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Abstract: In practical radar systems, changes in the target aspect toward the radar will result in
glint noise disturbances in the measurement data. The glint noise has heavy-tailed characteristics
and cannot be perfectly modeled by the Gaussian distribution widely used in conventional tracking
algorithms. In this article, we investigate the challenging problem of tracking a time-varying number
of maneuvering targets in the context of glint noise with unknown statistics. By assuming a set of
models for the possible motion modes of each single-target hypothesis and leveraging the multivariate
Laplace distribution to model measurement noise, we propose a robust interacting multi-model multi-
Bernoulli mixture filter based on the variational Bayesian method. Within this filter, the unknown
noise statistics are adaptively learned while filtering and the predictive likelihood is approximately
calculated by means of the variational lower bound. The effectiveness and superiority of our proposed
filter is verified via computer simulations.

Keywords: variational Bayesian; multivariate Laplace distribution; glint noise; multi-Bernoulli
mixture filter; interacting multi-model algorithm; maneuvering target tracking

1. Introduction

The aim of multitarget tracking (MTT) lies in estimating the kinematic state
(e.g., position, velocity, acceleration) of each target within the region under surveillance
from measurement data provided by sensing devices (e.g., radar, sonar, microphone) [1].
Often, the number of targets may change over time as a result of the stochastic births,
deaths, and spawns of targets. Moreover, merely part of the available measurements
originates from targets, and the association maps between targets and measurements are
not clear. The random finite set (RFS) [2] offers a natural formulation of the multitarget
states and multitarget measurements. Using RFS modeling, the probability hypothesis
density (PHD) filter [3], cardinalized PHD (CPHD) filter [4], and multi-Bernoulli filters
[2,5] were developed as tractable MTT algorithms. Recently, driven by the development
of multitarget conjugate priors, the advanced generalized labeled multi-Bernoulli (GLMB)
filter [6], multi-Bernoulli mixture (MBM) filter [7], and Poisson MBM (PMBM) filter [8]
were reported by researchers, which admit closed-form Bayesian recursion without certain
approximations necessary in the PHD, CPHD, and multi-Bernoulli filters. By approximat-
ing a GLMB with a single term, an efficient alternative to the GLMB filter named the labeled
multi-Bernoulli (LMB) filter [9] was proposed to make compromise between complexity
and accuracy. Performance evaluations of the GLMB, PMBM, MBM, and LMB filters can be
found in [10].

Most MTT algorithms assume that all targets follow the same dynamic model through-
out. However, this assumption is too ideal in practice. For example, in a battlefield
environment, a fighter jet has to carry out a series of tactical maneuvers to avoid being
locked on by enemy weapon systems. In this case, these algorithms demonstrate poor
performance. The jump Markov system or multi-model (MM) approach [11] has proven to
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be effective for maneuvering target tracking, in which the target can switch among a set of
dynamic models in a Markovian fashion. By applying the MM approach in conjunction
with RFS-based multitarget filters, numerous maneuvering MTT (MMTT) algorithms have
been reported in [12–20]. A fundamental premise of these algorithms is that the measure-
ment noise is Gaussian distributed with known statistics. However, this is not necessarily
the case in practical radar systems, where changes in the target aspect with respect to
the radar can cause the apparent center of radar reflections to wander significantly. The
random wandering of the apparent radar reflecting center dramatically increases the radar
cross-section fluctuations [21–25], resulting in significant glint noise. It was found that the
glint noise has a heavy-tailed probability density function (PDF) and cannot be perfectly
modeled by the Gaussian distribution. In general, a priori knowledge of the glint noise
statistics is not available.

The common approach for modeling glint noise is to exploit a type of distribution or
the combination of multiple distributions. In [26], the Student’s t (ST) distribution was used
to model glint noise, whereas the mixture of Gaussian distributions was used in [27]. In [28],
the glint noise was modeled by the mixture of a Gaussian distribution and a Laplacian
distribution. In particular, the ST distribution is immune to measurement outliers and
has been widely used in RFS-based MTT [29–31], which can accurately characterize the
tailed behavior by carefully selecting its degree of freedom (DOF) parameter. Based on
the ST distribution and variational Bayesian (VB) method [32], a robust MMTT algorithm
was proposed under the marginal distribution Bayes (MDB) filtering framework [33]. The
resulting ST-MM-MDB filter can adaptively learn the unknown scale matrix and DOF
parameter of the ST distribution while filtering. In addition, the ST-MM-LMB filter was
also reported in [34], which adopts a similar idea to estimate unknown noise statistics.
However, as indicated in [35], these ST-based filters cannot estimate the DOF parameter
accurately by means of limited measurement samples. To mitigate this drawback, attempts
have been made to model glint noise using the multivariate Laplace (ML) distribution [36],
which avoids the selection of the DOF parameter. A related Kalman filter was presented
in [37], which shows higher estimation accuracy than the existing ST-based counterpart [38].
Extensions and improvements of this filter were reported in [39,40]. These works, however,
are limited to the case where there is only a single non-maneuvering target to be tracked
using one noisy measurement per scan. When multiple maneuvering targets are involved,
a series of complicated factors, e.g., the stochastic appearances and disappearances of
targets, unknown target–measurement association, misdetection (a target is detected by
radar with a certain probability), and false alarms (spurious measurements not originating
from any target) need to be systematically considered. It is infeasible to extend the single
non-maneuvering case to the maneuvering multitarget case straightforwardly.

Motivated by the above discussions, in this article, we propose a robust MMTT
algorithm in the context of glint measurement noise based on the MBM filter and ML
distribution. Specifically, we assume a set of models for each Bernoulli component (BC) in
the MBM representing a single-target hypothesis so as to capture the real-time maneuvers
of targets. Moreover, we employed the ML distribution to model measurement noise
and formulate the corresponding likelihood function as a Gaussian scale mixture form,
leading to a hierarchical measurement model. Based on the MM assumption and such a
hierarchical model, we derive a robust MBM filter for maneuvering targets using strategies
from the interacting MM (IMM) algorithm (a celebrated MM approach with high cost
effectiveness) [41], in which the unknown noise statistics are adaptively estimated by means
of the VB method accompanied by IMM-MBM filtering. Since the involved predictive
likelihood cannot be exactly calculated, we make use of the variational lower bound to
obtain an approximate alternative. To summarize, the main contributions of this article are
as follows:

(1) Based on ML modeling and the VB method, a robust IMM-MBM filter is proposed
to adaptively learn unknown glint noise statistics while filtering.
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(2) A series of numerical simulations is performed to test the robustness of the proposed
algorithm and compare its performance with the existing solutions.

