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Abstract: Standard beams are mainly used for the calibration of strain sensors using their load
reconstruction models. However, as an ill-posed inverse problem, the solution to these models
often fails to converge, especially when dealing with dynamic loads of different frequencies. To
overcome this problem, a piecewise Tikhonov regularization method (PTR) is proposed to reconstruct
dynamic loads. The transfer function matrix is built both using the denoised excitations and the
corresponding responses. After singular value decomposition (SVD), the singular values are divided
into submatrices of different sizes by utilizing a piecewise function. The regularization parameters
are solved by optimizing the piecewise submatrices. The experimental result shows that the MREs
of the PTR method are 6.20% at 70 Hz and 5.86% at 80 Hz. The traditional Tikhonov regularization
method based on GCV exhibits MREs of 28.44% and 29.61% at frequencies of 70 Hz and 80 Hz,
respectively, whereas the L-curve-based approach demonstrates MREs of 29.98% and 18.42% at the
same frequencies. Furthermore, the PREs of the PTR method are 3.54% at 70 Hz and 3.73% at 80 Hz.
The traditional Tikhonov regularization method based on GCV exhibits PREs of 27.01% and 26.88%
at frequencies of 70 Hz and 80 Hz, respectively, whereas the L-curve-based approach demonstrates
PREs of 29.50% and 15.56% at the same frequencies. All in all, the method proposed in this paper can
be extensively applied to load reconstruction across different frequencies.

Keywords: calibration; dynamic load reconstruction; ill-posed problem; piecewise Tikhonov regularization

1. Introduction

Standard beams serve as important testing tools in engineering practice, widely used
in fields such as mechanical performance testing and sensor calibration [1–3]. Their main
function is to act as a load reconstruction model in the process of sensor calibration. Load
reconstruction commonly employs the direct inversion method. In this scenario, there are
equal numbers of equations and unknowns. However, the singular values of the transfer
function matrix are very close to zero, rendering the problem ill posed. Solving ill-posed
inverse problems is often challenging. This challenge is particularly evident at different
signal frequencies, as frequency variations may significantly affect the reconstruction results.
To address the fact that the load reconstruction problem is ill posed, appropriate numerical
analytical methods are adopted [4]. This includes methods such as probabilistic statistical
methods and regularization methods [5,6].

In terms of the first type of method, the direct inverse method can reconstruct a
dynamic load based on the relationship between the dynamic load and the measured
response of the structure. For example, Liu et al. [7] reconstructed the load directly by

Sensors 2024, 24, 2744. https://doi.org/10.3390/s24092744 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24092744
https://doi.org/10.3390/s24092744
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8292-0932
https://orcid.org/0000-0002-2361-9207
https://doi.org/10.3390/s24092744
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24092744?type=check_update&version=2


Sensors 2024, 24, 2744 2 of 20

solving a small-scale regular linear system in m dimensions. Zhao et al. [8] obtained the
energy directly to determine the structural damage using wavelet packets. Although this
kind of method is simple and easy to access, the fact that the direct inverse relationship is
ill posed can decrease the accuracy of the reconstruction with an unknown uncertainty.

To avoid this problem, probabilistic/statistical methods are investigated. This utilizes
known prior probability information to estimate unknown quantities, thereby alleviating
the fact that the problem is ill posed. For example, Bayesian methods have been investi-
gated by many scholars for reconstructing an impact load [9–11]. Prawin and Rama Mohan
Rao [12] proposed an online load reconstruction algorithm based on dynamic principal
component analysis with overlapping moving windows. Jiang et al. [13] achieved recon-
struction of an impact load by redefining the transfer function of the reconstruction model
using a Fractional-Order Accumulative Regularization Filter. Pallekonda et al. [14] used an
Artificial Neuro-Fuzzy Inference System for load reconstruction. Another common type
of adaptive estimation is the Kalman filter, which is widely used in load reconstruction
techniques [15–18]. However, the uncertainties existing in the actual situation are difficult
to solve in advance, and this kind of method cannot be applied to all load reconstruction
processes with a fixed model.

To solve these difficulties, regularization methods are proposed to improve the fact
that the load reconstruction problem is ill posed by optimizing singular values in the
transfer function matrix [19]. For example, Lu et al. [20] proposed a novel dynamic load
identification method based on the Least Squares Time Element Method (LSTEM), a wavelet
scaling function, and a regularization method. Miao et al. [21] proposed a finite element
modification model combined with the Tikhonov regularization method for the recon-
struction of a periodic load. Tang et al. [22] proposed a Tikhonov regularized total least
squares method and verified the load reconstruction on an aluminum plate. Sun et al. [23]
combined matrix equations and regularization methods to derive unbalanced forces based
on vibration responses. He et al. [24] proposed detailed load bound identification methods
to identify an uncertain structural load in the frequency domain. Miao et al. [25] conducted
a comparative analysis of different regularization methods in terms of their accuracy, noise
immunity, and robustness.

