire monitoring and early warning systems.

6. Conclusions

To achieve accurate and rapid identification of forest fires, this paper proposes a multi-
scale fire-detection algorithm based on the improved YOLOX network that effectively
addresses the issue of severe external interference in mountain-fire detection, which often
leads to false alarms and missed detections. The main contributions of this study include
the following achievements:

• Design of a multi-level-feature-extraction module, (CSP-ML): A novel multi-level-
feature-extraction module, CSP-ML, was designed and integrated with the CBAM
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attention mechanism within the neck network. This effectively reduces background
noise and enhances the detection accuracy of small-target-fire areas. Additionally, an
adaptive feature-fusion module was introduced that utilizes the CIoU loss function to
boost the network’s feature-learning capability and mitigate issues such as the exces-
sive optimization of negative samples and poor gradient-descent direction. Compared
to the traditional YOLOX network, this resulted in improvements of 6.4% in mAP@50
and 2.17% in mAP@50_95.

• Multi-scenario application testing: In tests involving multiple fire scenarios, such as
multi-target flames and small-target flames, the improved YOLOX network demon-
strated higher detection accuracy and stronger anti-interference capabilities than deep
learning algorithms like Faster R-CNN, SSD, and YOLOv5. It proved to be suitable
for detecting various forms of fire information in complex forest- and mountain-fire
scenes, showcasing its strong practicality and high application value.

These advancements underline the potential of the improved YOLOX network in
enhancing the efficiency and reliability of forest-fire-monitoring systems. By leveraging
cutting-edge techniques in feature-extraction and attention mechanisms, along with the
optimization of loss functions, the proposed solution offers a significant step forward in
the intelligent detection of forest fires, which will contribute to more effective disaster-
prevention and -response strategies.
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