The remainder of this article is organized as follows. Section 2 provides the necessary
background knowledge. Section 3 reviews the standard (single-model) MBM filter and its
Gaussian implementation. Section 4 details the robust MMTT algorithm proposed in this
article. Section 5 presents the simulation results. Section 6 gives closing remarks.

2. Background

This section gives the notations used throughout this article and reviews several
kinds of RFSs relevant to the development of our key results, as well as the ST and
ML distributions.

2.1. Notation

In this article, tr(·) and det(·) denote the trace and determinant of a matrix, respec-
tively; E[·] denotes the expectation operator; N(·; m, P) denotes the Gaussian PDF with
mean vector m and covariance matrix P; IW(·; Ψ, ν) denotes the inverse Wishart (IW) PDF
with scale matrix Ψ and DOF parameter ν; GIG(·; a, b, c) denotes the generalized inverse
Gaussian (GIG) PDF with shape parameters a, b, and c; E(·; λ) denotes the exponential
PDF with rate parameter λ; the superscripts −1 and ⊤ denote the inverse operation and
transpose operation, respectively; exp denotes the natural exponential; log denotes the
natural logarithm.

2.2. RFS Statistics

An RFS is essentially a set-valued random variable of which both the cardinality
(number of elements) and the elements are random. Akin to conventional random variables,
the randomness of an RFS is entirely described by its probability density. Several kinds of
RFSs of interest are given next.

A Poisson RFS X is an RFS with the cardinality |X| being Poisson distributed with
mean N̄ =

∫
D(x)dx, where D(x) denotes the intensity, also known as the PHD, and the

elements x ∈ X are independent and identically distributed in light of the spatial density
D(x)/N̄ for any finite cardinality. The probability density of the Poisson RFS X is given
by [2] (pp. 366)

f p(X) = exp
(
−
∫

D(x)dx
)

∏
x∈X

D(x). (1)

Clearly, the Poisson RFS density f p(X) is entirely determined by the intensity D(x).
A Bernoulli RFS X can either be empty, i.e., X = ∅, with probability 1 − r, or be

composed of a single element x, i.e., X = {x}, with probability r. Conditional on being
nonempty, x is distributed according to the spatial density p. The probability density of the
Bernoulli RFS X takes the form [2] (pp. 368)

f b(X) =

{
1 − r, X = ∅,
rp(x), X = {x}.

(2)

A multi-Bernoulli (MB) RFS X is a union of a fixed number of independent Bernoulli
RFSs, i.e., X = ⊎i∈IXi, where ⊎ denotes the disjoint union, I is an index set for BCs in the
MB RFS, and Xi denotes the i-th BC. The probability density of the MB RFS X is given by [7]

f mb(X) = ∑
⊎i∈IXi=X

∏
i∈I

f i(Xi). (3)
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An MBM RFS X is a normalized and weighted sum of MB RFSs, whose probability
density is given by [7]

f mbm(X) ∝ ∑
j∈J

∑
⊎

i∈Ij Xi=X
∏
i∈Ij

wi,j f i,j(Xi), (4)

where ∝ stands for proportionality, J is the index set for MB components in the MBM, Ij is
the index set for BCs in the j-th MB RFS, and wi,j and f i,j(Xi) are the respective weight and
probability density of the i-th BC in the j-th MB RFS.

2.3. ST and ML Distributions

The ST distribution is widely used to model glint noise. For a d-dimensional ST
distributed random variable x, its PDF is given by [42]

f st(x) =
Γ( ν+2

2 )

Γ( ν
2 )(νπ)

d
2
√

det(P)

(
1 +

∆2

ν

)− ν+2
2

, (5)

where Γ(·) denotes the Gamma function, ν denotes the DOF parameter,
∆2 = (x − m)⊤P−1(x − m), m denotes the mean vector, and P denotes the scale ma-
trix. Note that the covariance matrix of x is ν

ν−2 P (ν > 2) instead of P. The tailed behavior
of the ST PDF f st(x) is dominated by the DOF parameter ν. More specifically, the smaller
the DOF parameter ν, the heavier the tail, and vice versa. When the DOF parameter ν tends
to infinity, the ST PDF f st(x) becomes a Gaussian PDF.

When exact statistics of glint noise are not available, robust ST-based Kalman filters [43,44]
have been proposed to jointly estimate the state vector and unknown noise parameters.
However, as indicated in [35], these filters cannot estimate the DOF parameter accurately
by means of limited measurement samples. Such a drawback motivates the employment of
the ML distribution to model glint noise, which gets rid of the intractable DOF parameter.
For a d-dimensional ML distributed random variable x, its PDF is given by [45]

f ml(x) =
2
(√

ϱ(x)
2

) 1
2 (1− d

2 )

(2π)
d
2
√

det(P)
B d

2 −1

(√
2ϱ(x)

)
, (6)

where ϱ(x) = (x − m)⊤P−1(x − m), m is the mean vector, P is the covariance matrix, and
Bν denotes the modified Bessel function of the second kind with order ν. As shown in [37],
the ML PDF f ml(x) can be reformulated as a Gaussian-scale mixture form:

f (x|ζ) = N(x; m, ζP), (7)

f (ζ) = E(ζ; λ), (8)

where ζ is an auxiliary variable.

3. Gaussian MBM Filter

The MBM filter is closed to the Bayes prediction and update steps, in which the
multitarget density at time t, t ∈ {k, k + 1}, conditional on the measurements up to time k
is an MBM density of the form [46]

ft|k(Xt) ∝ ∑
a∈At|k

∑⊎nt|k
l=1 Xℓ=Xt

nt|k

∏
i=1

[wi,ai

t|k f i,ai

t|k (X
i)]. (9)

An explanation of expression (9) is given as follows. To begin with, Xt is the multitarget
state RFS at time t, nt|k is the number of BCs, and ai =

(
τi, ℓi, χi

τi :k

)
denotes the single-
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target hypothesis in regard to the i-th BC with τi, ℓi, and χi
ti :k = (χi

τi , . . . , χi
k) being the

birth time, birth index, and data associations up to time k, respectively. At a specific time j,
χi

j = 0 if the i-th BC is misdetected and χ
j
k = p ∈ {1, · · · , mk} if the i-th BC is associated

with the p-th measurement, where mk is the number of measurements available at time
k. Moreover, a =

(
a1, · · · , ant|k

)
denotes a global hypothesis, which is composed of all

single-target hypotheses, and At|k denotes the collection of all global hypotheses. The i-th

BC with single-target hypothesis ai has an associated weight wi,ai

t|k and probability density

f i,ai

t|k of the form (2) characterized by the existence probability ri,ai

t|k and spatial density pi,ai

t|k .
One recursion of the MBM filter is summarized below; see [7,8] for the mathematical proofs.