Equally, a series of improved regularization methods have been investigated. For
example, Wang et al. [26] proposed the conjugate gradient method, Aucejo and De Smet [27]
proposed the iterative multiplication method, and Zheng et al. [28] and Chang et al. [29]
proposed the Landweber iterative method. Chen et al. [30] and Yang et al. [31] applied
optimization algorithms to the identification of moving dynamic loads. Adding sparsity is
a good way to reduce the complexity of the problem, and sparse regularization [32] and
nonconvex regularization [33–36] have received increasing attention. To reduce the number
of unknowns and improve the speed and accuracy of the solution, Tran and Inoue [37]
used wavelet bases for impact load reconstruction. The regularization method is a common
method used to realize dynamic load reconstruction. Although this method can optimize
the ill-posed solutions caused by small singular values, it can also generate model errors by
suppressing large singular values. This situation will result in larger errors under signals
of different frequencies.

Aiming at improved load reconstruction performance under different frequency sig-
nals, a piecewise Tikhonov regularization method is proposed, combined with probabilistic
statistical methods. This method not only addresses the issues caused by small singular
values but also strives to retain important large singular values, thus balancing the accuracy
and stability of the approximate solution. The core of this approach lies in the rational
partitioning of singular values and determining the appropriate regularization parameters
to tackle load reconstruction problems under different frequencies.

The remainder of this paper is organized as follows. In Section 2, a PTR model for an
ill-posed problem is developed. In Section 3, numerical simulations are conducted to assess
how ill posed the model is. In Section 4, excitations on a cantilever beam are reconstructed
using the PTR method. The reconstruction accuracy of the PTR method is compared with
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the traditional Tikhonov regularization method. Finally, several conclusions and research
expectations about our work are given in Section 5.

2. Overview of the PTR Model

To numerically represent the reconstruction principles for a dynamic load, an alu-
minum alloy cantilever beam is designed, as Figure 1 shows. Considering that the transfer
function matrix is approximately singular, a segmented optimization regularization method
with singular values is proposed to improve the fact that the problem is ill posed. The
proposed PTR method includes denoising the initial signal using Fourier transformation,
modeling the transfer function matrix of the test body, performing SVD on the trans-
fer function matrix, segmenting the regularization of singular values, and dynamically
reconstructing dynamic loads based on the measured responses.
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and S3(t), and the excitation load is denoted by f(t).

To minimize the noise from the signal acquisition system, denoising operations are
applied in the time domain to dynamic loads f(t) and their responses s(t), that is:
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where f(t) is an excitation, s(t) is a response, L is a constant, a0 is the average value of f(t)
or s(t) over a cycle, an and bn are the amplitudes of the n-th harmonic, and n is the number
of harmonics.

Assuming that ti = ∆t × i, ∆t is the discrete sampling interval in time history t; in ti-th
time, the discrete response signal is si = s(ti); and the discrete load signal is fj = f

(
tj
)
. In

the time domain, the matrix relationship between the discrete input and output can be
expressed as: 

s1
s2
...
sm

 =


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...
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. . .
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
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 (2)

where m is the number of samples in the time domain for a single excitation and a single
response system. Equation (2) can be simplified as:

S = G × F (3)

where G is a transfer function matrix in the time domain. It can be seen from Equation (3)
that G is determined by the structural characteristics of the aluminum alloy cantilever beam.

The SVD is applied to decompose the transfer function matrix G into its singular value
and vector components, that is:

G = U(diag(σi))VT (4)



Sensors 2024, 24, 2744 4 of 20

where U = (u1, u2, · · · , um) and V = (v1, v2, . . . , vm). VT is the transpose of V. ui and vi
are the left and right singular vectors, respectively. σi is a singular value, and diag(σi) is a
singular matrix.

In practical measurement situations, the actual responses S are generally interfered
with by noise δ= [δi|i= 1, 2, · · · , m], which will lead to an inequality between the actual
responses S and the measured responses Sδ, i.e., Sδ = S + δ.