Proposition 1 (prediction). Assume that the filtering density at time k is of the form of (9) with
t = k. Then, the predicted density involves nk+1|k BCs, where nk+1|k = nk|k + nb

k+1, and nk|k and
nb

k+1 are the number of BCs characterizing surviving targets and newborn targets, respectively. For

each surviving BC i ∈
{

1, · · · , nk|k

}
, the predicted parameters are calculated by

wi,ai

k+1|k = wi,ai

k|k , (10)

ri,ai

k+1|k = ri,ai

k|k

∫
pS,k(x)pi,ai

k|k (x)dx, (11)

pi,ai

k+1|k(x) =

∫
pS,k(x′)pi,ai

k|k (x
′)φk+1|k(x|x′)dx′∫

pS,k(x′)pi,ai

k|k (x
′)dx′

, (12)

where pS,k(x) and φk+1|k(x|x′) denote the probability of survival and single-target state transition

density, respectively. For each newborn BC i ∈
{

nk|k + 1, · · · , nk+1|k

}
, we have

ai = (k + 1, i − nk|k), (13)

wi,ai

k+1|k = 1, (14)

ri,ai

k+1|k = r
b,i−nk|k
k+1 , (15)

pi,ai

k+1|k(x) = p
b,i−nk|k
k+1 (x). (16)

Here, the single-target hypothesis reduces to ai = (τi, ℓi) since there has not been a data association
event for newborn targets yet.

Proposition 2 (update). The number of BCs does not change in the update step, so nk|k = nk|k−1.

For each BC i ∈
{

1, · · · , nk|k

}
with single-target hypothesis ai, it generates a misdetection

hypothesis and one association hypothesis for each measurement zj
k in the current measurement

set Zk =
{

z1
k , · · · , zmk

k
}

. Note that Zk is composed of target-originated measurements and false
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alarms not originating from any target. To distinguish these two hypotheses, we make use of an
ordered pair of integers (ai, p) with p ∈ {0, · · · , mk}. Under the misdetection hypothesis, we have

wi,(ai ,0)
k|k = wi,ai

k|k−1

(
1 − ri,ai

k|k−1 + ri,ai

k|k−1

∫
(1 − pD,k(x))pi,ai

k|k−1(x)dx
)

, (17)

ri,(ai ,0)
k|k =

ri,ai

k|k−1

∫
(1 − pD,k(x))pi,ai

k|k−1(x)dx

1 − ri,ai

k|k−1 + ri,ai

k|k−1

∫
(1 − pD,k(x))pi,ai

k|k−1(x)dx
, (18)

pi,(ai ,0)
k|k (x) =

(1 − pD,k(x))pi,ai

k|k−1(x)∫
(1 − pD,k(x))pi,ai

k|k−1(x)dx
, (19)

where pD,k(x) denotes the probability of detection. Under the measurement association hypothesis,
the updated parameters are given by

wi,(ai ,j)
k|k =

wi,ai

k|k−1ri,ai

k|k−1

∫
pD,k(x)lk

(
zj

k|x
)

pi,ai

k|k−1(x)dx

κk

(
zj

k

) , (20)

ri,(ai ,j)
k|k = 1, (21)

pi,(ai ,j)
k|k (x) =

pD,k(x)lk
(

zj
k|x
)

pi,ai

k|k−1(x)∫
pD,k(x)lk

(
zj

k|x
)

pi,ai

k|k−1(x)dx
, (22)

where lk(z|x) denotes the single-target likelihood function and κk(z) denotes the intensity of a
Poisson RFS modeling false alarms.

It has been shown in [46] that the MBM recursion stated in the above propositions
admits a closed-form solution under the following assumptions:

Assumption 1. The single-target state transition density φk+1|k(x|x′) satisfies

φk+1|k(x|x′) = N
(
x; Fkx′, Qk

)
, (23)

where Fk and Qk are the state transition matrix and process noise covariance matrix, respectively.

Assumption 2. The single-target measurement likelihood function lk(z|x) satisfies

lk(z|x) = N(z; Hkx, Rk), (24)

where Hk is the measurement matrix and Rk is the measurement noise covariance matrix.

Assumption 3. The probabilities of survival and detection are constants, i.e.,

pS,k(x) = pS, pD,k(x) = pD. (25)

Assumption 4. Each BC in the predicted and filtering MBM densities has a Gaussian
spatial density:

pi,ai

t|k (x) = N
(

x; mi,ai

t|k , Pi,ai

t|k

)
. (26)

The following propositions show how the parameters characterizing MBM densities
are analytically propagated as time progresses.
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Proposition 3 (prediction). The prediction of parameters characterizing the filtering density is
given in (10)–(16). For each surviving BC i ∈

{
1, · · · , nk|k

}
, we have

wi,ai

k+1|k = wi,ai

k|k , (27)

ri,ai

k+1|k = pSri,ai

k|k , (28)

pi,ai

k+1|k(x) = N
(

x; mi,ai

k+1|k, Pi,ai

k+1|k

)
, (29)

where

mi,ai

k+1|k = Fkmi,ai

k|k , (30)

Pi,ai

k+1|k = FkPi,ai

k|k F⊤
k + Qk, (31)

For each newborn BC i ∈
{

nk|k + 1, · · · , nk+1|k

}
, we have

ai = (k + 1, i − nk|k), (32)

wi,ai

k+1|k = 1, (33)

ri,ai

k+1|k = r
b,i−nk|k
k+1 , (34)

pi,ai

k+1|k(x) = p
b,i−nk|k
k+1 (x) = N

(
x; m

b,i−nk|k
k+1 , P

b,i−nk|k
k+1

)
, (35)

where the quantities r
b,i−nk|k
k+1 , m

b,i−nk|k
k+1 , and P

b,i−nk|k
k+1 are given birth model parameters.

Proposition 4 (update). For each BC i ∈
{

1, · · · , nk|k

}
with single-target hypothesis ai, the

updated parameters for the misdetection case are given in (18) and (19), which simplify as

wi,(ai ,0)
k|k = wi,ai

k|k−1

(
1 − ri,ai

k|k−1 + (1 − pD)r
i,ai

k|k−1

)
, (36)

ri,(ai ,0)
k|k =

(1 − pD)r
i,ai

k|k−1

1 − ri,ai

k|k−1 + (1 − pD)r
i,ai

k|k−1

, (37)

pi,(ai ,0)
k|k (x) = pi,ai

k|k−1(x) = N
(

x; mi,ai

k|k−1, Pi,ai

k|k−1

)
. (38)

The updated parameters for the measurement association case are given in (20)–(22), which
simplify as

wi,(ai ,j)
k|k =

wi,ai

k|k−1ri,ai

k|k−1 pDqi,(ai ,j)
k (zj

k)

κk(z
j
k)

, (39)

ri,(ai ,j)
k|k = 1, (40)

pi,(ai ,j)
k|k (x) = N

(
x; mi,(ai ,j)

k|k , Pi,(ai ,j)
k|k

)
, (41)
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where

qi,(ai ,j)
k (zj

k|ξ) = N
(

zj
k; Hkmi,ai

k|k−1, Si,ai

k|k−1

)
, (42)

mi,(ai ,j)
k|k = mi,ai

k|k−1 + Ki,ai

k|k

(
zj

k − Hkmi,ai

k|k−1

)
, (43)

Pi,(ai ,j)
k|k = Pi,ai

k|k−1 − Ki,ai

k|k Si,ai

k|k−1

(
Ki,ai

k|k

)⊤
, (44)

Si,ai

k|k = HkPi,ai

k|k−1H⊤
k + Rk, (45)

Ki,ai

k|k = Pi,ai

k|k−1H⊤
k

(
Si,ai

k|k−1

)−1
. (46)

After the prediction and update steps, the pruning of global hypotheses and BCs is
further required to guarantee the computing efficiency. These procedures are detailed
in [46] and, thus, will not be shown here for clarity. Moreover, the estimators given in [7]
can be straightforwardly employed to extract multitarget state estimates.

4. Robust MMTT Under Glint Noise

The Gaussian MBM filter stated in the previous section relies on both the single-model
and Gaussian noise assumptions. In some practical applications, these assumptions are
no longer valid. On the one hand, target maneuvers are inevitable, and it is sufficient to
describe the target motion mode by a single model. On the other hand, if a target of interest
is observed by a radar system, non-Gaussian glint noise may occur as a result of changes in
the target aspect toward the radar [47], and exact noise statistics are generally not available.
In this section, we will show how the Gaussian MBM filter is tailored to accommodate
maneuvering targets in the context of glint measurement noise with unknown statistics.
Specifically, in order to capture the real-time maneuvers of targets, a set of models is
assumed for possible motion modes of each BC representing a single-target hypothesis.
The switching among models follows a homogeneous Markov process with transition
probability tk+1|k(ξ

′|ξ), where ξ ′, ξ ∈ M and M denotes the discrete set of model labels.
In addition, the ML distribution is employed to model the measurement noise. As a result,
the likelihood function lk(z|x) in (24) now becomes

lk(z|x) = ML(z; Hkx, Rk). (47)

For the sake of convenience, we make use of an equivalent form of the likelihood function
lk(z|x) as

l(zk|xk) = ML(zk; Hkxk, Rk), (48)

where ML(·; m, P) denotes the ML PDF of the form (6). According to (7) and (8), l(zk|xk)
can be reformulated as

p(zk|ζk) = N(zk; Hkxk, ζkRk), (49)

p(ζk) = E(ζk; λ0). (50)

The prior distribution of Rk is selected as

p(Rk) = IW(Rk; Ψ0, ν0). (51)

The rationality behind such a selection is that the IW distribution is the conjugate prior of a
positive definite matrix [48].

The following propositions show how the unknown noise statistics are adaptively
learned by means of the VB approximation accompanied by the IMM-MBM filtering.
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Proposition 5 (prediction). The predicted parameters for each surviving BC i ∈
{

1, · · · , nk|k

}
and each model with label ξ ∈ M are given by

wi,ai

k+1|k(ξ) = wi,ai

k|k (ξ), (52)

ri,ai

k+1|k(ξ) = pSri,ai

k|k (ξ), (53)

pi,ai

k+1|k(x, ξ) = N
(

x; mi,ai

k+1|k(ξ), Pi,ai

k+1|k(ξ)
)

, (54)

where

mi,ai

k+1|k(ξ) = Fk(ξ)m̄
i,ai

k|k (ξ), (55)

Pi,ai

k+1|k(ξ) = Fk(ξ)P̄
i,ai

k|k (ξ)Fk(ξ)
⊤ + Qk(ξ), (56)

m̄i,ai

k|k (ξ) = ∑
ξ ′∈M

µi,ai

k (ξ ′|ξ)mi,ai

k|k (ξ
′), (57)

P̄i,ai

k|k (ξ) = ∑
ξ ′∈M

µi,ai

k (ξ ′|ξ)
(

Pi,ai

k|k (ξ
′) + Ωi,ai

k|k (ξ
′|ξ)
)

, (58)

Ωi,ai

k|k (ξ
′|ξ) =

(
mi,ai

k|k (ξ
′)− m̄i,ai

k|k (ξ)
)(

mi,ai

k|k (ξ
′)− m̄i,ai

k|k (ξ)
)⊤

, (59)

µi,ai

k (ξ ′|ξ) =
tk+1|k(ξ

′|ξ)µi,ai

k (ξ ′)

µi,ai

k+1|k(ξ)
, (60)

µi,ai

k+1|k(ξ) = ∑
ξ ′∈M

tk+1|k(ξ
′|ξ)µi,ai

k (ξ ′). (61)

Here, µi,ai

k (ξ ′|ξ) is the mixing weight and µi,ai

k+1|k(ξ) is the predicted model probability. For each

newborn BC i ∈
{

nk|k + 1, · · · , nk+1|k

}
, the corresponding parameters are given by

ai = (k + 1, i − nk|k), (62)

wi,ai

k+1|k(ξ) = 1, (63)

ri,ai

k+1|k(ξ) = r
b,i−nk|k
k+1 (ξ), (64)

pi,ai

k+1|k(x, ξ) = N
(

x; m
b,i−nk|k
k+1 (ξ), P

b,i−nk|k
k+1 (ξ)

)
. (65)

Note that the birth parameters r
b,i−nk|k
k+1 (ξ), m

b,i−nk|k
k+1 (ξ), and P

b,i−nk|k
k+1 (ξ) are known a priori.

Proposition 6 (update). For the i-th BC and model with label ξ ∈ M, under the misdetection
hypothesis, the updated parameters are given by

wi,(ai ,0)
k|k (ξ) = wi,ai

k|k−1(ξ)
(

1 − ri,ai

k|k−1(ξ) + (1 − pD)r
i,ai

k|k−1(ξ)
)

, (66)

ri,(ai ,0)
k|k (ξ) =

(1 − pD)r
i,ai

k|k−1(ξ)

1 − ri,ai

k|k−1(ξ) + (1 − pD)r
i,ai

k|k−1(ξ)
, (67)

pi,(ai ,0)
k|k (x, ξ) = N

(
x; mi,ai

k|k−1(ξ), Pi,ai

k|k−1(ξ)
)

. (68)
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The relative parameters for the measurement association hypothesis are given by

wi,(ai ,j)
k|k (ξ) =

wi,ai

k|k−1(ξ)r
i,ai

k|k−1(ξ)pDqi,(ai ,j)
k (zj

k|ξ)

κk(z
j
k)

, (69)

ri,(ai ,j)
k|k (ξ) = 1, (70)

pi,(ai ,j)
k|k (x, ξ) = N

(
x; mi,(ai ,j)

k|k (ξ), Pi,(ai ,j)
k|k (ξ)

)
, (71)

where mi,(ai ,j)
k|k (ξ), Pi,(ai ,j)

k|k (ξ), and qi,(ai ,j)
k (zj

k|ξ) are obtained by[
mi,(ai ,j)

k|k (ξ), Pi,(ai ,j)
k|k (ξ), qi,(ai ,j)

k (zj
k|ξ)

]
= VB

(
mi,ai

k|k−1(ξ), Pi,ai

k|k−1,r, Hk, Ψ0, ν0, λ0, N
)

. (72)

Here, [·] = VB(·) denotes the VB approximation and N denotes the number of VB iterations.