The load can be reconstructed by coupling Equations (3) and (4) after simple algebraic
manipulations, that is:

Fδ = G−1 · Sδ = Vdiag(σ−1
i )UT · Sδ = Ftr +

m

∑
i=1

σ−1
i (uT

i δ)vi (5)

where G−1 is the inverse matrix of G, and Ftr is the actual load. Equation (5) implies that
a small perturbation can amplify the error of the reconstructed load with the help of the
singular values in G. This will lead to the ill-posed inverse problem that Fδ is quite different
from Ftr. To solve this ill-posed inverse problem, the singular matrix should be corrected
appropriately.

To overcome the fact that the transfer function matrix G is ill posed, the singular
matrix is corrected by utilizing Tikhonov filter factors. The load Fα,δ can be reconstructed
using the traditional Tikhonov regularization method as:

Fα,δ = Vdiag
(

f(α,σi) · σ−1
i

)
UT · Sδ = ∑

i

f(α,σi)

σi
(uT

i Sδ)vi (6)

where α is a regularization parameter, and f(α,σi) is the extended Tikhonov filter factor,
which is:

f(α,σi) = σi × (σi + α)−1 (7)

It can be observed from Equation (5) that the instability of the problem is mainly
caused by the small singular values of the transfer function matrix. As these singular values
approach zero, their inverse tends toward infinity, leading to a significant amplification of
the noise in the response. Therefore, starting from the global processing approach of the
traditional methods, a new segmented regularization method is proposed. The singular
values are divided into K parts, and different amplitude singular values are processed
differently to reduce the amplification of the noise. The PTR method is expressed as:

Fα,δ =
K

∑
k=1

Qk

∑
i=Pk

fk(αk,σi)

σi
(uT

i Sδ)vi (8)

Singular values are divided into K pieces using Equation (8) in descending order.
Pk and Qk are the minimum limit position and maximum limit position in the kth piece,
respectively, and:

K

∑
k=1

(Qk − Pk + 1) = m (9)

where m = rank(G). The maximum number of divisions K1 is determined based on the
order of magnitude of the singular values, and the decision strategy is designed as:

K1 =

⌊
1 + lg

(
σ1

σm

)⌋
(10)

Set γ1 · · ·γk if:
σ1 − σi

σ1 − σm
≥ γk (11)

Then, set:
Pk+1 = i, Qk = i − 1 (12)
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where ⌊·⌋ is a lower bound operation, γk is the segmentation parameter at the k-th and
(k + 1)-th segments, and γk = 0.1, 0.2 · · · 1. In particular, P1 corresponds to the position of
σ1, and QK corresponds to the position of σm.

The traditional methods use techniques such as generalized cross-validation and
L-curves to solve the regularization parameters. However, the regularization parameters
αk of the method proposed in this paper can be solved using an unconstrained simplex
search algorithm. The average relative error of Fα,δ and Fδ is the optimization objective.
The objective function for the regularization parameter αk is:

min
αk

(mean(
abs(Fα,δ − Fδ)

Fδ
)) = min

αk
(mean(abs(

K

∑
k=1

Qk

∑
i=Pk

fk(αk,σi)

σi
(uT

i Sδ)vi−Fδ))) (13)

where K ≤ K1, abs(·) is an absolute value operation, mean(·) is an averaging operation,
and mean(·) is a minimization operation.

By substituting Equations (7) and (13) into Equation (8), the load on the source point
can be reconstructed as:

Fα,δ =
K

∑
k=1

Qk

∑
i=Pk

(σi + αk)
−1(uT

i Sδ)vi (14)

All in all, after Fourier series fitting and PTR, the exciting load can be reconstructed
using Equation (14), as Figure 2 shows.
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3. Numerical Simulations

The purpose of numerical simulations is to solve the initial transfer function matrix
and evaluate how ill posed the tested beam structure is. The cantilever beam structure is
designed. In detail, the beam length is 1.50 × 101 cm, the width is 1.50 cm, the thickness
is 8.00 × 10−1 cm, the density of the aluminum alloy is 2.77 × 103 kg·m−3, its modulus
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of elasticity is 7.1 × 101 GPa, and its Poisson’s ratio is 0.33. The primary constraint of
this structure is the unilateral fixed support; specifically, one end of the cantilever beam
is affixed while the other remains free. The boundary conditions at the fixed end of the
cantilever beam are expressed as u(0) = 0, v(0) = 0, θ(0) = 0, where u and v denote the
linear displacements along the x and y axes, respectively, and θ represents the rotational
angle around the z-axis. The initial transfer function matrix can be solved using finite
element simulation in Ansys Workbench. Considering the current experimental setup and
the inherent frequency of the system, a specific series of sinusoidal loads ranging from
40 Hz to 90 Hz are selected for dynamic stimulation. The load is applied at point a on the
cantilever beam. The responses are concurrently measured at points b, c, and d using FBG
strain sensors. The geometric interrelationships among these points are explicitly outlined.
A schematic diagram of the simulation test is shown in Figure 3.
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(1) The characteristics of the mode are simulated to analyze the resonance of the
cantilever beam. The first- and second-order modal parameters of the cantilever beams
are 292.31 Hz and 543.36 Hz. Resonance may occur when the frequency of the external
excitations is close to the intrinsic frequency of the system. It can be seen that both the 1st
order and the 2nd order of the modal are not equal to the selected frequencies at 40 Hz,
50 Hz, 60 Hz, 70 Hz, 80 Hz, and 90 Hz. This indicates that the selected frequencies are
quite suitable for numerical simulations. The corresponding mode shapes are shown in
Figure 4. (a) represents the cantilever beam translated in the y-direction, and (b) represents
the cantilever beam translated in the x-direction.