The updated model probability for the misdetection hypothesis case denoted by

µ
i,(ai ,0)
k (ξ) equals µi,ai

k|k−1(ξ), while the updated model probability for the measurement

association hypothesis case denoted by µ
i,(ai ,j)
k (ξ) is calculated by

µ
i,(ai ,j)
k (ξ) =

µi,ai

k|k−1(ξ)q
i,(ai ,j)
k (zj

k|ξ)

∑
ξ∈M

µi,ai

k|k−1(ξ)q
i,(ai ,j)
k (zj

k|ξ)
. (73)

Moreover, the model-dependent quantities are then combined to obtain the final estimates
of the i-th BC according to

wi,(ai ,j)
k|k = ∑

ξ∈M
wi,(ai ,j)

k|k (ξ)µ
i,(ai ,j)
k (ξ), (74)

ri,(ai ,j)
k|k = ∑

ξ∈M
ri,(ai ,j)

k|k (ξ)µ
i,(ai ,j)
k (ξ), (75)

mi,(ai ,j)
k|k = ∑

ξ∈M
mi,(ai ,j)

k|k (ξ)µ
i,(ai ,j)
k (ξ), (76)

Pi,(ai ,j)
k|k = ∑

ξ∈M
µ

i,(ai ,j)
k (ξ)

(
Pi,(ai ,j)

k|k (ξ) + Σ
i,(ai ,j)
k|k (ξ)

)
, (77)

Σ
i,(ai ,j)
k|k (ξ) =

(
mi,(ai ,j)

k|k − mi,(ai ,j)
k|k (ξ)

)(
mi,(ai ,j)

k|k − mi,(ai ,j)
k|k (ξ)

)⊤
. (78)

Note that the pruning and estimate-extraction procedures are needed after the predic-
tion and update steps. They are the same as in the standard MBM filter. In addition, the
above IMM-MBM filter is not restricted to the linear dynamic and measurement models. It
can accommodate nonlinear models using approximate strategies such as the unscented
transform [49] and spherical–radial cubature rule [50].

Now, we specify the VB approximation adopted in (72). Without loss of generality, we
consider a notationally convenient form:[

mk|k, Pk|k, qk|k(zk)
]
= VB

(
mk|k−1, Pk|k−1, Hk, Ψ0, ν0, λ0, N

)
. (79)

For the hierarchical measurement model given in (49)–(51), an analytic solution of the joint
posterior PDF p(Λk|z1:k) is not available, where Λk ≜ {xk, Rk, ζk} and z1:k denotes the
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measurement sequence accumulated to time k. Consequently, the VB method is exploited
to obtain an approximate solution:

p(Λk|z1:k) ≈ q(xk)q(Rk)q(ζk)

such that KLD(q(xk)q(Rk)q(ζk)||p(Λk|z1:k)) is minimized, where KLD(·||·) is the Kullback–
Leibler divergence (KLD), defined as

KLD( f ||g) =
∫

f (x) log
f (x)
g(x)

dx. (80)

Each term of the approximated posterior PDF satisfies

log q(ϑ) = E
Λ−ϑ

k
[p(Λk, z1:k)] + cϑ, (81)

where Λ−ϑ
k ∪ {ϑ} ≜ Λk and cϑ is a ϑ-independent constant. To address the mutual coupling

of the variational parameter, a fixed-point iteration scheme is adopted to obtain an approxi-
mation of q(ϑ) by iteratively solving (81). This means that q(ϑ) is updated as q(d+1)(ϑ) by
exploiting q(d)(Λ−ϑ

k ) to compute the expectation in (81) at the (d + 1)-th iteration. Using
Bayes’ theorem, the joint PDF p(Λk, z1:k) can be formed as

p(Λk, z1:k) = N(zk; Hkxk, ζkRk)IW(Rk; Ψ0, ν0)

× N(xk; mk|k−1, Pk|k−1)E(ζk; λ0)p(z1:k). (82)

Proposition 7. Let ϑ = xk, and plugging (82) into (81), q(d+1)(xk) is updated as a Gaussian
PDF, i.e.,

q(d+1)(xk) = N
(

xk; m(d+1)
k|k , P(d+1)

k|k

)
, (83)

where

m(d+1)
k|k = mk|k−1 + G(d+1)

k|k

(
zk − Hkmk|k−1

)
, (84)

P(d+1)
k|k =

(
Inx − G(d+1)

k|k Hk

)
Pk|k−1. (85)

Here, nz denotes the dimensions of measurement vector zk and In denotes the n × n identity matrix,
and the Kalman gain G(d+1)

k|k is calculated by

G(d+1)
k|k = Pk|k−1H⊤

k

[
HkPk|k−1H⊤

k + R̃(d)
k

]−1
, (86)

where the modified measurement noise covariance matrix R̃(d)
k is of the form

R̃(d)
k =

(
E(d)[ζ−1

k ]
)−1(

E(d)[R−1
k ]
)−1

. (87)

Proof. See Appendix A.

Proposition 8. Let ϑ = ζk, and plugging (82) into (81), q(d+1)(ζk) is updated as a GIG PDF, i.e.,

q(d+1)(ζk) = GIG
(

ζk; a(d+1)
k|k , b(d+1)

k|k , c(d+1)
k|k

)
, (88)
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where

a(d+1)
k|k =

1
2

tr
(

U(d+1)
k|k E(d)[R−1

k ]
)

, (89)

b(d+1)
k|k = λ0, (90)

c(d+1)
k|k = 1 − nz

2
. (91)

The auxiliary parameter U(d+1)
k|k is given by

U(d+1)
k|k = E(d+1)

[
(zk − Hkxk)(zk − Hkxk)

⊤
]
. (92)

Proof. See Appendix B.

Proposition 9. Let ϑ = Rk, and plugging (82) into (81), q(d+1)(Rk) is updated as an IW
PDF, i.e.,

q(d+1)(Rk) = IW
(

Rk; Ψ
(d+1)
k|k , ν

(d+1)
k|k

)
, (93)

where

Ψ
(d+1)
k|k = Ψ0 +E(d+1)[ζ−1

k ]U(d+1)
k|k , (94)

ν
(d+1)
k|k = ν0 + 1. (95)

Proof. See Appendix C.

To implement the fixed-point iteration, the required expectations need to be calculated
as follows. Using (83), the auxiliary parameter U(d+1)

k|k in (92) is calculated by

U(d+1)
k|k =

(
zk − Hkm(d+1)

k|k

)(
zk − Hkm(d+1)

k|k

)⊤
+ HkP(d+1)

k|k H⊤
k . (96)

Employing (88), the expectation E(d+1)[ζ−1
k ] is computed as

E(d+1)[ζ−1
k ] =

√
a(d+1)

k|k B
c(d+1)

k|k +1

(√
a(d+1)

k|k b(d+1)
k|k

)
√

b(d+1)
k|k B

c(d+1)
k|k

(√
a(d+1)

k|k b(d+1)
k|k

) . (97)

Utilizing (93), the expectation E(d+1)[R−1
k ] is computed as

E(d+1)[R−1
k ] = ν

(d+1)
k|k

/
Ψ
(d+1)
k|k . (98)

In addition, abiding by [29,31], the predictive likelihood qk|k(zi
k) satisfies

log qk|k(zk) = KLD{q(xk)q(Rk)q(ζk)||p(Λk|z1:k)}+ L(q(xk)q(Rk)q(ζk)). (99)

Since the first term on the right-hand side of (99) is minimized by the VB method, L(q(xk)
q(Rk)q(ζk)) can be treated as the variational lower bound of log qk|k(zk). As a consequence,
qk|k(zk) can be approximately computed as

qk|k(zk) ≈ exp(L(q(xk)q(Rk)q(ζk))), (100)
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where

L(q(xk)q(Rk))q(ζk) = E[log N(zk; Hkxk, ζkRk))] +E[log IW(Rk; Ψ0, ν0)]

+E[log N(xk; mk|k−1, Pk|k−1)]−E[log IW(Rk; Ψk|k, νk|k)]

−E[log N(xk; mk|k, Pk|k)] +E[log E(ζk; λ0)]

−E[log GIG(ζk; ak|k, bk|k, ck|k)]. (101)

The explicit expression for L(q(xk)q(Rk)q(ζk)) can be found in Appendix D. A summary
of the VB function of the form (79) is given in Algorithm 1, where R̄k is the nominal
measurement covariance matrix.

Algorithm 1 A summary of the VB function.

Input: mk|k−1, Pk|k−1, zk, Hk, N, Ψ0, ν0, λ0.
1: Initialization: E(0)[ζ−1

k ] = 1, E(0)[R−1
k ] = R̄−1

k .
2: for d = 0, 1, 2, · · · , N − 1 do
3: Compute R̃(d)

k and G(d+1)
k|k using (87) and (86), respectively.

4: Update q(d+1)(xk) as a Gaussian PDF using (83) with the mean vector m(d+1)
k|k and

covariance matrix P(d+1)
k|k calculated by (84)–(85).

5: Compute U(d+1)
k|k using (96).

6: Update q(d+1)(ζk) as a GIG PDF using (88) with shape parameters a(d+1)
k|k , b(d+1)

k|k , and

c(d+1)
k|k calculated by (89)–(91).

7: Compute E(d+1)[ζ−1
k ] using (97).

8: Update q(d+1)(Rk) as an IW PDF using (93) with the scale matrix Ψ
(d+1)
k|k and DOF

parameter ν
(d+1)
k|k calculated by (94) and (95), respectively.

9: Compute E(d+1)[R−1
k ] using (98).

10: end for
11: Set mk|k = m(N)

k|k , Pk|k = P(N)
k|k , ak|k = a(N)

k|k , bk|k = b(N)
k|k , ck|k = c(N)

k|k , Ψk|k = Ψ
(N)
k|k , and

νk|k = ν
(N)
k|k .

12: Compute qk|k(zk) using (100).
Output: mk|k, Pk|k, and qk|k(zk).

5. Numerical Studies

A 2D tracking scenario involving four maneuvering targets is considered to demon-
strate the performance of the proposed MMTT algorithm (hereafter refereed to as the ML-
IMM-MBM filter). The target kinematic state xk is composed of position [px,k, py,k]

⊤ and
velocity [ ṗx,k, ṗy,k]

⊤, i.e., xk = [px,k, ṗx,k, py,k, ṗy,k]
⊤. All targets follow the state dynamics:

xk =


1 sin(ωT)

ω 0 − 1−cos(ωT)
T

0 sin(ωT) 0 − sin(ωT)
0 1−cos(ωT)

T 1 sin(ωT)
T

0 sin(ωT) 0 cos(ωT)

xk−1 + wk
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with different turn rates ω ∈ {−10◦/s, 0, 10◦/s}, where T = 1s is the scan period and wk
is the zero-mean Gaussian process noise with covariance matrix

Qk = σ2
w


T4

4
T3

2 0 0
T3

2 T2 0 0
0 0 T4

4
T3

2
0 0 T3

2 T2

.

More specifically, ω = 0 corresponds to a constant velocity model indexed by M1 with
σw = 10m/s2, while ω = −10◦/s and ω = 10◦/s correspond to two different coordinate
turn models indexed by M2 and M3, respectively. For models M2 and M3, σw = 20m/s2.
The model transition probability matrix is given by

[tk+1|k(ξ
′|ξ)] =

0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

.

The simulation lasted 80 s, corresponding to 80 scans. The dynamics of each target
is given as follows. Target 1 appears at time k = 1 s and disappears at time k = 60 s.
It follows model M2 during [1, 25] s, model M1 during [26, 40] s, and model M3 during
[41, 60] s. Target 2 appears at time k = 10 s and disappears at time k = 70 s. It follows model
M3 during [10, 30] s, model M2 during [31, 60] s, and model M1 during [61, 70] s. Target
3 appears at time k = 20 s and disappears at time k = 80 s. It follows model M1 during
[20, 40] s, model M3 during [41, 60] s, and model M2 during [61, 80] s. Target 4 appears at
time k = 30 s and disappears at time k = 80 s. It follows model M3 during [30, 50] s, model
M1 during [51, 70] s, and model M2 during [71, 80] s. The true trajectories of the targets
are plotted in Figure 1. The survival probability pS is 0.98 and the MB parameter set for
newborn targets is represented by{{(

rb,q
k+1(ξ), pb,q

k+1(x, ξ)
)}

ξ∈M

}4

q=1
,

where rb,q
k+1(ξ) = 0.1 and pb,q

k+1(x, ξ) takes the form

pb,q
k+1(x, ξ) = N

(
x; mb,q

k+1(ξ), Pb
k+1(ξ)

)
,

where

mb,1
k+1(ξ) = [1500 m; 0; 1000 m; 0]⊤,

mb,2
k+1(ξ) = [400 m; 0;−600 m; 0]⊤,

mb,1
k+1(ξ) = [−500 m; 0;−200 m; 0]⊤,

mb,1
k+1(ξ) = [200 m; 0; 800 m; 0]⊤,

Pb
k+1(ξ) = diag

([
10 m, 10 m/s2, 10 m, 10 m/s2

]⊤)2
.