A sinusoidal load with an amplitude of 100 N, a phase of 0 rad, and frequencies of
40 Hz, 50 Hz, 60 Hz, 70 Hz, 80 Hz, and 90 Hz are acted on point a, respectively. Modal
superposition is used to obtain the responses at points b, c, and d. The measured responses
are described as:

Sδ = S + 10−0.05lδ × std(S)× randn (15)

where S is the response calculated using the simulation, std(S) is the standard deviation
of the calculated response, lδ is the signal-to-noise ratio (SNR), and randn is a white noise
random number of the same length as S, which satisfies a normal distribution.

(2) To illustrate the impacts of noise on the ill-posed solution, a condition number is
introduced. The condition number K of a matrix G is:

K(G) = ∥G−1∥ × ∥G∥ (16)

where G is a transfer function matrix, and G−1 is the inverse of G.
There are three kinds of condition numbers, which include the H1, H2, and H∞

condition numbers. A condition number is used to evaluate whether or not a function is
ill posed. In detail, if the condition number of a matrix is quite big, then the function is
ill posed; otherwise, it is a well-posed function. To assess how well posed this issue is,
the condition numbers of transfer function matrices constructed from signals of different
frequencies at various signal-to-noise ratios are compared, as Table 1 shows. If the condition
number shows no significant variation across different signal-to-noise ratios, the problem
is well posed; otherwise, it is ill posed.
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Table 1. Condition numbers with different SNRs.

Freq./Hz ∞ dB 26 dB 20 dB

40 1.00 1.99 × 1010 1.66 × 1011

50 1.00 1.84 × 108 7.55 × 108

60 1.00 3.40 × 102 3.67 × 106

70 1.00 6.44 × 103 2.98 × 105

80 1.00 1.20 × 103 8.80 × 103

90 1.00 4.36 × 101 1.93 × 107

The common matrix H2 is used here. It can be observed from Table 1 that the condition
numbers exhibit a consistent pattern across all frequencies. The condition number is 1
when the SNR = ∞. However, the condition number becomes high when the SNRs are
26 dB, 20 dB, and 14 dB, respectively. This indicates that the model is ill posed due to noise.

(3) To illustrate the error amplification effects of noise on the ill-posed model, dynamic
loads with different SNRs are reconstructed. The excitations are reconstructed from the
responses with different SNRs, as Figure 5 shows.

There are four indexes introduced to evaluate the error of the load reconstruction,
as follows:

(1) Relative error in time history (RE)

ess =
|F′ − F|

F
× 100% (17)

(2) Mean relative error (MRE)

MRE = mean(ess) (18)

(3) Peak relative error (PRE)

PRE =
|max(F′)− max(F)|

max(F)
× 100% (19)
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(4) Correlation (Cor)

Cor =

N
∑

t=1
(F′

t − F′)(Ft − F)√
N
∑

t=1
(F′

t − F′)
2 N

∑
t=1

(Ft − F′)
2

(20)

where F′ is a reconstructed excitation; F is an initial excitation; and |·| is an absolute value
operation. The value of Cor is between −1 and 1. Cor = −1 means that F′ is perfectly
negatively correlated with F; Cor = 1 means that F′ is perfectly positively correlated with
F; and Cor = 0 means that F′ is not correlated with F.
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The values of the MRE and PRE determine how ill posed the problem is, as Table 2
shows. It can be seen that the MRE and PRE are smaller when the reconstruction result
is closer to the real load. Table 3 shows the Cor values. It can be seen that when the Cor
is high, the MRE and PRE are small in theory. However, the MRE and PRE are amplified
when they are affected by noise.

Table 2. MRE (%) and PRE (%) at different SNRs.