A radar observes the targets of interest and provides both the range and angle accord-
ing to the measurement equation:

zk =

√(px,k − ps,x)2 + (py,k − ps,y)2

arctan
(

px,k−ps,x
py,k−ps,y

) + vk,
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where [ps,x, ps,y]⊤ = [1000 m, 2000 m]⊤ denotes the location of the radar and vk is the glint
measurement noise satisfying [31]

vk ∼ γN(·; 02, τR̄k) + (1 − γ)N(·; 02, R̄k).

Here, 0n denotes the n-dimensional zero vector, R̄k = diag
(
[10m, 5◦/s]⊤

)2
is the nominal

measurement covariance matrix, τ = 100 is a scale factor, and γ = 0.1 is the glint probability.
The probability of detection is pD = 0.9. Apart from target-originated measurements, at
each scan, an average of 10 false alarms are also received by the sensor.

We first tested the ML-IMM-MBM filter with 100 Monte Carlo (MC) trials. In each
trial, the true target tracks remained unchanged, whereas the sensor measurements were
randomly generated. In the ML-IMM-MBM filter, the prior parameters were configured as
λ0 = 1, ν0 = β, and Ψk = βR̄k, where β is a user-defined parameter satisfying β > nz + 1.
The thresholds for pruning, merging, and state extraction were set as 10−5, 4, and 0.4,
respectively. In addition, the ML-IMM-MBM filter uses a maximum number of global
hypotheses Nh = 100 and adopts the unscented transform [49] to tackle measurement
model nonlinearity. We evaluated the filter performance using the generalized optimal
subpattern assignment (GOSPA) metric [51] with α = 2, p = 2, and c = 10m. The GOSPA
error (GOSPAE) along with its decomposed localization error (LE), missed target error
(MTE), and false target error (FTE) for different settings of the VB iteration number N are
presented in Figure 2. It can be seen that the ML-IMM-MBM filter has a similar performance
when N ≥ 4. This can be attributed to the fast convergence of the VB approach [32]. The
relevant results for different settings of the prior parameter β are shown in Figure 3. It can
be seen that the ML-IMM-MBM filter behaves almost identically for varying parameter β,
indicating excellent robustness to the prior parameter β.
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Figure 1. Truetrajectories of the targets.
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Figure 2. GOSPAE , LE, MTE, and FTE of the ML-IMM-MBM filter for different N with β = 8.
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Figure 3. GOSPAE, LE, MTE, and FTE of the ML-IMM-MBM filter for different β with N = 6.

We then compared the ML-IMM-MBM filter with the ST-MM-MDB filter,
ST-MM-LMB filter, and the IMM-MBM filter with the true measurement noise covari-
ance matrix (hereafter referred to as the IMM-MBM-T filter) with 100 MC trials. In the
ML-IMM-MBM filter, the prior parameter β was set as β = 8. Necessary parameters for
the ST-MM-MDB filter and ST-MM-LMB filter were configured consistent with [33,34],
respectively. In all filters under study, the VB iteration number N was set as N = 6.
Figures 4 and 5 show the performance of these filters in terms of cardinality estimates and
the GOSPA metric, respectively. It is shown that the ML-IMM-MBM filter is comparable to
the MM-MBM-T filter, but outperforms the ST-MM-MDB and ST-MM-LMB filters. This can
be attributed to two reasons. First, the MBM filter is an exact solution to the Bayes multitar-
get recursion (centerpiece of RFS-based MTT), while the MDB filter [52] and LMB filter [9]
are approximate alternatives. Second, the ML-IMM-MBM filter models glint noise by the
ML distribution, which gets rid of the selection of the DOF parameter, which is necessary in
the ST-MM-MDB filter. The GOSPAE and its decomposition of different filters for varying
scale factors and glint probability are shown in Figure 6 and Figure 7, respectively. It can be
observed that the glint probability has a more significant influence on performance, and all
the results indicate the superiority of the proposed ML-MM-MBM filters over the existing
ST-MM-MDB and ST-MM-LMB filters.
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Figure 4. Cardinality estimates for filters under study.
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Figure 6. GOSPAE, LE, MTE, and FTE of different filters for varying scale factor.
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6. Conclusions

In this article, we proposed a robust algorithm to address the problem of tracking
multiple maneuvering targets with random appearances and disappearances from radar
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measurements corrupted by glint noise. Specifically, in order to capture the real-time
maneuvers of targets, a set of models was assumed for the possible motion modes of
each single-target hypothesis. Furthermore, the ML distribution was employed to model
measurement noise, and the relevant likelihood function was formulated by a Gaussian
scale form, leading to a hierarchical Gaussian model. Using this model, a robust IMM-MBM
filter was derived based on the VB method, which can adaptively learn unknown noise
statistics while filtering. In particular, the involved predicted likelihood was approximately
calculated by means of the variational lower bound. The simulation results showed that
our proposed algorithm not only possesses strong robustness to its freedom parameters,
but also outperforms the existing ST-MM-MDB and ST-MM-LMB filters. For future work,
we will extend the proposed algorithm to accommodate amplitude information under
different SNRs and a network of cooperative sensors with limited sensing ranges.
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Nomenclature
x Single-target state vector
z Single-target measurement vector
X Multitarget state RFS
Z Multitarget measurement RFS
k Discrete time step
φk+1|k(·|·) Single-target state transition density
ai Single-target hypothesis for the i-th BC
a Global hypothesis
Γ(·) Gamma function
nx State vector dimension
nz Measurement vector dimension
lk(·|·) Measurement likelihood function
pS,k(·) Probability of survival
pD,k(·) Probability of detection
κk(·) Clutter intensity

Appendix A

Employing (82), we have

log p(Λk, z1:k) = − 1
2ζk

(zk − Hkxk)
⊤R−1

k (zk − Hkxk)

− 1
2
(xk − mk|k−1)

⊤P−1
k|k−1(xk − mk|k−1)

− 1
2

tr
(

Ψ0R−1
k

)
− 1

2
(nz + ν0 + 2) log(det(Rk))

− λ0ζk −
nz

2
log ζk + cΛk .

(A1)
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Plugging ϑ = xk into (81) and employing (A1) yield

log q(d+1)(xk) ∝ −1
2
(xk − mk|k−1)

⊤P−1
k|k−1(xk − mk|k−1)

− 1
2
(zk − Hkxk)

⊤E(d)[ζ−1
k ]E(d)[R−1

k ](zk − Hkxk).
(A2)

Exploiting (87) in (A2), log q(d+1)(xk) can be formulated as

log q(d+1)(xk) ∝ log N
(

xk; mk|k, Pk|k

)
+ log N

(
zk; Hkxk, R̃(d)

k

)
, (A3)

Using (A3), q(d+1)(xk) can be written as

q(d+1)(xk) ∝ N
(

xk; mk|k, Pk|k

)
N
(

zk; Hkxk, R̃(d)
k

)
. (A4)

According to (A4), q(d+1)(xk) can be updated as a Gaussian PDF as in (83), where the
relevant parameters m(d+1)

k|k and P(d+1)
k|k can be computed using the measurement update of

the standard Kalman filter as in (84) and (85).

Appendix B

Plugging ϑ = ζk into (81) and employing (A1) yield

log q(d+1)(ζk) ∝ − 1
2ζk

tr
(

U(d+1)
k|k E(d)[R−1

k ]
)
− nz

2
log ζk − λ0ζk. (A5)

Exploiting (89)–(91) in (A5), we have

log q(d+1)(ζk) ∝ −
a(d+1)

k|k
ζk

− b(d+1)
k|k ζk −

(
c(d+1)

k|k − 1
)

log ζk. (A6)

According to (A6), q(d+1)(ζk) can be updated as a GIG PDF as in (88) with the relevant
parameters a(d+1)

k|k , b(d+1)
k|k , and c(d+1)

k|k calculated by (89)–(91).

Appendix C

Plugging ϑ = Rk into (81) and employing (A1) yield

log q(d+1)(Rk) ∝ −1
2
(nz + ν0 + 2) log(det(Rk))

+
1
2

tr
((

E(d+1)[ζ−1
k ]U(d+1)

k|k + Ψ0

)
R−1

k

)
.

(A7)

Exploiting (94) and (95) in (A7), we have

log q(d+1)(Rk) ∝ −1
2

(
nz + ν

(d+1)
k|k + 1

)
log(det(Rk)) +

1
2

tr
(

Ψ
(d+1)
k|k R−1

k

)
. (A8)

According to (A8), q(d+1)(Rk) can be updated as an IW PDF as in (93) with the relevant
parameters Ψ

(d+1)
k|k and ν

(d+1)
k|k calculated by (94) and (95).
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Appendix D

Each quality on the right-hand side of (101) is computed as follows:

E[log N(zk; Hkxk, ζkRk))] = −1
2

tr
(
E[ζ−1

k ]E[R−1
k ]E[(zk − Hkxk)(zk − Hkxk)

⊤]
)

− nz

2
log(2π)− 1

2
E[log(det(Rk))],

(A9)

where the expectation E[log(det(Rk))] is given by

E[log(det(Rk))] =
nz

∑
i=1

ψ

(
νk|k + 1 − i

2

)
− nz log 2 + log det(Ψk|k), (A10)

and

E[(zk − Hkxk)(zk − Hkxk)
⊤] =HkPk|kH⊤

k + (zk − Hkmk|k)(zk − Hkmk|k)
⊤. (A11)

Here, ψ(·) denotes the digamma function.
Recall that, here, ζk and Rk are exponential and IW distributed as in (50) and (51),

respectively. Hence, the expectations E[ζ−1
k ] and E[R−1

k ] are of the form

E[ζ−1
k ] = λ0, E[R−1

k ] = (ν0 − nz − 1)Ψ−1
0 . (A12)

E[log N(xk; mk|k−1, Pk|k−1)] = −1
2

log(det(Pk|k−1))−
nx

2
log(2π)

− tr
(

P−1
k|k−1E

[(
xk − mk|k−1

)(
xk − mk|k−1

)⊤])
,

(A13)

where

E[(xk − mk|k−1)(xk − mk|k−1)
⊤] = Pk|k + (mk|k − mk|k−1)(mk|k − mk|k−1)

⊤. (A14)

E[log IW(Rk; Ψk|k, νk|k)] = −
νk|k
2

log(det(Ψk|k))−
νk|k + nz + 1

2
E[log(det(Rk))]

− 1
2

tr(Ψk|kE[R−1
k ])−

nzνk|k
2

log 2 − log Γnz(
νk|k
2

),
(A15)

where the equalities E[log(det(Rk))] and E[R−1
k ] are given in (A10) and (A12), respectively.

E[log E(ζk; λ0)] = −nz

2
E[log ζk]− λ0E[ζk], (A16)

where E[log ζk] = − log λ0 − γo, γo is the Euler–Mascheroni constant and E[ζk] =
1

λ0
.

E
[
log N

(
xk; mk|k, Pk|k

)]
= −nx

2
log(2π)− 1

2
log(det(Pk|k))−

nx

2
, (A17)

where nx denotes the dimensions of measurement vector xk.

E[log GIG(ζk; ak|k, bk|k, ck|k)] =
ck|k
2

log

(
ak|k
bk|k

)
− log

(
2Bck|k

√
ak|kbk|k

)
+ (ck|k − 1)E[log ζk]−

1
2

(
ak|kE[ζk] + bk|kE[ζ−1

k ]
)

,

(A18)
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where

E[ζk] =

√
bk|kBck|k+1

(√
ak|kbk|k

)
√ak|kBck|k

(√
ak|kbk|k

) , (A19)

E[ζ−1
k ] =

√ak|kBck|k+1

(√
ak|kbk|k

)
√

bk|kBck|k

(√
ak|kbk|k

) −
2ck|k
bk|k

, (A20)

E[log ζk] = log

√
bk|k

√ak|k
+

∂ log Bck|k

(√
ak|kbk|k

)
∂ρ

∣∣∣∣
ρ=ck|k

. (A21)

E[log IW(Rk; Ψk|k, νk|k)] = −
νk|k
2

log det(Ψk|k)−
νk|k + nz + 1

2
E[log det(Rk)]

− 1
2

tr(Ψk|kE[R−1
k ])−

nzνk|k
2

log 2 − log Γnz(
νk|k
2

).
(A22)

The expectations E[log det(Rk)] and E[R−1
k ] are, respectively, given by

E[log det(Rk)] =
nz

∑
i=1

ψ

(
νk|k + 1 − i

2

)
− nz log 2 + log det(Ψk|k), (A23)

E[R−1
k ] = Ψ−1

k|k (νk|k − nz − 1). (A24)

Plugging (A9)–(A24) into (101) and performing some algebra, L(q(xk)q(Rk)q(ζk)) can
be analytically computed.
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