Freq./Hz
MRE PRE

∞ dB 26 dB 20 dB 14 dB ∞ dB 26 dB 20 dB 14 dB

40 0.00 11.99 47.59 93.53 0.00 1.69 8.10 24.41
50 0.00 35.15 66.10 127.75 0.00 4.24 13.75 45.90
60 0.00 11.55 33.71 79.54 0.00 5.66 14.30 27.48
70 0.00 11.91 30.05 60.41 0.00 6.32 10.04 39.23
80 0.00 16.09 53.63 73.03 0.00 2.30 5.57 21.45
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Table 2. Cont.

Freq./Hz
MRE PRE

∞ dB 26 dB 20 dB 14 dB ∞ dB 26 dB 20 dB 14 dB

90 0.00 7.78 25.67 48.92 0.00 5.63 8.46 33.30
mean 0.00 15.74 42.79 80.53 0.00 4.31 10.04 31.96

Table 3. Waveform correlation.

Freq./Hz
Cor

∞ dB 26 dB 20 dB 14 dB

40 1.000 0.999 0.995 0.982
50 1.000 0.998 0.995 0.980
60 1.000 0.998 0.995 0.978
70 1.000 0.999 0.994 0.979
80 1.000 0.998 0.995 0.980
90 1.000 0.998 0.995 0.979

mean 1.000 0.998 0.995 0.979

According to Table 2, the MRE and PRE show a growing trend as the SNR decreases.
This shows that the SNR is negatively correlated with the reconstruction results. According
to Table 3, as the SNR decreases, the Cor is maintained above 0.97. It indicates that the
reconstruction results are all highly correlated. Overall, these indicate that noise has an
amplifying effect on errors in an ill-posed model.

4. Experiment and Discussion
4.1. Experimental Setup

To illustrate the advantages of the application of the PTR method to dynamic load
reconstruction, an experiment is carried out on a standard cantilever beam by utilizing a
sinusoidal load. The experimental system consists of a cantilever beam, three FBG strain
transducers, a shaker, a vibration isolation system, a laser interferometry system, and a
data analysis system, as Figure 6 shows. The selected cantilever beam is an aluminum alloy
with a length of 15.00 cm, a width of 1.50 cm, a thickness of 0.80 cm, a modulus of elasticity
of E1 = 7.10 × 101 Gpa, a density of P = 2.77 × 103 kg·m−3 and Poisson’s ratio of 0.33. One
end of the beam is fixed onto a horizontal workbench. The selected laser interferometer is a
PSV-400 with an accuracy of 1%. An FBG strain sensor is installed at each of points b, c,
and d of the beam equidistantly.

There are four steps for our designed experiment, as follows,
1st. Signal processing. The activated shaker vibrates the free end of the cantilever

beam. The excitations and the corresponding responses are collected and treated in Fourier
series using Equation (1).

2nd. Modeling. The initial transfer function matrix is solved using Equation (2) based
on the excitations and the corresponding responses at 70 Hz and 80 Hz.

3rd. Dynamic load reconstruction. To validate the effectiveness of the PTR method,
dynamic loads at 40 Hz, 50 Hz, 60 Hz, and 90 Hz are reconstructed and evaluated. In the pro-
cess of regularization, the segmentation bounds are determined using Equations (9)–(13),
and the regularization parameters are solved using Equation (13). The singular matrix
of the transfer function matrix G is corrected using Equation (7). According to the de-
noising responses and the modified singular matrix, the load can be reconstructed using
Equation (14).

4th. Evaluation. Evaluation indexes such as the RE, MRE, PRE, and Cor are solved to
comprehensively evaluate the reconstruction capability of the suggested PTR method.
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The sinusoidal excitations are applied to the free end, and the resulting velocity signals
are collected using the laser interferometer. Then, we can solve the velocity of the free
end as:

v(t) = U × a (21)

where U is the voltage signal output by the laser interferometer, a is the sensitivity of the
sampling signals, and a = 50.
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Figure 6. Load reconstruction model. (a) Experimental setup; (b) detailed diagram; (c) 3D struc-
tural schematic.

4.2. Data Analysis and Error Evaluation

Considering the current experimental setup and the inherent frequency of the system,
a specific series of sinusoidal loads ranging from 40 Hz to 90 Hz is still selected for dynamic
stimulation.

The analysis of the transfer function matrix in the numerical simulation section in-
dicates that the cantilever beam’s transfer function matrix amplifies the errors caused by
noise. Fourier series fitting enables compression and denoising. Therefore, to minimize the
impact of external noise on the reconstructed results, a Fourier series is employed for the
signal fitting. The time constant of the strain sensor is estimated to be 1 ms according to the
experiments, so the Fourier analysis time step is set to 1 ms in this paper. The results of the
signal fitting are shown in Figure 7. It shows that the signal is smoother after denoising.
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Compared with the traditional Tikhonov regularization method, the PTR method
changes the optimization strategy for singular values. This avoids the over-regularization
and under-regularization caused by the correction of the same regularization parameters.
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The initial transfer function matrices built at 70 Hz and 80 Hz are used for SVD, as Figure 8
shows. This shows that the PTR method should be used for optimization when singular
values mutate.
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Figure 9. GCV curves (70 Hz). (a) 40 Hz; (b) 50 Hz; (c) 60 Hz; (d) 70 Hz; (e) 80 Hz; (f) 90 Hz. 

Figure 8. Singular value.

There are many traditional load reconstruction methods. Here, to investigate the
effectiveness of the PTR method, a comparison is made between the PTR method and the
traditional Tikhonov regularization method based on generalized cross-validation (GCV)
and the traditional Tikhonov regularization method based on an L-curve.

The GCV curves derived from the signals ranging between 40 Hz and 90 Hz with an
initial value of 70 Hz correspond to Figure 9. The GCV curves derived from the signals
ranging between 40 Hz and 90 Hz with an initial value of 80 Hz correspond to Figure 10.
The circles mark the points representing the optimal regularization parameter values.
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Figure 10. GCV curves (80 Hz). (a) 40 Hz; (b) 50 Hz; (c) 60 Hz; (d) 70 Hz; (e) 80 Hz; (f) 90 Hz.

It can be observed that the optimal regularization parameter lies at the minimum point
of the curve. The L-curves derived from the signals ranging between 40 Hz and 90 Hz with
an initial value of 70 Hz correspond to Figure 11. The L-curves derived from the signals
ranging between 40 Hz and 90 Hz with an initial value of 80 Hz correspond to Figure 12.
The circles mark the points representing the optimal regularization parameter values.
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It can be seen that the optimal regularization parameter lies at the turning point of the
curves. To further study whether the number of segments is reasonable or not, the number
of segments is increased based on the PTR method. PTR_2 increments the number of
segments based on the PTR_1 method by 1. According to the objective function formulated
in Equation (13), the segmentation and regularization parameters are computed. The
segmentation parameters are shown in Table 4.

Table 4. Segmentation parameters.

Freq./Hz
PTR_1 PTR_2

γ1 K Pk,Qk γ1,γ2 K Pk,Qk

70 0.8 2 1–9
10–100

γ1 = 0.8
γ2 = 0.9

3
1–9

10–14
15–100

80 0.8 2 1–99
100–100

γ1 = 0.3
γ2 = 0.8

3
1–9

10–99
100–100

From Table 4, it can be seen that the PTR_1 and PTR_2 methods divide the singular
values into two and three subsets, respectively. Combined with the distribution of singular
values shown in Figure 8, it can be observed from Table 4 that the segment boundary points
appear near the inflection points of the singular values.

The solved regularization parameters are shown in Figure 13. The regularization
parameters of the traditional Tikhonov regularization method can be determined using the
GCV technique, as shown in Figure 13a,b. The regularization parameters derived from
the L-curve are shown in Figure 13c,d. The regularization parameters obtained using the
optimization algorithm are shown in Figure 13e,h. In mathematics, larger regularization
parameters impose greater penalties on singular values, resulting in smoother and more
stable solutions. Conversely, smaller regularization parameters reduce the penalties on
singular values, potentially increasing the instability of and the risk of overfitting in the
solution. Therefore, appropriate selection of the regularization parameters is crucial to both
the accuracy and stability of the model.
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struction results using an initial value of 80 Hz are shown in Figure 15. In the same vein, 
a higher degree of overlap is needed here as well. 

Figure 13. The regularization parameters of different transfer function matrices are optimized using
different regularization methods. (a) Traditional Tikhonov regularization method based on GCV
at 70 Hz; (b) traditional Tikhonov regularization method based on GCV at 80 Hz; (c) traditional
Tikhonov regularization method based on L-curve at 70 Hz; (d) traditional Tikhonov regularization
method based on L-curve at 80 Hz; (e) PTR_1 at 70 Hz; (f) PTR_1 at 80 Hz; (g) PTR_2 at 70 Hz;
(h) PTR_2 at 80 Hz.

The distribution of the regularization parameters shows that small singular values
correspond to large regularization parameters. Comparing the PTR method with the
traditional Tikhonov regularization method using GCV and L-curves, the model errors
caused by singular values are corrected more efficiently. This leads to more accurate and
stable reconstruction results. However, it can be seen from Figure 13g,h that the equality of
the regularization parameters indicates that the segmentation is not effective.

The reconstruction results using an initial value of 70 Hz are shown in Figure 14.
This shows that the higher the image overlap, the better the reconstruction effect. The
reconstruction results using an initial value of 80 Hz are shown in Figure 15. In the same
vein, a higher degree of overlap is needed here as well.
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structed excitation at 40 Hz; (b) reconstructed excitation at 50 Hz; (c) reconstructed excitation at 60 

Figure 14. Reconstructed load at different frequencies using an initial value of 70 Hz. (a) Reconstructed exci-
tation at 40 Hz; (b) reconstructed excitation at 50 Hz; (c) reconstructed excitation at 60 Hz; (d) reconstructed
excitation at 70 Hz; (e) reconstructed excitation at 80 Hz; (f) reconstructed excitation at 90 Hz.
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From Figures 14 and 15, it can be seen that all the regularization methods are able to
approximately reconstruct the load signals at different frequencies. However, the recon-
struction curves of the method presented in this paper are closer to the original data curves.
This is especially apparent in the peak regions. This indicates that the method in this paper
has higher accuracy in the load reconstruction process. Using the segmented Tikhonov
regularization method enables us to eliminate noise and errors more effectively, thereby
approximating the true load conditions more closely.

To evaluate the reconstruction accuracy of the method in this paper, the MRE and
PRE are used to characterize it. The reasons for using the MRE as the primary parameter
to validate the effectiveness of the method are as follows: Firstly, the MRE represents the
average relative error between the reconstructed result and the actual value, providing an
assessment of the overall accuracy of the reconstruction result. Compared to the error of
individual samples, the MRE can provide a better representation of the fitting degree of the
entire dataset. Secondly, during the evaluation of the reconstruction methods, it is typically
desirable to understand the extent of the average deviation between the reconstructed result
and the actual value. The MRE provides a unified way to quantify this deviation, enabling
comparisons across different datasets and scenarios. By calculating the relative errors of
all the samples and taking their average, we can obtain a global performance indicator,
thereby gaining a better understanding of the performance of the reconstruction method.
Thirdly, the MRE is less sensitive to outliers in the dataset, as it is based on relative error
computation. This means that even if there are some outliers in the dataset, the MRE can
still provide a robust assessment of the overall performance of the reconstruction method.

The excitations in the frequency band from 40 Hz to 90 Hz are reconstructed using
the initial transfer function matrices and regularization parameters. The MRE is solved
using Equation (18), as Table 5 shows. It can be seen that the smaller the values of the
MRE, the better the overall reconstruction results, and vice versa. The PRE is solved using
Equation (19), as Table 6 shows. It can be seen that the smaller the values of the PRE, the
smaller the errors in the amplitude, and vice versa.

Table 5. MREs (%) of different regularization methods.

Freq./Hz GCV L-Curve PTR

70

40 29.28 38.43 8.45
50 56.08 22.63 5.73
60 21.82 44.39 8.98
70 9.05 9.22 5.71
80 19.98 12.69 3.40
90 34.40 52.55 4.95

mean 28.44 29.98 6.20

80

40 48.02 14.93 4.58
50 29.99 43.34 4.24
60 55.96 16.55 7.23
70 16.51 16.06 6.47
80 8.10 9.97 4.27
90 27.28 9.68 6.01

mean 29.61 18.42 5.86

When the initial transfer function matrix of 70 Hz is used, the MRE and PRE of the PTR
method are improved by 78.20% and 86.89%, respectively, compared with the traditional
Tikhonov regularization method based on GCV. Similarly, the MRE and PRE of the PTR
method are improved by 79.31% and 68.18%, respectively, compared with the traditional
Tikhonov regularization method based on an L-curve. When the 80 Hz initial transfer
function matrix is used, the MRE and PRE of the PTR method are improved by 80.21%
and 86.12%, respectively, compared with the traditional Tikhonov regularization method
based on GCV. Similarly, the MRE and PRE of the PTR method are improved by 88.00%
and 76.02%, respectively, compared with the traditional Tikhonov regularization method
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based on an L-curve. The MRE and PRE of the PTR method are both improved compared
with the traditional Tikhonov regularization method, indicating that the accuracy of the
proposed method is superior to the traditional method.

Table 6. PREs (%) of different regularization methods.

Freq./Hz GCV L-Curve PTR

70

40 25.54 37.66 3.03
50 59.46 21.30 2.67
60 15.42 43.28 3.15
70 7.63 8.84 2.31
80 16.58 13.15 5.39
90 37.40 52.80 4.68

mean 27.01 29.50 3.54

80

40 44.88 13.30 4.52
50 28.51 42.48 3.54
60 33.30 3.18 4.12
70 16.10 15.58 5.05
80 10.27 10.35 3.05
90 27.39 8.52 3.43

mean 26.88 15.56 3.73

To further illustrate the soundness of the PTR method, the reconstruction errors are
analyzed for different numbers of segments. PTR_2 increments the number of segments
based on the PTR_1 method by 1. Table 7 shows the MRE values. It can be seen that the
smaller the MRE is, the more reasonable the choices of the number of segments are, and
vice versa. Table 8 shows the PRE values. It can be seen that the smaller the PRE is, the
more reasonable the choices of the number of segments are, and vice versa.

Table 7. MREs (%) for different numbers of segments.

Freq./Hz GCV PTR_1 PTR_2

70

40 29.28 8.45 4.46
50 56.08 5.73 25.58
60 21.82 8.98 17.79
70 9.05 5.71 5.93
80 19.98 3.40 5.69
90 34.40 4.95 4.12

mean 28.44 6.20 10.60

80

40 48.02 4.58 4.93
50 29.99 4.24 7.07
60 55.96 7.23 20.83
70 16.51 6.47 8.18
80 8.10 4.27 4.00
90 27.28 6.01 3.44

mean 29.61 5.86 9.43

Table 8. PREs (%) for different numbers of segments.

Freq./Hz GCV PTR_1 PTR_2

70

40 25.54 3.03 4.15
50 59.46 2.67 12.37
60 15.42 3.15 2.35
70 7.63 2.31 3.42
80 16.58 5.39 2.55
90 37.40 4.68 2.57

mean 27.01 3.54 4.57
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Table 8. Cont.

Freq./Hz GCV PTR_1 PTR_2

80

40 44.88 4.52 3.39
50 28.51 3.54 2.74
60 33.30 4.12 8.39
70 16.10 5.05 3.68
80 10.27 3.05 6.78
90 27.39 3.43 3.76

mean 26.88 3.73 4.67

Comparing the PTR_2 method with the traditional Tikhonov regularization method,
the MRE decreased by 62.73% and 68.15%, respectively. This indicates the PRT_2 method
is still effective. Comparing the PTR_1 method with the traditional Tikhonov regulariza-
tion method, the MRE increased by 70.97% and 60.92%, respectively. This indicates that
over-segmentation can cause over-regularization. The instantaneous relative error peak
may be caused by noise interference. The PTR_2 method simultaneously exhibits both the
minimum and maximum values of the PRE, indicating that an increase in the number of seg-
ments can mean that the instantaneous relative error peak cannot be suppressed effectively.
An increase in the number of segments can cause greater calculation complexity and inac-
curate solutions for the regularization parameters. The results show that the accuracy and
stability of the approximate solution can be balanced more reasonably. The performance of
the PTR method is better than the traditional Tikhonov regularization method.

In summary, this method achieves low MREs and PREs at different frequencies,
indicating its high accuracy in load reconstruction. Therefore, when the unknown response
of a strain sensor is put into the load reconstruction model proposed in this paper, the small
MRE of the load reconstruction result suggests the high precision of the strain sensor.

5. Conclusions

The research presented in this paper addresses the dynamic load reconstruction
problem for standard beams using the proposed PTR method. The conclusions drawn from
this study are multifaceted and hold significant implications for practical applications.

• According to the finite element simulation analysis, the load reconstruction problem
based on cantilever beams is ill posed. This underscores the necessity for advanced
numerical methods to address the complexity of the inverse problem.

• The experimental results on the cantilever beams demonstrate that the PTR method
accurately reconstructs loads across different frequency signals. When the initial
transfer function matrix at 70 Hz is known, the reconstructed MRE and PRE are
6.20% and 3.54%, respectively. When the initial transfer function matrix at 80 Hz
is known, the reconstructed MRE and PRE are 5.86% and 3.73%, respectively. The
condition numbers obtained for the modified transfer function matrices are all close to
1, indicating the reliability of the reconstruction results. Compared with the traditional
Tikhonov regularization method, the PTR method exhibits significantly reduced MREs
and PREs at different frequencies. Comparative analysis demonstrates that the PTR
method is superior to the traditional Tikhonov regularization method.

• Future work will include studying the applicability of the PTR method to structures
other than cantilever beams and exploring methods for load reconstruction using
complex signals.
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